اثر سریزی انتهایی بر نیبرخ سطح آب در کانال جانی غیر منشوری: راهنمای طراحی

صلاح کوچکزاده

چکیده
کانال‌های جانی کاربردی‌های گسترده‌ای در شبکه‌های انتقال و توسعه آب، سدهای مخزنی، تاسیسات تصفیه آب و لاستیک‌الاکاپ، و در مجاري زرکشی سطحی دارند. جریان در این سازه‌ها از نوع منفی مکانیکی به انفرادی می‌باشد و نیبرخ سطح آب آن از فاکتور‌های مهم طراحی محاسبه می‌شود. معمولاً علاوه بر افزودن عرض کف کانال در جهت جریان، در انتها پایین‌دست کانال، سریزی نصب می‌شود تا ضمن ایجاد مقطل کنترل، شرایطی تقریبی نماید که نیبرخ سطح آب هموارتری در کانال به وجود آید. در این مطالعه تأثیر یک پره‌شیب ذوب‌پلاستیکی گزارش شده که برای تعیین میزان تأثیر نصب سریزی انتهایی با ارتفاعی مختلف بر ویژگی‌های نیبرخ آب در یک کانال جانی با مقطل غیر منشوری انجام شده بود. در هر آزمایش شش نیبرخ طوری به طور مشخص و مشابه دیگر شد. اختلاف میزان اعماق آب نتفاقد میانی نیبرخ‌های حداکثر و حداقلی در بررسی اثر نصب سریزی به کار رفته.

نتایج نشان داد که اختلاف اعماق نیبرخ‌های پای نهایی بین نصف تا یک برابر عمق بحرانی ایجاد شده در انتها پایین‌دست کانال جانی می‌باشد. همچنین، به‌نحوی نگاشت داده‌ها روش پیش‌نهاد گردد که در حداکثر میزان حمل تأثیر نیبرخ انتهایی نیبریان مقدار تا به عنوان راهنمای طراحی ارتفاعی مناسب سریزی به کار گرفته شود.

واژه‌های کلیدی: جریان منفی مکانیکی، ضرب، تصحیح اندازه حرکت، انت جریان گردایی، سریزی جانی، سریزی انتهایی، نیبرخ سطح آب، کانال غیر منشوری

مقدمه
سریزهای جانی معمول‌اً به عنوان سریزهای اضطراری در تاسیسات هیدرولیکی بزرگ چون سدها، و در شبکه‌های آبیاری و زرکشی به کار می‌روند. از سریزهای پای نهایی برای اشتعال، داشته‌اند، داشته باشی، دانسته کشاورزی، دانشگاه تهران

1. دانشیار آبیاری، دانشگاه کشاورزی، دانشگاه تهران
اب، آب و نمک، وجود جریان و رویداد در طول کانال، هندسی و منشوری بودن مقطع کانال و دایمی بودن جریان، معادله شبیه سازی در آب جریان متفق مکانی با افراشته دی، به صورت زیر می‌باشد:

\[
\frac{dS}{dx} = \frac{Q}{A} - \frac{2Q}{A} \frac{dQ}{dx}
\]

که در آن \(S\) شبیه الیکتریکی و \(Q\) روش خط انزی، \(F\) و \(g\) عوامل فردی در مقطعی فاصله x از انتهای بالاست، \(A\) مقطع مکانی جریان و \(g\) عمق آب.

معادله 1 معادله دیفرانسیل غیر خطی است، و حل تحلیلی برای آن ناکام است نه شده است. به‌همین دلیل علاوه بر روشهای هندسی و منشوری بودن، روش استاندارد جهان‌زایی رنگ‌کننده روش کوتا مرسوم و روش دویژن‌ها برای حل این شکل است. در معادله 1 توزیع سرعت جریان در مقطع عرضی یک‌پاره دارای برای انتخاب شده است، ولی فاکتور و مارکوس نشان‌دادند که فرض واحده به وجود ضریب تصمیم‌گیری اندیشه جریان در این نوع جریان نمی‌تواند واقع باشد، و برای انتقال نتایج عقبی برای مساعد آزمایشگاهی، اعمال مقدار مناسب \(\beta\) ضرورت دارد (3). اینشان نشان‌دادند که با اعمال ضریب متفق اندیشه جریان، کانال‌های جابجایی را می‌توان مقایسه‌بندی در اکبریجوز را در مقطع بزرگ در انتهای پایه (End sill) به حالت ال‌گی‌کن‌شدن بودن توزیع سرعت در مقطع عرضی جریان، مک و همان‌کنار (10) نیز در پژوهش خود به‌طور واقعی بودن فرض واحده به وجود ضریب تصمیم‌گیری اندیشه جریان ریسیدانی است، از این روش، با روش و اعمال مناسب \(\beta\) ضرایب ال‌گی‌کن‌شده است.

روابط حاکم بر جریان

پژوهش‌های هندز (7) نشان می‌دهد که برای انتخاب شده است، به‌همین دلیل علاوه بر روشهای هندسی و منشوری بودن، روش استاندارد جهان‌زایی رنگ‌کننده روش کوتا مرسوم و روش دویژن‌ها برای حل این شکل است. در معادله 1 توزیع سرعت جریان در مقطع عرضی یک‌پاره دارای برای انتخاب شده است، ولی فاکتور و مارکوس نشان‌دادند که فرض واحده به وجود ضریب تصمیم‌گیری اندیشه جریان در این نوع جریان نمی‌تواند واقع باشد، و برای انتقال نتایج عقبی برای مساعد آزمایشگاهی، اعمال مقدار مناسب \(\beta\) ضرورت دارد (3). اینشان نشان‌دادند که با اعمال ضریب متفق اندیشه جریان، کانال‌های جابجایی را می‌توان مقایسه‌بندی در اکبریجوز را در مقطع بزرگ در انتهای پایه (End sill) به حالت ال‌گی‌کن‌شدن بودن توزیع سرعت در مقطع عرضی جریان، مک و همان‌کنار (10) نیز در پژوهش خود به‌طور واقعی بودن فرض واحده به وجود ضریب تصمیم‌گیری اندیشه جریان ریسیدانی است، از این روش، با روش و اعمال مناسب \(\beta\) ضرایب ال‌گی‌کن‌شده است.

برای اصلاح و تکمیل معادله حاکم، اثرات دادن ترم‌های حذف شده در تحلیل هندز، پژوهش‌های دیگری همچون فیوری و سی‌وی‌سی (4)، فارنی و مارکوس (3)، پین و وینزل (12) پژوهش‌هایی نمودند که افزون بر ارائه روابط حاکم، به‌همین بستر یکی از بزرگ‌ترین افزایش عوامل مؤثر کمک‌کننده است. با به کار بردن اصل بقای اندازه حرکت، و پذیرش رفتارهای زیر:

1. یک بعید بودن جریان در کانال جابجایی، ناچیز بودن تشکیل قطار و برقراری توزیع هیدروستاتیکی فشار، 3 صلب بودن بست و کم بودن شیب طولی، 4. برقراری معادلات مکانیک مانیک و نیروی نیروی تغییر افتخارات در این نوع جریان،

5. ناچیز بودن اختلاف‌های با آب و بی‌بی بودن جرم مخصوص.
مکانی با افزایش دیب را منتقل می‌کند، معمولاً عرض کف مقطع در اتمد این جریان افزایش داده می‌شود تا روم سطح آب کاهش یابد. این امر کنال جانی را از حالت منشوری خارج می‌کند. در این حالت، به دلیل تغییراتی که در سطح مقطع در اتارد J_0(k_s) هم فضاهای مؤثر ییده می‌کند. با یادگیری فرض به‌های هسته‌کاه، به غیر از فرض هشتینگ، و دخالت دادن ضرایب تصحیح اندازه حرکت و گرفتن گردابی، و با به کار بردن نکات به این اداره حرکت، معادله جامع حاکم بر جریان می‌باشد (b) برای مقطع مشترک و غیر منشوری توسط کوچک‌زدایه و راه‌نما زده‌ شده:

\[S_0 - S_f - \frac{(2\beta + k_c) Q q_s^*}{g A} + \frac{(\beta + k_c) S_b}{g A} \]

\[\frac{dy}{dx} = 1 - \frac{\left(\beta + k_c\right) Q^2}{g A} \]

که در آن S بیت‌های عرض کف در واحد طول کانال، q* دیب و (dQ/dx) مؤلفه سرعت جریان ورودی به کانال در جهت x می‌باشد. عرض کانال در سطح آب است. و به‌همراه آن با ناحیه از معادله نهایی حذف شده، و عرض شدهاست که جریان ورودی به کانال باعث تغییر اندازه حرکت در جهت x می‌باشد. حذف معادله 2

\[\frac{\partial u}{\partial z} + \frac{\partial v}{\partial y} = 0 \]

\[x = \frac{(2\beta + k_c) Q^2}{g A} \]

\[\frac{1}{1 - \frac{\left(\beta + k_c\right) Q^2}{g A}} \]

\[S_0 - S_f - \frac{(2\beta + k_c) Q q_s^*}{g A} + \frac{(\beta + k_c) S_b}{g A} \]

\[\frac{dy}{dx} = 1 - \frac{\left(\beta + k_c\right) Q^2}{g A} \]

که در آن x ضریب زیری ماتانیک R، نشان‌دهنده هیدرولیکی و p می‌باشد.
انجام آزمایش‌ها

در افزایش نمایش مواد مورد نظر با توجه به محدودیت‌های مدل آزمایش‌گاهی، از قبل شیب طولی، شیب جانی و میزان دیب، به کمک یک سری برداشت‌های مقدماتی تعیین شد. در طول آزمایش‌ها، برداشت رقم سطح آب به ازای 5 مقدار معین دیب، در 4 شیب طولی مختلف و با 4 شیب سری انتهای انجام شد. مقادیر شیب در دامنه 0/40 تا 0/60 فرار داشت، و مقادیر دیب از 0/37، 0/39، 0/40 و 0/41 به ترتیب 7/10، 0/117، 0/123 و 0/124 لیتر بر ثانیه بود.

از آن جا که هدف پژوهش بررسی تغییرات نیمک طولی و عرضی در کانال جانی با مقطع غیر مستقیم بود، این امر تازه‌ترین برداشت رقم سطح آب در شمار زیادی از نقاط در امتدادی طولی معین بود. به همین منظور، برای تسهیل برداشته‌ها و افزایش میزان دقت کار، دستگاه‌های مختلف معین و ثابت تعیین شد. که در سراسر آزمایش‌ها استفاده گردید (شکل 2). این داده‌های برای سنجش غیر مستقیم از فرضیات دیده‌شده استفاده شد.

شکل 1. نحوه اتصال دیواره‌های جانی به کف سکو برای تشکیل کانال جانی

شکل 2. تغییرات نیمک طولی و عرضی در کانال جانی با مقطع غیر مستقیم

شکل 3. نمونه‌های مختلف آزمایش‌گاهی
شکل ۲. کانال جانی و موقعیت آن نسبت به دستگاه مختصات انتخابی

شکل ۳. نمای شماتیک سطح آب و موقعیت نیم‌رخ‌های طولی روی آن

در تمام آزمایش‌ها ریزش آب روی امتداد مشخص و ثابتی
بر دیواره چپ صورت می‌گرفته. شکل ۳ موقعیت مشخص
نیم‌رخ‌های طولی سطح آب روی یک نمای شماتیک سه بعدی
نشان می‌دهد. اندازه‌گیری زاویه سطح آب در محل تلاقی
محورهای طولی با مقاطع عرضی از میزان زاویه گانه به کمک یک
خطکش فلزی مخصوص و با دقت ±۰.۲ میلی‌متر صورت گرفت.

نتایج و بحث
بررسی سطح آب در طول آزمایش‌های مختلف نشان داد که
می‌توان شش نیم‌رخ طولی متمایز را در امتداد جریان تشخیص
داد. اگرچه موقعیت این نیم‌رخ‌ها در مقطع عرضی ثابت نیوزده و
عمدتاً نابع میزان دیب و شیب طولی بود، ولی میزان تغییرات آن

41
شکل ۴. تیپ‌های طولی و عرضی سطح آب برای داده‌های معین
مطلب خواهید بود که ضمن ایجاد سطح آب همواری را، رعایت سطح آب را نسبت به حالت که سطح آب اتفاقی نصب شده باشد، افزایش کنیم بدهید. به این ترتیب، نیروی سطح آب بدن سرریز می‌باشد. مقایسه نیروی سطح آب در دو روز در نظر گرفته شده و پایه‌افزایی در تقسیمی بر این می‌باشد. از این نگاه می‌توانید این قضیه داشته باشید.

بیشترین افزایش شیب را در اندازه‌بندی‌های حداکثر هر طول و B طولی، C به ترتیب منحنی‌های حداکثر و حداقلی هر پراکنده را تشکیل می‌دهند. استفاده شد. این منافع کافی بود که باید کمیک در نظر گرفت در این پژوهش اختلاف اعمال یا (Ax) نقاط وسط نیروهایهای (B) و C و B در هزینه افزایش محاسبه و نتایج حاصل تجدیلی تحلیل گردید. برای جمعیت استنباط و ومت داناد به کاربرد نشان‌گرفت که داده‌ها بی‌معنی عوامل بودن بعد از آن‌ها شوند. به هنین منظور، داده‌ها بر اساس صورت‌های مختلفی از عوامل بودن بعد وليس پرسی گردید.

نتیجه تمام داده‌های مربوط به دیه‌های مختلف، ارتفاع سرسریزی اتفاقی متاثر و شبیه‌های طولی به کار رفته در آزمایش‌ها در 0.6 اثر اصلی سردری نسبی (Qx) به بیان می‌پردازد. مقدار آمایشی به این ترتیب مورد نظر می‌باشد. مرتفع‌ترین سردری با بهتری دردید Qx، Qy و بقیه سردری‌ها به‌طور مشابه مورد آمایش قرار گرفته است. از این نظر به‌طور مشابه، مقدار فرقی و نهایت‌ی هر گروه بی‌ربطی تعیین شده و بی‌ربطی و کمترین شبیه‌های باشند. زیرا برای ارتفاع سردری و دیگر می‌باشد. افزایش شبیه طولی قابلیت جریان را که در مخرج کسر قرار دارد کاهش داده و تجربی آن افزایش می‌باشد.

شکل 7 از طور کلی کاشت نان می‌دهد که افزایش ارتفاع سردری علاوه بر جمع کردن داده‌ها حول به خاصیت مکانی Qx و Qy به طور متوسط به میزان حدود پانصد درصد کاهش می‌دهد. خصوصاً مثبت کاهش داده، تجربی آن افزایش می‌باشد. یادآوری می‌شود که در این جاً عمق شیرای حاکم می‌باشد.

۴۳
شکل 5. نمای سه‌بعدی سطح آب (الف) بدون نصب سریزی و (ب) با نصب بلندترین سریزی برای دی‌بی (2) لیتر بر ثانیه و شیب 0.089
شکل ۶. تغییرات عمق بحرانی نسبی در برابر دیپ واحد طول پی بعد سریز

شکل ۷. دیپ واحد طول پی بعد در برابر اختلاف عمق نسبی

پوشه و تغییرات واقعی داده‌ها به داده‌های بینش است، با به‌کارگیری ضابطه ملموس، پوشه تحت‌الاثار داده‌ها ایست. این موضوع نشان می‌دهد که سریز
در تعیین ارتفاع مناسب سریز انتخابی منجر شود. به همین منظور در رابطه (Q_S) در پراکندگی Q_S برای عمل عمومی بین نسبت انتخابی مختصات به تکنیک ورودی شکل 7 رسم شده است. در شکل 8 الف برای هر ارتفاع عموم سریز، با افزایش Q_S نسبی (Δy نسیه) Fاوازیش پیدا می‌کند. این روند نا سیستم به یک نقطه قرار معینی ادامه می‌یابد. از آن پس افزایش میزان Δy را کاهش می‌دهد. این روند برای تمام سریزهای و تمام شیب‌ها قابل رؤیت است. این حقيقة ترسم خط موانع هندسی نقطه قرار را امکان‌پذیر می‌سازد. که همان خط به داده‌های هر شیب طولی است. این خطوط در عمل می‌توانند آثار انتحاب سریز با ارتفاعات مختلف را تعیین کنند. به سختی دیگر، با استفاده از معادله 7، نمود سطح آب برای ارتفاع سریز انتخابی مورد نظر محاسبه می‌شود. سپس به کمک منحنی بیشتر به افزایش Q_S برای Δy مربوط به شرایط معین مسئله مورد نظر تعیین می‌گردد. با در دست داشتن 7 که از حاصل معادله 2 به دست آمده Δy مقدار Δy تعیین می‌شود. از آن گذا که به کمک منحنی بیشتر به دست می‌آید Δy محاسبه شده حداکثر اختلاف شکل 8. بیشتر داده‌های دیگر، واحد طول یا بعد در پراکندهای اختلاف عموم نسبی
نمودار ۹ اثر سریزی انرژی بر اختلاف عمق آب نسبی در شب‌های مختلف

تغییرات عرض فک کانال می‌باشد. این رو توصیه می‌شود که اثر ارتقاء سطوح و انرژی جریان ورودی بر تندرستی جریان و نشان می‌دهد که تندرستی جریان ورودی در اندازه جریان نیتیه تنی و با حضور سریزی انرژی و بدون آن به‌طور کریستالی گردیده. هم‌چنین، بررسی ناحیه آمیختن هوا در جریان و اثر میزان آب در کانال جابجایی به تیپ‌های هیدرولیک جریان کمک شناخته شده‌کرده‌اند.

سیاستگرایی

از معاونت محترم پژوهشی دانشگاه تهران سرای ایجاد فضای مناسب تحقیق و تأمین هزینه پژوهش در قالب طرح‌های بزرگ به دنبال تأثیر زیاد بر ابعاد هندسی سازه و نهایتی بر هزینه احداث، منابع تحقیق و تأمین هزینه پژوهشی در قالب عضویت بی‌ضامن شده و هم‌چنین از سرکار خاتم مهندس آوا مروشی که در کار آزمایشگاهی بارزی کردندان تشریح می‌شود.
منابع مورد استفاده