اثر سریزی انعکاسی بر پیمای سطح آب در کنال جابجایی غیر منشوری: راهنماهای طراحی

صلاح کوچکزاده

چکیده
کنال‌های جابجایی کاربردهای گسترده‌ای در شبکه‌های انتقال و توزیع آب، سدهای مخزنشی، انتقالات تصفه‌ای آب و لاستیک‌ها، و در مجاری زرکش سطحی دارند. جریان در این سازه‌ها از نوع منفی مکانیکی با انرژی دی است، و نیم‌برخ سطح آب آن از فاکتورهای مهم طراحی محاسبه می‌شود. معمولاً علاوه بر افزودن عرض فک کنال در جهت جریان، در انتهای پایین‌ترین کنال، سریزی نقش می‌شود تا ضمن ایجاد مققل کنترل شرایط فرآیندهایی که نیم‌برخ سطح آب هم‌وارتری در کنال به وجود آید، در این مقلاه نتایج یک پژوهش آزمایشگاهی گزارش شده که برای تعیین میزان تأثیر نیم‌برخ سریزی‌های انعکاسی با ارتفاعات مختلف بر ویژگی‌های سطح آب در یک کنال جابجایی با مققل غیر منشوری انجام شده است. بر اساس پیاده‌سازی طرح مشخص و مشابه دیده شد. اختلاف میان اعمال انعکاس آب نقاط میانی نیم‌برخ‌های حداکثر و حداقلی در بررسی اثر نیم‌برخ سریزی‌های به کار رفته، نتایج نشان داد که اختلاف اعمال نیم‌برخ‌های پایین‌ترین قسمت کنال در انتهای پایین‌ترین کنال جابجایی می‌باشد. هم‌چنین، به‌طور معمول پوست داده‌ها را پیش‌بینی کرده که در حداکثر میزان متحمل تألیف یک سریزی‌ای انعکاسی تعیین می‌گردد تا به عنوان راهنماهای طراحی ارتفاع مناسب سریزی به کار گرفته شود.

واژه‌های کلیدی: جریان منفی مکانیکی، ضربت تصاحح انف اندز حرکت، انت‌چری‌نگ‌دبی، سریزی جابجایی، سریزی انعکاسی، نیم‌برخ سطح آب، کنال‌های غیر منشوری

مقدمه
سریزی‌های جابجایی معمولاً به عنوان سریزی‌های اضطراری در تأسیسات هیدرولیکی بزرگ چون سدها، و در شبکه‌های آبیاری و زیستی به کار می‌روند. از سریزی‌های پای‌نه‌بند برابر اشکال

1- دانشیار آبیاری، دانشکده کشاورزی، دانشگاه تهران
روابط حاكم بر جريان

٣٨١

١٠٢٠
مواد و روش‌ها

تجهیزات آزمایشگاهی
مدل فیزیکی که در این پژوهش به کار رفت مشکل بود از یک مخزن با سری‌های جلویی، کانال گیرنده و یک سری سری‌های که در انتهای کانال گیرنده نصب می‌شد. به منظور اطمینان دی و ورود به کانال گیرنده، یک مخزن مجزه‌بندی یک چاه‌که و یک گمان‌مو برکه، که از اجزای مهم پیش‌نیاز آب نسبت به سری‌های مخزن را ممکن می‌ساخت. با درست داشتن ارتفاع آب روی سری‌های، دیبی کل قابل محاسبه بود. برای تعیین رابطه دیبی با استفاده از یک ترازوی دیجیتال در تنی انجام شد. ارتفاع آب در چاه‌که و سیستم یک روش مسنج نقطه‌ای با دقت ±0.1 میلی‌متر فرانش می‌شود. مخزن و سری‌های آن کاملاً انقباض شده بود، به طوری که توزیع دیبی روی دیبی کننده‌ای صورت می‌گرفت. اب پس از عبور از سری‌های به کانال گیرنده می‌رسید. کانال گیرنده روی سکوی چوبی به طول 2060 متر و عرض 0.868 متر احداث شده بود. دیبی‌های جلویی کانال به تعداد ولتا به سکو وصل شده بودند، و با اهمیت به لحاظ سکو مکانیکی بودند. پیچی که در هر اهرم قرار داشت قابلیت تغییر شیب دیبی‌های دیواره‌ها را فراهم می‌ساخت، و به کمک این پیچ دیبی‌بنده کانال تنظیم می‌شد. برای این پیچ انتقال از اسقفی فشرده‌بوده استفاده شد که در صنع فرایند سازی کاربرد دارد. شکل 1 نحوه نصب دیواره‌های جلویی روی سکو را نشان می‌دهد. طول کانال 18350 متراً و عرض‌ها بالا دستین و پایین‌دستین آن به ترتیب به 1 (عمودی) بود.

به منظور بررسی اثر سری‌های آب‌زدایی انتهایی آب در انتهای پایین‌دست کانال گیرنده سری‌های راه اندازی گردید که یک مخلوط نصب شد. در این پژوهش چهار سری‌های با ارتفاع صفر، 50، 100 و 150 متر به کار گرفته و با تغییرات به‌دست آمده (W/Vc) را ایجاد کرد.

مکانیکی با افراشته دیبی را متقابل می‌کند. معمولاً عرض کف مقطع در انتهای جریان افراشته داده می‌شود تا رقم سطح آب کاهش یابد. این امر کانال جلویی را از حالت منشوری خارج می‌کند. در چنین حالتی، به‌دلیل تغییراتی که در سطح مقطع در انتهای جریان وجود دارد، ضریب افراشته گردشی (κ) هم تغییر می‌یابد. به‌طور مثال، با یافتن فشار به‌سادگی، به‌طور غیر مناسب، هم افراشته گردشی و هم دخل دادن ضرایب تصحیح انداده حرکت و افراشته گردشی، و با کار بردن قانون بیان اندازه حرکت، معادله جامع حاکم بر جریان متغیر مکانیکی با افراشته دیبی برای مقاطع منشوری و غیر منشوری توسط کوک، ژاده و وطن‌خواه به صورت زیر ارائه شد:

\[
\frac{dS_0}{dx} = \frac{(2\beta + k_e)Q_0 e^* - (\beta + k_e)S_0v_n}{gA^3}
\]

\[
S_0 - S_f = \frac{(2\beta + k_e) e^*}{gA^3} - \frac{(\beta + k_e)S_0v_n}{gA^3}
\]

[۲]

که در آن تغییرات عرض کف در واحد طول کانال، e* دیبی واحد طول سری‌های (dQ/dx) مشخص می‌شود. T عرض کانال در سطح آب است و به‌طور باروری با تغییراتی به‌طور معنی‌داری گزارش نمی‌شود. است، و با برای دستگاه فشار می‌شود. نتایج مربوط به فرمول، از معادله‌های حذف شده، و فرض شده است که جریان ورودی به کانال به‌طور مثابث تغییر بار است در جهت x، نمی‌شود. حالت معادله 2 برای این مقطع کتول آغاز شود، و برای یافتن موقعیت مقطع جدید، با یافتن اثبات هندسی معادله وزنی به دست آمده:

\[
x = \frac{(2\beta + k_e) e^*}{g\left(\frac{2\beta + k_e}{\beta + k_e}\right)^2 T^2 S_0 - \frac{\rho g n^2 p}{(\beta + k_e)TR^{1/3} + S_0 b_y^3} \left(\frac{y}{T}\right)^3}
\]

[۳]

که در آن n ضریب زیری ماتینگ، R شعاع هیدرولیکی و ρ محیط هیدرولیکی است.
شکل ۱. نحوه اتصال دیواره‌های جانبی به کف سکو برای تشکیل کانال جانبی

انجام آزمایش‌ها
در اینجا، دانش‌های تغییرات عوامل مؤثر مورد نظر با توجه به محدودیت‌های مدل آزمایش‌گاهی از قبل شیب طولی، شیب جانبی، و میزان دیچرگاه به کمک یک سری برداشت‌های مقدماتی تعیین شد. در طول آزمایش‌ها، برداشت‌های سطحی آب به ازای ۵ مقدار معنی دارد، در ۴ شیب طولی مختلف، و با نصب سری‌های انتهایی انجام شد. مقادیر شیب محاسبه می‌شود با انتساب به دامنه ۱۰۰۰/۰۰۵ تا ۰/۵ فرانک داشت. نتایج و مقادیر دیگری با ترتیب ۱/۰، ۱۰/۰۵، ۱۷/۶۳، ۲۴/۳۷، ۲۵/۱۷۶ داشت. این است که هدف نهایی بررسی تغییرات نیرو طولی و عرضی در کانال جانبی با مقاطع مختلفی بود. این امر نیازمند برداشت‌های سطحی آب در شمار زیادی از نقاط در امتدازاتی طولی معین بود به همین منظور، برای تسهیل برداشت‌ها و افزایش میزان دقت کار، دستگاه‌های مختصاتی و ناحیه تعريفی شد. که در سردسیر آزمایش‌ها استفاده گردید.

شکل ۲. ایجاد کانال به‌صورت شبکه‌ای در کانال اجرایی
نتایج و بحث
بررسی سطح آب در طول آزمایش‌های مختلف نشان داد که منحنی شن سطح طولی ممایز را در امتداد جریان تنش‌های داد. اگرچه موقعیت این نمودگاه در مقطع عرضی ثابت نیست و عمداً تابع میزان دبی و شیب طولی بود، ولی میزان تغییرات آن در نمودار چپ صورت می‌گرفت. شکل ۳ موقعیت مشخص نمودگاه طولی سطح آب را در یک موقعیت مشخص به پایین منحنی می‌دهد. امتداد گیری رقاب سطح آب در محل نقاط محورهای طولی با مقاطع عرضی سطح گانه به کمک یک خطکش فلزی مخصوص و با دقت ±۱۰ میلی‌متر صورت گرفت.

در تمام آزمایش‌ها ریزش آب روی امتداد مشخص و ثابتی بر دیواره چپ صورت می‌گرفت. شکل ۳ موقعیت مشخص نمودگاه طولی سطح آب را در یک موقعیت مشخص به پایین منحنی می‌دهد. امتداد گیری رقاب سطح آب در محل نقاط محورهای طولی با مقاطع عرضی گانه به کمک یک خطکش فلزی مخصوص و با دقت ±۱۰ میلی‌متر صورت گرفت.

ناچیز است. شکل ۴ یک نمود از برداشت‌های انجام شده در نشان می‌دهد. نمودگاه طولی در شکل ۴-ا)ین و نمودگاه عرضی سطح آب در شکل ۴-ب) رسماً شده است. رقم‌های سطح آب در هر آزمایش به کمک ۱۱ نقطه در امتداد هر نمودگاه طولی برداشته شد. بنابراین، مجموع نقاط نمودگاه هر برداشت امکان ترسیم سطح به‌طور دقیق آب هر آزمایش را فراهم نمود.

برای بررسی نگاه سطح انتخابی با ارتفاع‌های مختلف بر سر نمودگاه سطح آب پایه به دنبال معیاری مناسب برای مشاهده ارتفاع سطح آب نیاز بود. استقرار سریز در پایین دست کاتال قبل از آغاز مشاهده کلیه رقم‌های این مورد آب با استفاده از شیب شدن آن در جهت عرضی می‌گردد. هموار شدن سطح آب به معنی از بین رفتن انرژی آب ورودی در نظر گرفته شد. در این صورت، ارتفاع سریزی در شکل ۲. کانال جانی و موقعیت آن نسبت به دستگاه مختصات انتخابی

شکل ۲. کانال جانی و موقعیت آن نسبت به دستگاه مختصات انتخابی

شکل ۳. نمای شماتیک سطح آب و موقعیت نمودگاه طولی روی آن

۴۱
شکل 4. نمودارهای طولی و عرضی سطح آب برای دادههای معین

\(Q = 17.08 \text{ l/s}, \quad S_r = 0.0396, \quad H = 0 \text{ mm} \)
مکمل‌و‌خواه‌بود که ضمن ایجاد سطح آب هموارتر، رقم سطح آب را نسبت به حالتی که سریزی انتهایی نصب نشده باشد، افزایش کرده‌بود. به این ترتیب، نبی‌زور سطح آب بدون سریزی می‌باشد. مسائلی نبی‌زور ایجاد شده با سریزی‌های

این اتفاق در هر صورت سریزی نیست و در شکل‌های 5-18

بله و ۵-به این‌ها است، مقایسه شکل‌های یاد شده اثر

نسبت سریزی انتهایی را در هموارکردن سطح آب به خویش

بنابراین اگر ایجاد شده در انتهای پایین دست کالان روز سریزی (با

بودن سریزی) به کار برد شده است، از دیدگاه کاربردی، نتیجه

های ایجاد شده است که اگر A7 به عنوان شکم در نظر

گرفته شود ضرب اطلاعی بالایی در تعیین حداکثر عمق کالان

و جوش واحده ساختن. انسان دنیه. در ۲ دارای ارزش

کاربردی است.

شایان ذکر است که کاهش دادن شیب در حالتی که سایر

شیب‌دریگ تابش، منجر به افزایش $$\gamma$$ می‌شود. زیرا

کاهش شیب، عمق جریان را در کالان جابه‌افزایی داده و

همه به نسبت آن کاهش پیدا می‌کند. در حالتی که برای سریزی

معین، عمق جریان ($$\nu$$) در پایه دست محدود معین و ثابت

است. از این جا که $$\nu = \gamma \times i$$، تند طراحی می‌شود، نقاطی که در بالای خیز 2 $$\gamma$$ قرار دارد.

از ارزش کاربردی کمتری برخوردارند. اگرچه انتخاب 2 $$\gamma$$

برای نقطه بالایی این خیز ضرب اطلاعی بین گره‌داری می‌دهد.

مکملهبی بسیار بعد (Qx) در بر اثر اختلاف عمق نسبی

$$\Delta y$$ نیز اطلاعات جالب ارائه می‌کند. سبب

پارامترها در شکل 7 طراحی شدهاند. حمایت عرض های شکل

7 نشان دهنده اختلاف عمق نسبی به صورت درصد می‌پاشند. در

این شکل جهانی گروه داده دیده می‌شود. که هر کدام مربوط به

یک ارتقاء سریزی می‌باشد. نقاط انتهایی می‌شود. نقاط

راست هر شیب بهتر مربوط به کمترین و بیشترین دبی

آزمایشی شده با ارتقاء سریزی مورد نظر می‌باشد. مرتفع‌ترین

سریزی با چهار دی $$Qx$$ تا $$Qy$$ به قله سریزی با هر یک دی $$Qy$$ مورد آزمایش قرار گرفته است. در این شکل برخلاف شکل 6، نقطه فوقانی و تحتانی هر گروه به ترتیب ممکن به بیشترین و

کمترین شیب می‌باشد. زیرا برای ارتقاء سریزی در دبی معین

افزایش شیب طولی عمق جریان را که در مخرج کسر قرار دارد

کاهش داده ترجیحاً A7 افزایش می‌یابد.

شکل 7 به طور کلی نشان می‌دهد که افزایش ارتقاء سریزی

علاوه بر جمع کردن داده‌ها حول یک خط مركزي $$\Delta y$$ را به

طرور متوسط به میان حدود پاسخ‌ها درصد کاهش می‌دهد. خط

در این جا عمق
شکل ۵. نمای سه‌بعدی سطح آب (الف) بدون نصب سرعت‌مریز، (ب) با نصب بلندترین سرعت‌مریز برای دی‌بستر ۴۳۷ لیتر بر ثانیه و شیب ۰/۰۸۹.
شکل ۶ تغییرات عمق بحرانی نسبی در برابر دیب واحد طول بی به سروری

شکل ۷ دیب واحد طول بی به در برابر اختلاف عمق نسبی
در تعیین ارتفاع مناسب سرایی انتخابی، صورت‌شکل شوید. به همین منظور دوی برید (= Q)، در برای عمق نسبی برای سرایی‌های مختلف به تخمین در شکل 8 رسم شده است. در شکل 8، افزایش Q برای هر ارتقای شروع سرایی، به افزایش ϕ معنی نسبی (= ϕ/ϕ) افزایش یابد. این گونه قطعه‌های معین ادames می‌یابد. از آن پس، افزایش دیگر میزان ϕ را کاهش می‌دهد. این روند، برای تمام سرایی‌ها و تمام شیب‌ها قابل رویت است. این حقيقة در رسم خط مکان هندسی نقاط فرا را امکان رطبعی می‌سازد. در همان خط بیش داشه‌ها هر شیب طولی است. این خطوط در عمل می‌توانند آخر انتخاب سرایی با ارتفاع‌های مختلف را تعیین کنند. با ساختن دیگر، با استفاده از معادله ۲، نیمی از سطح آب برای ارتفاع سرایی انتخابی مورد نظر محاسبه می‌شود. سپس به کمک معنی‌پذیر Q برای ϕ مربوط به شیب‌های معین مسئله مورد نظر تعیین ϕ گردد. با در دست داشتن ϕ از حمل معادله ۲ به دست می‌آید. اگر عمق ϕ تعیین می‌شود، از آن جا که ϕ به کمک محاسبه شده حداکثر اختلاف ϕ معنی‌پذیر Q برای ϕ و شکل 8. پوش داده‌های دیگر واحد طول بی‌بعد در برای اختلاف عمق نسبی.
نگرش نوسان های جریان و پیروی یکی از تغییرات عرض کف کانال می‌باشد. از این رو، توسعه می‌شود که اثر ارتفاع سطح و انرژی جریان و رویدی بر نیروی خاص جریان و نشان می‌دهد که در اثر ارتفاع سطح و انرژی جریان، به خصوص در شیب‌های طولی و با حضور سریز انتها‌های و بدون آن بررسی گردیده‌های چنین در جریان و اثر میزان آن بر عمل آب در کانال جایی به تناوب هیدرولیجی جریان کمک شتابانی خواهد کرد.

سیگنال‌گیری

از معاونت محترم پژوهش دانشگاه تهران برای ایجاد فضای مناسب تحقیق و تأیید هزینه پژوهش در قالب طرح شماره 1429/711/71 صمیمانه تشکر و قدردانی می‌گردد. همچنین از سرکار خانم مهندس آوا مرعشی که در کار آزمایشگاهی بارزی کرده‌اند تشکر می‌شود.

† که در طول کانال جایی چند نب‌برخ متمایز قابل رؤیت است. اختلاف میان عمق آب نقاط وسط نب‌برخ‌های خیاطرودی و در انتهای به عنوان معنی‌دار برای بررسی اثر سریزی بر کار گرفته شد. نتایج نشان داد که مقدار اختلاف بین شده در محدوده‌ای برابر با تصفیه تا یک برای عمق بحرانی انتهای پایین دست کانال قرار می‌گیرد. سنجش معیار فوق نسبت به عمق حداکثر نشان داد که افزایش ارتفاع سریز بعثت کاهش محدوده تغییرات نسبت اختلاف اعماق و عمق حداکثر است. خص بوس داده‌ها برای تعیین حداکثر محتمل اثر سریز انتخابی به کار رفت. این موضوع نشان می‌دهد که اگر سریز انتخابی با ابعاد مناسب، بدان تأثیر زیاد بر ابعاد لنزی سازه و نهایتاً بر هزینه احداث آن، می‌تواند به این بین نتیجه‌گیری جریان و رویدی کمک کرده، شرایط جریان مطلوب‌تر را تولید نماید. ولی توصیه ابعاد طراحی و ارائه نتیجه‌گیری جامع، مستلزم انجام پژوهش‌های گسترش‌دهنده‌تری، به ویژه در مورد نفش تغییر ارتفاع سطح و نیز
منابع مورد استفاده