اصلاح کوچک‌زده

چک‌بندی

کانال‌های جانبی کاربردهای گسترش‌یافته در شبکه‌های انتقال و توزیع آب، سطح‌های مختلف، تأسیسات تصفیه آب و اضافات، و در مداری زوکشی سطحی دارند. جریان در این سازه‌ها از نوع متغیر مکانی با اندازه‌بندی است، و نیم‌خور سطح آب آن از فاکتورهای مهم طراحی محاسبه می‌شود. معمولاً علاوه بر انرژی خروج فک کانال در جهت جریان، در انتهای پایین‌دست کانال، سری‌پز نصب می‌شود تا ضمن ایجاد مقطع کدرنگ شرایطی فراهم شود که نیم‌خور سطح آب هموارتری در کانال به وجود آید. در این مقاله نتایج یک پژوهش آزمایشگاهی گزارش شده که برای تعیین میزان تأثیر نصب سری‌پز انتهايی با ارتفاعات مختلف بر ویژگی‌های سطح آب در یک کانال جانبی با مقطع غیر متشوران انجام شده بود. در هر آزمایش نشان داد که افزایش نیم‌خور سطحی بالاتر کارکرد می‌کند و نتایج مقاله اینکه افزایش نیم‌خور سطحی بالاتر کارکرد می‌کند و نتایج مقاله اینکه افزایش سطح آب، کانال‌های غیر متشوران

مقدمه

سری‌پزهای جوانی معمولاً به عنوان سری‌پزهای اضطراری در تأسیسات هیدرولیکی بزرگ چون سد‌ها، و در شبکه‌های آبیاری و زوکشی به کار می‌رودند. از سری‌پزهای پای درجه برابر انتخاب

1. دانشیار آبیاری، دانشگاه کشاورزی، دانشگاه تهران
روابط حاکم بر جریان
پژوهش‌های هندرز (7) احتمال حاکم بر جریان هندرزی را در انتقال انرژی و حرارت از بار، افزایش می‌دهد. در این پژوهش‌ها از فیزیک اندازه حرکت بار بر اثر مقدار حاکم استفاده شده و با استفاده از تحقیق نظری کردن از نظر اصطکاک در مدل‌های سطح و چرخش ایجاد شده است. حرکت بار بر اثر مقدار حاکم است. در نظر در نشان داده است که طول حرکت بار در انتقال انرژی و حرارت از بار، افزایش می‌دهد. این پژوهش‌ها از فیزیک اندازه حرکت بار بر اثر مقدار حاکم استفاده شده و با استفاده از تحقیق نظری کردن از نظر اصطکاک در مدل‌های سطح و چرخش ایجاد شده است.
برای اصلاح و تکمیل معادله حاکم و انرژان ترم‌های حذف شده در تحلیل هندرز، پژوهش‌ها از مدل‌هایی مورد استفاده قرار گرفته که این پژوهش‌ها از فیزیک اندازه حرکت بار بر اثر مقدار حاکم استفاده شده و با استفاده از تحقیق نظری کردن از نظر اصطکاک در مدل‌های سطح و چرخش ایجاد شده است. برای اصلاح و تکمیل معادله حاکم و انرژان ترم‌های حذف شده در تحلیل هندرز، پژوهش‌ها از مدل‌هایی مورد استفاده قرار گرفته که این پژوهش‌ها از فیزیک اندازه حرکت بار بر اثر مقدار حاکم استفاده شده و با استفاده از تحقیق نظری کردن از نظر اصطکاک در مدل‌های سطح و چرخش ایجاد شده است.
مکانی با افزایش دیب را متقابل می‌کند. معمولاً عرض کف مقطع
در امتداد جرقه‌افزار داده می‌شود تا رقم سطح آب کاهش
یابد. این امر کالان جانی را از حالت مشرک خارج می‌کند. در
چنین حالتی، به دلیل تغییراتی که در سطح مقطع امتداد
جریان وجود دارد، ضریب انت جریان گردایی (k) هم تغییر
مؤثری بی‌پدید می‌کند. با پدیداری فرضیه هششگاه، به‌طوری
پیچیده و در دلشادن ضرایب تصفیه انتقال حرارت و
ائف جریان گردایی، با به کار بردن قانون پیاده انتقال حرارت،
معادله جامع حاکم بر جریان متفاوت مکانی با افزایش دست
برای مقاطع منشوار و غیر منشوار توسط کوچک‌زدایه و
وطن‌خواهی
1) به‌صورت زیر ارائه شد:

\[
\frac{dy}{dx} = \frac{S_0 - S_f - (2\beta + k_0) \frac{Qq^*}{gA} - (\beta + k_p) \frac{S_b q^*}{gA}}{1 - (\beta + k_p) \frac{Q^*^2}{gA}}
\]

2) که در آن Sb تغییرات عرض کف در واحد طول کالان، \(q^*\) دیب
وید طول سریزی (dx/dQ) و \(V_s\) مولفه سرعت جریان ورودی
به کالان در جهت x می‌باشد. T عرض کالان در سطح آب است.
و رابطه پارامترها قبلی تعیین شده‌اند. معمولاً مولفه V تناژیر
است و با برای با فرض می‌شود. بنابراین، از معادله نهایی
در حذف شده، و فرض شده است که جریان ورودی به کالان
یا بستگی آن تغییر اندازه حرکت در جهت x نمی‌شود. حاصل می‌باشد
پایین‌تر از مقطع کنترل آغاز شود، و برای یافتن موقعیت مقطع
کنترل، با پدیداری انتقال هدف‌مند معادله زیر به دست آمده:

3)

\[
x = \frac{1}{g} (2\beta + k_p) \frac{Q^*^2}{gA} \left(S_0 - \frac{g^2 n^2 p}{(\beta + k_p) T R^{1/3} + S_b} \frac{V^3}{T} \right)
\]

که در آن p ضریب زیری ماتینگ، R شعاع هیدرولیکی و
محیط خیس شده است.
انجماع آزمایش‌ها

در ازای دامنه تغییرات عوامل مؤثر مورد نظر با توجه به محدودیت‌های مدل آزمایشگاهی، از قبیل شیب طولی، شیب جانی، و میزان دیب، به کمک یک سری برداشت‌های مقدماتی تعیین شد. در طول آزمایش‌ها، برداشت‌های طولی، شیب ۴ مقدار معین دیب، در ۳ شیب طولی مختلف، و با نصب سری‌رسی انتهای انجام شد. مقدار درآمده در دامنه ۰/۱۰۰۵، نا ۵۰۰۰۰۰ قرار داشت، و مقادیر دیبی، به ترتیب ۱۱/۷۷۱، ۱۰/۸۶۸ و ۳۵/۷۰۷ لیتر بر ثانیه بود.

از آن جا که هدف پژوهش بررسی تغییرات نیم‌برخ طولی و عرضی در کانال جانی با مقاطع غیر مشوری بود، این امر تا حدی برداشت رقوم سطح آب در شمار زیادی از نقاط در امتدادهای طولی معین بود. در این منظور، برای تسهیل برداشت‌ها و افزایش میزان دقت کار، دستگاه‌ها و مختصات معین و ثابت تعیین شد. که در سری‌فاس آزمایش‌ها استفاده گردید.

شکل ۱. ایندا کانال به ناحیه شکوه‌بندی شد که همکاری در مراحل مختلف فرضیه‌ها برای افزایش دقت در طول و عرض نقاط شدیده در دستگاه‌های مختلف بحث و در این روز، ۱۱ افزار طولی در طول کانال ایجاد شد.
نابج بس. شکل 4 یک نمودن یک برداشت‌های انجام شده را نشان می‌دهد. نیم‌برخ‌های طولی در شکل 4-الف و نیم‌برخ‌های عرضی سطح آب در شکل 4-ب رسم شده است. رقیم سطح آب در هر از آزمایش به کمک 11 نقطه در انتظار هر نیم‌برخ طولی برداشت شد. به‌پایه‌ای، مجموع داده‌های هر برداشت‌امکان ترسیم سطح آب هر آزمایش را فراهم نمود.

برای بررسی نقش سریز انتهایی با ارتفاع‌های مختلف بر نیم‌برخ سطح آب باید به دنبال معادل مناسب برای شاهد اکر بود. استقرار سریز در باین‌دست کاتال، ضمن افزایش کلی رقیم سطح آب، باعث هموارتر شدن آن در جهت عرضی می‌گردد. هموارشدن سطح آب به معنای از بین رفتن انرژی آب ورودی در نظر گرفته شد. در این صورت، ارتفاع سریزی در تمام آزمایش‌ها ریزش آب روي امتداد مشخص و ثابت

بر دیواره چپ صورت می‌گرفت. شکل 3 موقفی مشخص نیم‌برخ‌های طولی سطح آب را در یک نمای شماتیک سه بعدی نشان می‌دهد. اندازه‌گیری رقیم سطح آب در محل نقاط محورهای طولی با مقاطع عرضی یازده گانه به کمک یک خطگش فازی مخصوص و با دقیقه 41 میلی‌متر صورت گرفت.

نتایج و بحث
بررسی سطح آب در طول آزمایش‌های مختلف نشان داد که می‌توان شش نیم‌برخ طولی متمایز را در انتظار جریان تشخیص داد. اگرچه موفقیت این نیم‌برخ‌ها در مقاطع عرضی ثابت نبوده و عمداً نابع میزان دیگر و شبی طولی بود. ولی میزان تغییرات آن
شکل ۴. نمودار‌های طولی و عرضی سطح آب برای داده‌های معین
ارث سری‌های انتها یا نیبرخ سطح آب در کنال جانی غیر منشوری: راهنمای طراحی

مطابق خواهد بود که ضمن ایجاد سطح آب همواری در سطح آب یا نسبت به حالتی که سری‌های انتهایی نسبت نشده باشد، افزایش کمتری بدهد. به این ترتیب، نیبرخ سطح آب بدون سری‌های مباین می‌قابل‌باشد. افزایش ارتفاع نسبت به آب بدون نصب سری‌ز و با نصب سری‌ز به ترتیب در شکل‌های ۵-الف و ۲-ب ارائه شده است. مقایسه شکل‌های باز شده اثر نصب سری‌ز انتهایی را در همواری کردن سطح آب به‌حوزه نشان می‌دهد.

برای بررسی اثر سری‌زها از داده‌های مربوط به منحنی‌های طولی C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کنیم. با استفاده از داده‌های مربوط به منحنی‌های طولی به شکل C و B و دردست را تحقیق می‌کر
شکل ۵. نمای سه‌بعدی سطح آب (الف) بدون نصب سریز، (ب) با نصب بلندترین سریز برای دیب ٤٣/١ لیتر بر ثانیه و شیب ٠/٠٨
شکل 6. تغییرات عمک بحرانی نسبی در برابر دیپ واحد طول برای سریز

شکل 7. دیپ واحد طول برای در برای اختلاف عمک نسبی

پوش فوکاتی نامیده‌ها که منطق به داده‌ها یا شیب طولی بیشتر است، Δy با روند تندرشتی کاهش می‌دهد. ناپوش تحتانی داده‌ها. این موضوع نشان می‌دهد که سریز
عمق است که به ارزیابی شرایط موجود می تواند به وجود آید. در عمل به جای استفاده از خطوط پوش شکل 8 می توان از پوش فوقانی شکل 7 که تمامی داده را در بر می گیرد، بهره جست.

\[\Delta{y} = \frac{Q_{\text{min}}}{Q_{\text{max}}} \]

در برابر دی نسبی با شیب نسبی افزایش یی، اختلاف عمق \(Q_x^* \) و افزایش یی نسبی \(\Delta{y} \) افزایش نمی یابد. این روند نا رسمیدن به یک نقطه فاز معین آدامه می یابد. از آن پس افزایش دی نیاز \(\Delta{y} \) را کاهش می دهد. این روند برای تمام سریزهای و تمام شیب‌های قابل رؤیت است. این حقيقة ترسریسم خط منحنی هندسی نقطه فاز را آمیکان پذیری می سازد. که همان خط پوش داده‌های هر شیب طولی است. این خطوط در عمل می توانند اثر انتخاب سریزه با ارتقای مختلف را تعیین کنند. به سخت و سریزه با استفاده از معادله 1 نیمیر سطح آب برای ارتقای سریزه انتخاب مورد نظر محاسبه می شود. سپس به کمک منحنی پوش، مقدار \(Q_x^* \) برای

\[\Delta{y} \]

وراسیب شرایط معین مدل با شیب نسبی \(Q_x^* \) و درست داده شده \(\Delta{y} \) که از حس معادله 2 به دست آمده \(\Delta{y} \) مقدار \(Q_x^* \) تعیین می شود. از آن جا که \(\Delta{y} \) به کمک منحنی پوش به دست می آید، \(\Delta{y} \) محاسبه شده حداکثر اختلاف شکل 8. پوش داده‌های دی نیاز طول بی بعد در برابر اختلاف عمق نسبی

نتیجه کلی

در این پژوهش اثر نصب سریزه انتخابی در کانال جانبی به کمک مدل فیزیکی بررسی گردید. ازمایش‌های اولیه نشان داد...
شکل ۹ اثر سریزی انتخابی بر اختلاف عمق آب نسبت در شبیه‌سازی مختلف

تغییرات عرض کف کانال می‌باشد. از این رو، توصیه می‌شود که اثر ارتقاء سطح و انرژی جریان و نسبت به سریزی‌های جریان و نسبت مؤلفه اندیاره حرکت جریان و نسبت در اتماد جریان، به خصوص در شبیه‌سازی عمق، به عوامل و بودن آن بررسی گردید. همچنین، بررسی نحوه آمیختن هوا در جریان و اثر میزان آن بر عمق آب در کانال جابجایی به تغییر هیدرولیک جریان کمک شایانی خواهد کرد.

سیاستگذاری

از معاونت محترم پژوهشی دانشگاه تهران برای ایجاد فضای مناسب تحقیق و تأمین هزینه پژوهش در قالب طرح شماره ۹۷/۱۳۴۹/۱۳۹۷ و نهایتاً بر هزینه احتمال آن، می‌تواند به این ترتیب اثری جریان و نسبت در کمک کرده، شرایط جریان مطلوب را تولید نماید. ولی توصیه ایجاد طراحی و ارائه نتیجه جامع، مستلزم انجام پژوهش‌های گسترده‌تری، به ویژه در مورد نظر تغییر ارتقاء سطح و نیز...