بررسی روش‌های بهینه بسته‌بندی نان تافتون

نفحه مقدماتی، محمد شاهدی و غلامحسین کیار

چکیده

با توجه به اینکه یکی از مهم‌ترین دلایل ضایعات زیاد نان‌های ایرانی عدم بسته‌بندی و نگهداری صحیح این محصول است، در این پژوهش بعد از تعیین بهترین دمای بسته‌بندی، اثر سه نوع لی‌ کانکسی، لفاف دون‌لایه و لی‌ پرپلین جهت کاهش دمای اطلاعاتی و میزان تاثیر لی‌ پرپلین (PP/PE) با ضخامت ۶۰ میکرون، لفاف سه‌لایه به‌شکل خاص از پلی‌ اتیلن و پلی‌ اتیلن در نظر گرفته شد. این پژوهش نشان داد در دمای سه‌تایی گراند تنظیم شد.

نتایج آزمون‌های اندازه‌گیری رطوبت و میزان آبی نشان داد که بین ضایعات نان بسته‌بندی شده در لی‌ پرپلین و لی‌ پرپلین در دمای‌های مختلف تفاوت معنی‌داری (P<0.01) وجود دارد. در صورتی که در بستر سه‌اینده دمای بسته‌بندی کاهش یافته، و لی کانکسی در صورت رطوبت بسته، باعث کم شدن استفاده از بسته‌بندی کم و میزان بیانی نیستند. همچنین مشخص شد که هنگام استفاده از بسته‌بندی به‌شمایه که از لی‌ پرپلین در سه‌تایی‌گراند به‌شکل ۵-۷ درجه حرارت به‌تر عمل می‌کند. در این پژوهش مشخص کرد که استفاده از تعداد زیادی قطعات نان در ابعاد ۲۰×۱۰ سانتی‌متر در یک بسته‌بندی به‌مدت کارتن و لی‌ پرپلین مناسب بوده و وجود کارتن باعث حفظ شکل و خصوصیات بسته‌بندی نان در طول حمل و نقل و همچنین نگهداری آن می‌شود.

واژه‌های کلیدی: بسته‌بندی، پلی‌ پرپلین، پلی‌ اتیلن، کارتن، لی‌ پرپلین، بی‌بخار، بخار، شب‌آب، میزان آبی

مقدمه

درآمد منی کشور به دلیل رفتار گند و نان هدر می‌روید و در اثر تولید غیر اصولی و نگهداری نادرست این محصول، سالانه درصد بالایی از آن تلف می‌شود (۱). مشکل کیفیت بازی و ضایعات نان مسطح از مسئله‌ای است که اهمیت آن بر کسب بازدهی نیست و سال‌های میلیون‌های دلار از
پیام‌های روشنی بوده و یکی از ارزان‌ترین پلیمرهای موجود است.

ضرخامت‌های معنی‌دار استفاده در بسته‌بندی نان، پرورش‌های زیادی صورت گرفته است، هرجمله از چندین زمان زیادی طول خواهد کشید. ولی نسبت به پژوهشگران نگه‌داری و بسته‌بندی نان مستطیل ایرانی و توزیع مناسب آن در زمان

مصرف، پژوهش‌های صورت نگرفته است. اگرچه یک مورد بررسی و مطالعه حرارت، چگونگی بسته‌بندی و نگهداری نان‌های ایرانی به ناحیه است که در محدوده زمان توزیع و مصرف، در حال و تازگی بماند. نان بدن‌های نفی‌درمانی زاید (30) درصد بسته بدن نوع نان، در مراحل نگهداری و انتقال در معرض از دست دادن رطوبت قرار دارد، در نتیجه به سرعت

دست دادن رطوبت به سرعت بیشتر در بسته‌بندیهایی با ویژگی‌های بالا، از جمله این کمیتی که سرعت ترکسیب صورت بخار آب و رطوبت، کنترل سرعت ترکسیب گازها، مقاومت در پرتاب فشار، پرتاب سرد، قابلیت دوخت و

کانافی‌پردازی است (4) .

کنترل و سنجیدگی بین نان و محیط، یکی از عوامل اصلی

از پیچیده و کم بدن عمر مانه‌داری این محصول است. اگر

با استفاده از لایه‌های غیرقابل تجزیه بخار آب به‌طور کامل در داخل بسته محیطی، درمان برای فعال نمود شدن اسیرور

کمیت‌های آمریکایی با استفاده از یک‌سرعت انتقالی

پارچه یرجاهه، در مروری که از این نوع

بسته‌بندی استفاده شده، برای تا حدی تبادل برون

بسته و محیط وجود داشته باشد. این نوع برون و بخار آب

کنترل شود و تبادل برون به انتخاب مواد بسته‌بندی مناسب

عملی است (13) .

با توجه به خصوصیات ذکر شده، پلیمرهای مختلفی در

بسته‌بندی نان استفاده می‌شود که یکی از مهم‌ترین و اصلیترین

اين لایه‌های که در بسته‌بندی محصولات نانویی بکار گرفته

مجود بدن پیشین این است که غیرضدی‌تری از نسبت به رطوبت

158
(آکراتومیا شکرکرد). درصد شکر در یک درصد روغن قندی (Aseel shortening) بود. این تهیه خمیر، روش مستقیم بکار گرفته شد، نخست مخلوط و شکر در آب حل شده و سپس تمک، آرد و روغن به طور مخلوطی اضافه شد. مراحل آماده سازی خمیر شما معمولاً درونیه می‌باشد. شما انتظار می‌رود از آنجا که تغذیه‌ای این لاشه به راحتی پدیده و برای بهبود این ویژگی معمولاً آن را با یا به‌طور جداگانه یا به‌طور یکپارچه استفاده کنید.

که گوگن دستبندی نان
بعد از خروج نان از ترش، بالاصله به سیم کیچی‌های که قبل، توسط کل کشیده UV استریل شده بود نان در ابعاد 10x10x1000 درام شده و در دو ماه تیغه شده و سپس گرفته شد. شیشه 30 سانتی‌متری در نگهداری و کاهش ضرابیت در موقع مصرف انجام شد. مناسب‌ترین دمای استفاده نان، دمای محیط شناخته شد و نان از رشته‌افته به این مدت معمولاً 120 دقیقه می‌باشد.

فیلم‌های مرکب و چند‌لایه شده به دلیل بهبود خصوصیاتشان، مناسب‌ترین لاشه استفاده‌بندی نان شناخته شده‌اند. این فیلم‌هایی که بسته‌بندی شده‌اند تخلیه شده‌اند و به دنبال ویژگی‌های خاصی شده‌اند که بسته‌بندی نان را در شرایط مختلفی بهبود بخشی می‌کند. از یک لاشه به دلیل تغذیه‌ای تری نسبت به رطوبت و با لایه نیز بهتر استفاده می‌شود.

مواد و روش‌ها
این پژوهش در کارگاه صنایع غذایی و آزمایشگاه‌های گروه علم و صنایع غذایی شرکت‌های دانشگاه صنعتی اصفهان و دیگری از آزمایشگاه‌های غلات ادارات اصلاح نهال و یارک به کرج انجام شد.

آرد مورد استفاده، تولیدی کارخانه جرجه اسفناج بود که قبل از استفاده به 20 درصد آب وارد شده و آردی در دو درجه استحرا نشده درصد و درصد خاصیت 0/8 به‌دست آمد.

85 تا 88 درصد و درصد خاکستر 8 به‌دست آمد.

روش تهیه خمیر
فرمول کلی نهایی خمیر برای همه موارد بر اساس 100 واحد آرد، 60 تا 65 درصد آب/1/5 درصد نمک، 1/2 درصد دندان مخلوط خمیر.
دو لايه پلي آلييل و پلي پروپيلن مناسب ازبینی شد و وزن‌های
لایه‌های مورد استفاده در ان پرزوه به صورت زیر است:

1- پلی آلاتان دو لايه شامل پلی آلتان با دانش‌پذیری (LDPE) ان
نوع تجاری 20 و 21 با ضخامت 30 میکرون که با
استفاده از دستگاه تولید فیلم سه لايه به روش حیایی
ساخت کشور هندوستان تهیه شده بود.

2- فیلم پلاستیک جهت دار شده (OPP) به ضخامت 20
میکرون تهیه شده از شرکت پوشینه تهران که برای بهبود
برخی از خصوصیات مانند مقاومت در برای پره شدن و
چین خوردگی با پلی آلتان دو لايه 30 میکرون با استفاده از
جسب در جنوب به دو حال مشابه به روش آزمون‌سنجیان
(ساخت شرکت هنگسل آلمان) و توسط دستگاه
ساخت کشور ترکیه دو لايه شده

3- فیلم سه لايه شامل (PP/PE/PE) یک یا پلی پروپیلن و دو
لايه پلی آلتان که پلی پروپیلن و پلی آلتان آن به ترتیب از
نوع تجاری L1 ساخت میکانی سپیک ایران و
Pol IRAN LH 750 ساخت بندی الام و Pol IRAN
ساخت تبریز تأمین شده و با استفاده از دستگاه تولید فیلم
سه لايه به روش حیایی ساخت کشور هندوستان تولید
شد بود. در مجموع ضخامت Flim سه لايه 70 میکرون
بود. کارخانه‌های مورد استفاده برای ساخت و به سیله
کاغذ‌های سفید پلی آلاتان دار پوشینه‌های شده و
به اندازه و شکل مورد نظر بر می‌ردد. کاربرد تجاری
و نام اختصاصی آنها در جدول 1 ارائه شده است.

آزمون‌های آرد

1- اندازه‌گیری ترکیبات آرد مورد استفاده
خصوصیات شیمیایی آرد با روش‌های متداول
اندازه‌گیری شد. رطوبت با استفاده از روش شماره 15-16 و
گلمن‌های مرتبط شماره 28-38 و 1445 شماره 10 و

آزمون‌های شیمیایی

الف) اندازه‌گیری درصد رطوبت
این آزمون در دوره‌های اساس استاندارد AACC به شماره
4-15 صورت گرفت و درصد ماده خشک از فرمول زیر
محاسبه گردید:

\[ m = \frac{y \times z}{x} \]

درصد ماده خشک

وزن نمونه قبل از خشک شدن در معرض هوای

پرتوی‌ها براساس روش 12-03 بر پایه وزن اولیه نمونه
اندازه‌گیری شد (2).

2- آزمون‌های میکروبی
نمونه‌های ارسال 12-14 صورت گرفت و
میکروب‌های هژویی براساس روش شماره 11-14 صورت
کیفیت 15 و شمارش کیک و مخلوط براساس روش
AACC استاندارد صورت گرفت.

3- آزمون‌های رتوناویژکی خمیر
خصوصیات فیزیکی توسعه دستگاه فارنگراف و
براساس روش 21-14 صورت گرفت (4).
پرتوی‌های کشک‌پذیری خمیر از دستگاه استاندارد
شرکت 14-11 و درصد خشک خشکی کشا کاری شد.
پرتوی پس از لوله‌ای شدن به صورت استوانه‌ای به قطر
3، cm خشک شد. خشک‌گذاری شده 24 ساعت داشت.
خشک‌گذاری ضمن حرکت سمت بالا، حرکت را به بالا کاربرد و با توجه به
مقاومت کشتی خمیر منحنی دستگاه رسم شد. محور عمودی
منحنی بر حسب گرم و محور افقی بر حسب مساحت متر روي
چاره دستگاه مشخص می‌شود. آزمون مقاومت کشتی بعد از

25-70 و 900 دقیقه انجام شد.

4- آزمون‌های کیفیت نان
آزمون‌های کیفی نان شامل آزمون‌های اگال‌نلیکی، بیانی، میکروبی
و اندازه‌گیری طول و عرض (AW) و درصد رطوبت با استفاده از
روش‌های حسی، دست‌گاهی و فیزیکی انجام گرفت.

آزمون‌های آرد
جدول ۱. فهرست ۶ تیره بسته‌بندی

<table>
<thead>
<tr>
<th>تیو</th>
<th>شماره لایه</th>
<th>نوع لایه</th>
<th>با استفاده از کاراتر و پلاستیک</th>
<th>با استفاده از کاراتر و پلاستیک</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-P</td>
<td>۱</td>
<td>پلی اتیلن بدون لایه ۳۰ میکرون</td>
<td>با لایه‌های پلی اتیلن و پلی پروپیلن (PP/PE/PE)</td>
<td>(PP/PE/PE)</td>
</tr>
<tr>
<td>P-C</td>
<td>۲</td>
<td>فیلم سه لایه پلی اتیلن و پلی پروپیلن</td>
<td>با استفاده از کاراتر و پلاستیک</td>
<td>(PP/PE/PE)</td>
</tr>
<tr>
<td>C-P</td>
<td>۳</td>
<td>دولایه پلی اتیلن و پلی پروپیلن جهت دار شده</td>
<td>با استفاده از کاراتر و پلاستیک</td>
<td>(OPP/PE)</td>
</tr>
<tr>
<td>C-C</td>
<td>۴</td>
<td></td>
<td>با استفاده از کاراتر و پلاستیک</td>
<td></td>
</tr>
<tr>
<td>O-P</td>
<td>۵</td>
<td></td>
<td>با استفاده از کاراتر و پلاستیک</td>
<td></td>
</tr>
<tr>
<td>O-C</td>
<td>۶</td>
<td></td>
<td>با استفاده از کاراتر و پلاستیک</td>
<td></td>
</tr>
</tbody>
</table>

۷- وزن نمونه بعد از خشک شدن در هوا
۸- درصد ماهی خشک در نمونه آرد شده (درصد و طولیت - ۱۰۰)

(۶) اندازه‌گیری فعالیت آبی (۶)

این آزمون توسط دستگاه سنجش α۳ (مدل Rotronic PA) انجام شد. نخست وزن مشخصی از نتان، توزین شده و بعد از خرد کردن در محیط خشک، در دستگاه مخصوص دستگاه قرار گرفته، این دستگاه شامل محیط‌های استر که در نتیجه آن پکه‌ای قرار گرفته و آب ۲۵ درجه برای ثابت نگهداری می‌شود. بعد از قرار دادن نمونه در محیط‌های مشخص، دستگاه فعالیت آبی دی‌دی‌های محیطه به صورت دیجیتالی ظاهر می‌شود. بعد از ثابت شدن، عاده روی دستگاه aw خوانده شده و ثبت گردد.

۸- آزمون‌های میکروپولیزیکی نان

شامل شمارش کیک با استفاده از محیط کشت پتوتیو دکسترور آگار (PDA) بود. بعد از آماده‌سازی نتونه و حل کردن در محلول رفیق کنده (آب پتوتیو) به صورت سطحی کشت داده شد. بعد از گرمایش گذاشتن در دمای ۲۵ درجه، نا ۵ روز، شمارش کیک‌ها انجام شد. این آزمون برای آرد و نان بالافصله یپس از بخش ۲۴ و ۷۲ ساعت سپس از بخش انجام گرفت. این آزمون طبق روش AACC انجام شده و با شماره‌های صورت ۴۲۷۰۰ به شماره ۴۰ گرفت (۹).
در این تحقیق، نخست با نظرسنجی و بررسی تحقیقات انجام شده، اعباد ۱۰۰ x ۱۰۰ برای قطعات نان در نظر گرفته شد. به این ترتیب، شکل‌های دو مدلی نان در هنگام بسته‌بندی مورد بررسی و مقایسه قرار گرفت. بدین منظور در یک گروه نان به دامنه‌های ۵۰-۱۳۰ درجه و به‌صورت داغ و گروه دیگر نان سرد شده تا دمای اتاق (۲۰ ± ۲ درجه) استفاده شد. این دو گروه از نظر خصوصیات درصد رطوبت، استفاده بینی و انتخاب بینی، انتخاب نهایی آزمون از مدلی مورد مقایسه قرار گرفت. نتایج، به دست آمده در جدول ۵ می‌شود که با بررسی نتایج، اثبات شده که از آزمایش‌های تجربی در نتایج به‌دست آمده از آزمون‌هایرد درصد رطوبت و میزان بینی در سطح احتمال ۱ درصد تفاوت معنی‌دار وجود داشته و نتایج حاصل از بررسی رشد کیک، این دو تیمار در سطح احتمال ۵ درصد تفاوت معنی‌دار است. همچنین مشخص که اگر نان به صورت داغ بسته‌بندی شود، درصد رطوبت و میزان بینی آن به طور اکثر کاربری در طول ۴ روز نگهداری نسبت به بسته‌بندی شده در دمای اتاق بیشتر بوده ولی به دیل جمع شدن رطوبت در سطح نان، شرایط برای فعالیت سطح اسپورت کیک‌ها فراهم شده و نان در زمان خیلی کوتاهی (فقط ۳ روز) کیک زده و سریع به‌صورت م‌پیاپایی. بااین‌ها برای ارزیابی نوید بسته‌بندی مدلی نزدیک به دمای محیط برای بسته‌بندی استفاده شد. نتایج این مورد در جدول ۶ آن شده است. به دلیل از انتخاذ تصمیم در ارتباط با اعباد نان و دمای آن در موقع بسته‌بندی، نسبت به آزمون بررسی لابی‌های متفاوت از نظر نوع و ضخامت برای یک بردن عمر اندازگیری و حفظ خصوصیات آن اقدام شد. فیلدهای پلاستیکی دو لایه بی‌پرپلی پیچیده در OPP/PE (با ضخامت ۶۰ میکرون، فیلم سه لایه بی‌پرپلی و بی‌پرپلی پیچیده در PP/PE/PE (با ضخامت ۷۰ میکرون و بی‌پرپلی دو لایه ۳۰ میکرون) برای بسته‌بندی انتخاب شده و اثر استفاده از کارتن نان به‌همراه پلاستیک نیز در این پلاستیک‌ها و تأثیر آن بر ویژگی‌های کیک نان مقایسه شد. در آزمون اندازه‌گیری نفوذ‌پذیری به بخار آب لایه‌ها، دو روش آماری تحلیل نتایج ۸ در کیک از آزمایش‌ها تجربی‌ها شامل در نوع بسته‌بندی نان یکی با حد ۸۵ درصد، و دیگری بسته‌بندی در حالتی که محدود نان گرم بود (۴۵ درجه) و ارزیابی خصوصیات کیفی نان ۳۷ ساعت پس از بیخ بود. در آزمایش دیگر با منظور بررسی پلیمرهای مناسب برای بسته‌بندی نان، بعد از مقایسه چند لایه بسته‌بندی با ضخامت و انواع مختلف، تیمار مورد نظر مطلوب جدول ۱ انتخاب شده در این گروه لایه بسته‌بندی با سه سطح، بسته‌بندی با کارتن و بدون کارتن و نگهداری به‌صورت چهار روز پس از بیخ مورد ارزیابی قرار گرفت. این آزمون در ۳ تکرار انجام شد. تجزیه و تحلیل نتایج به‌صورت آزمایش فاکتوریل در چارچوب طرح یک‌روکه‌ای کامل تصادفی انجام شد و برای مقایسه میانگین، از آزمون چند دامنه‌ای دانست استفاده شد.

نتایج و بحث

جدول ۲ نتایج آزمون‌های شرمند و میکروی آرد مورد استفاده جدول ۳ و ۴ نتایج حاصل از آزمون‌های رنگ‌پذیری خمیر برای آرد تیپ ۸۰۰ مورد استفاده در این پژوهش را نشان می‌دهد.
جدول 2. نتایج آزمون‌های شیمیایی و میکروبی آرد

<table>
<thead>
<tr>
<th>شمارش کلی (کلن در گرم)</th>
<th>بیک و مخمر (کلن در گرم)</th>
<th>گلوتین مرطوب (کلن در گرم)</th>
<th>هاکستر</th>
<th>ترکیب آرد (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0</td>
<td>28/7</td>
<td>9/75</td>
<td>38/7</td>
</tr>
</tbody>
</table>

جدول 3. خلاصه نتایج آزمون فاربنگافی آرد مورد استفاده

<table>
<thead>
<tr>
<th>ولوریمتر</th>
<th>V</th>
<th>E</th>
<th>D</th>
<th>CD</th>
<th>C</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

درصد جذب آب: A
تکامل خمیر: B
زمان رسیدن خمیر: C
ثبت خمیر: CD
زمان خروج از محیط: D
Degree of softening after 10 minutes (F. U.): E
Valorimeter value: V

جدول 4. نتایج کشش پذیری آرد مورد استفاده

<table>
<thead>
<tr>
<th>جریان نهایی</th>
<th>135 دقیقه</th>
<th>90 دقیقه</th>
<th>25 دقیقه</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>689/3</td>
<td>542/8</td>
<td>372/8</td>
</tr>
<tr>
<td>b</td>
<td>125</td>
<td>144</td>
<td>372/8</td>
</tr>
<tr>
<td>عدد نسبی (b)</td>
<td>3/2</td>
<td>3/2</td>
<td>3/2</td>
</tr>
</tbody>
</table>

جدول 5. نتایج تجزیه واریانس در روش پستنی و تأثیر آن بر خصوصیات فیزیکی‌شیمیایی و میکروبی آرد در طول 4 روز نگهداری

<table>
<thead>
<tr>
<th>طبقه بندی</th>
<th>0/102</th>
<th>0/102</th>
<th>0/102</th>
<th>0/102</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* و **: به ترتیب معنادار در سطح احتمال 5 و 1 درصد
جدول 6: نتایج مقایسه میانگین دور دمای نان در هنگام الگویی در طول 72 ساعت نگهداری

<table>
<thead>
<tr>
<th>تیمار</th>
<th>درصد رطوبت (گرم بر سانتی‌متر مربع)</th>
<th>امتیاز نهایی</th>
<th>آزمون تکراری (گرم نمونه)</th>
<th>آزمون میکروبی (تعداد پرگه در هر گرم شیرینی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15^b</td>
<td>188^a</td>
<td>0.31^a</td>
<td>21/25^b</td>
<td>6^b</td>
</tr>
<tr>
<td>25^b</td>
<td>22/25^b</td>
<td>0.4^b</td>
<td>40^c</td>
<td>62^b</td>
</tr>
</tbody>
</table>

امداداری حرفه‌گیری‌ها در احتمال معنی‌داری در طول 72 ساعت نگهداری.

جدول 7: مقایسه میانگین زمان‌های نگهداری در دوره‌های پندا

<table>
<thead>
<tr>
<th>رطوبت (%)</th>
<th>زمان نگهداری</th>
<th>امتیاز نهایی</th>
<th>آزمون بی‌استاندارد (گرم نمونه)</th>
<th>آزمون تکراری (تعداد پرگه در هر گرم شیرینی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25/55^a</td>
<td>187^a</td>
<td>0.31^a</td>
<td>21/25^b</td>
<td>6^b</td>
</tr>
<tr>
<td>33/85^a</td>
<td>215/8^b</td>
<td>0.4^b</td>
<td>40^c</td>
<td>62^b</td>
</tr>
<tr>
<td>42/98^a</td>
<td>254/9a</td>
<td>0.5^a</td>
<td>40/4c</td>
<td>62/4a</td>
</tr>
</tbody>
</table>

امداداری حرفه‌گیری‌ها در احتمال معنی‌داری در طول 72 ساعت نگهداری.

فیلم مرکب (OPP/PE) و (PP/PE/PE) از نظر نفوذپذیری به رطوبت تقریباً یکسان ولی نفوذپذیری به بخار آب فیلم در لایه پلی‌پروپیلن جهت‌دار نانوک و پلی‌پروپیلن لایه بین‌لایه‌ی بود. پلی‌پروپیلن دو لایه بین‌لایه نفوذپذیری به بخار آب را داشت (5). جدول 8 نتایج به‌دست آمده از تجزیه و تحلیل استفاده از یک نوع نان همراه با دو نوع بسته‌بندی را نشان می‌دهد. بررسی نتایج اندازه‌گیری در این جدول نشان می‌دهد که استفاده از پلایسکسی‌های مختلف برای رطوبت نان به طور معنی‌داری (P<0.01) مؤثر هست و لایه استفاده از کارتن در پلایسکسی اثر معنی‌داری نداشته است. همچنین میزان مصرف می‌گردد که بین زمان‌های نگهداری نیز کاهش درصد رطوبت در سطح احتمال 1 درصد معنی‌داری بوده ولی آثار متقابل استفاده از پلایسکسی‌های مختلف با دو نوع بسته‌بندی در طول 72 ساعت نگهداری اختلاف معنی‌داری ندارند. با بررسی شکل 1 و 2، جدول مقایسه میانگین (جدول 9) دیده می‌شود که بیشترین حفظ رطوبت در دو نوع بسته‌بندی در طول 72 ساعت نگهداری، مربوط به استفاده از فیلم در لایه پلی‌پروپیلن.
جدول 8 تناقض تجزیه واریانس خصوصیات مختلف نان درسه نوع پلاستیک و استفاده از کارتن در طول 2 روز نگهداری

<table>
<thead>
<tr>
<th>متغیر</th>
<th>آدنارهای گری</th>
<th>درصد رطوبت</th>
<th>پیش بینی</th>
<th>دوره</th>
<th>پیش بینی</th>
<th>دوره</th>
<th>پیش بینی</th>
<th>دوره</th>
</tr>
</thead>
<tbody>
<tr>
<td>بلوک</td>
<td><strong>1/225</strong></td>
<td><strong>1/225</strong></td>
<td>164</td>
<td>1/416</td>
<td><strong>1/225</strong></td>
<td><strong>1/225</strong></td>
<td>164</td>
<td>1/416</td>
</tr>
<tr>
<td>نوع پلاستیک</td>
<td><strong>8/06</strong></td>
<td><strong>8/06</strong></td>
<td>124</td>
<td>124</td>
<td><strong>8/06</strong></td>
<td><strong>8/06</strong></td>
<td>124</td>
<td>124</td>
</tr>
<tr>
<td>استفاده از کارتن</td>
<td><strong>8/06</strong></td>
<td><strong>8/06</strong></td>
<td>124</td>
<td>124</td>
<td><strong>8/06</strong></td>
<td><strong>8/06</strong></td>
<td>124</td>
<td>124</td>
</tr>
<tr>
<td>زمان نگهداری</td>
<td><strong>8/06</strong></td>
<td><strong>8/06</strong></td>
<td>124</td>
<td>124</td>
<td><strong>8/06</strong></td>
<td><strong>8/06</strong></td>
<td>124</td>
<td>124</td>
</tr>
<tr>
<td>نوع پلاستیک در استفاده از کارتن</td>
<td><strong>8/06</strong></td>
<td><strong>8/06</strong></td>
<td>124</td>
<td>124</td>
<td><strong>8/06</strong></td>
<td><strong>8/06</strong></td>
<td>124</td>
<td>124</td>
</tr>
<tr>
<td>زمان نگهداری</td>
<td><strong>8/06</strong></td>
<td><strong>8/06</strong></td>
<td>124</td>
<td>124</td>
<td><strong>8/06</strong></td>
<td><strong>8/06</strong></td>
<td>124</td>
<td>124</td>
</tr>
<tr>
<td>نوع پلاستیک در زمان نگهداری</td>
<td><strong>8/06</strong></td>
<td><strong>8/06</strong></td>
<td>124</td>
<td>124</td>
<td><strong>8/06</strong></td>
<td><strong>8/06</strong></td>
<td>124</td>
<td>124</td>
</tr>
<tr>
<td>کارتن در زمان نگهداری</td>
<td><strong>8/06</strong></td>
<td><strong>8/06</strong></td>
<td>124</td>
<td>124</td>
<td><strong>8/06</strong></td>
<td><strong>8/06</strong></td>
<td>124</td>
<td>124</td>
</tr>
</tbody>
</table>

* به ترتیب معنی‌دار در سطح آماری پنجم و چهارم مورد بررسی قرار گرفت.

** تفاوت موجود در میزان فعالیت آبی به دلیل کمیت بودن نفوذپذیری نیامدها نسبت به بخار آب به طور همگنی در بالا بوده و سرعت پیش بینی نان مؤثر است. کمترین بینهایتی در پیش بحران جهت‌دار شده و پیش بینی (OPP/PE) بوده و لی از استفاده از پلاستیکی (PP/PE) نسبت به فیلم سه‌گانه‌ای نداشتند. در بررسی تناقض آدنارهایی احتمالی نمونه (جدول 9) در طول 72 ساعت نگهداری مشخص شد که استفاده از پلاستیکی‌های مختلف در طول یک ماه در هر دو روش بسته‌بندی در سطح احتمال 5 درصد تفاوت معنی‌دار داشته و بهترین نمونه‌های بسته‌بندی شده با دو لی از پیش بحران جهت‌دار شده و پیش بینی (OPP/PE) است، دیده می‌شود، در حال حاضر درصد رطوبت سرعت بینهایتی کند شده و در نتیجه می‌توان در مورد پیش‌بینی‌های به‌دست آمده از طرف با کاغذ پیش بینی روزهای نگهداری تفاوت معنی‌داری وجود داشته است. همچنین با
شکل ۱. تغییرات درصد رطوبت در بسته بندی سه نوع پلاستیک در طول ۷۲ ساعت نگهداری نان

شکل ۲. تغییرات درصد رطوبت در دو نوع بسته بندی در طول ۷۲ ساعت نگهداری نان
جدول 9. مقایسه میانگین‌های اثر نوع پلاستیک بر خصوصیات مختلف نان در دو نوع بندی (با کارتن) در طول ۴ روز

| کیک (تعداد کلین در هر کیلوگرم) | امتیاز بینی | امتیاز نهایی | اندورگیری درصد | سانتی متر مربع | تیمارها رطوبت (٪)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0/185</td>
<td>3/3</td>
<td>2/85</td>
<td>6/8</td>
<td>(۱)PE</td>
</tr>
<tr>
<td></td>
<td>0/212</td>
<td>3/1</td>
<td>2/84</td>
<td>2/8</td>
<td>(۲)PP/PE/PE</td>
</tr>
<tr>
<td></td>
<td>0/226</td>
<td>3/1</td>
<td>2/4</td>
<td>۱/۲</td>
<td>(۳)OPP/PE</td>
</tr>
</tbody>
</table>

۱. نام اختصاصی تیمارهای در جدول ۱ ارائه شده است.

جدول 10. مقایسه میانگین اثر استفاده از کارتن بر خصوصیات نان در سه نوع پلاستیک در طول ۴ روز نگهداری

| ازون میکروبر (کلین در گرم) | امتیاز بینی | امتیاز نهایی | اندورگیری | رطوبت (٪)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0/233</td>
<td>3/4</td>
<td>2/82</td>
<td>(۱)PP/PE/PE</td>
</tr>
<tr>
<td></td>
<td>0/212</td>
<td>3/14</td>
<td>2/46</td>
<td>(۲)PP/PE/PE</td>
</tr>
<tr>
<td></td>
<td>0/226</td>
<td>3/1</td>
<td>2/4</td>
<td>(۳)PP/PE/PE</td>
</tr>
</tbody>
</table>

۲. نشان دهنده معنی‌دار نبودن خصوصیات نمونه‌های نگهداری شده در بسته‌های پلاستیک و کارتن و پلاستیک نهانه است.

جدول 11. مقایسه میانگین اثر زمان بر خصوصیات مختلف نان در سه نوع پلاستیک در دونوع بندی

| ازون میکروبر (تعداد پیکه) | امتیاز بینی | امتیاز نهایی | اندورگیری | رطوبت (٪)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0/233</td>
<td>3/4</td>
<td>2/82</td>
<td>(۱)PP/PE/PE</td>
</tr>
<tr>
<td></td>
<td>0/212</td>
<td>3/14</td>
<td>2/46</td>
<td>(۲)PP/PE/PE</td>
</tr>
<tr>
<td></td>
<td>0/226</td>
<td>3/1</td>
<td>2/4</td>
<td>(۳)PP/PE/PE</td>
</tr>
</tbody>
</table>

۳. تغییرات میزان بینی دونوع بندی در سه نوع پلاستیک در طول ۲۲ ساعت نگهداری نان

![نمودار 1](#)

شکل ۳. تغییرات میزان بینی دونوع بندی در سه نوع پلاستیک در طول ۲۲ ساعت نگهداری نان

157
جدول 12. میزان فعالیت آیی در دو نوع پست‌بندی

<table>
<thead>
<tr>
<th>پلاستیک</th>
<th>پلاستیک</th>
<th>زمان نگهداری (ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPP/PE</td>
<td>OPP/PE</td>
<td>4 ساعت پس از بخخت</td>
</tr>
<tr>
<td>PE</td>
<td>PE</td>
<td>24 ساعت</td>
</tr>
<tr>
<td>27 ساعت</td>
<td>28 ساعت</td>
<td></td>
</tr>
</tbody>
</table>

شده با پلی اتیلن در لاشه 30 میکرون بوده و کمترین مفاوت اتیلن به نان بستبندی شده با فیلم دو لاشه پلی اتیلن جهت در شده و پلی اتیلن (OPP/PE) می‌باشد و با دیگر نیم‌پلاستیک در سطح احتمال 5 درصد اختلاف معنی‌دار دارد. همچنین دیده می‌شود که استفاده از کارتن به همراه پلاستیک در هم بلافاصله در طول 72 ساعت مقدار منفی جهت در ایجاد تکرده است (شکل 3). در این آزمون مشخص شد که استفاده از لاشه و فعالیت آیی باعث کم شدن پایداری در برابر کیک زدگی می‌شود.

نتیجه‌گیری

با توجه به بررسی‌های انجام شده در این پژوهش، می‌توان گفت که با استفاده از لاشه‌های غیر قابل تناژتار به بخار آب مانند پلی اتیلن جهت در شده و پلی اتیلن و فیلم‌های مراکب و به‌دست آورده تا حدود زیادی، خواص کیفی نان از جمله درصد رطوبت، میزان بیانی و امتیاز نهایی نان بهبود می‌یابد. همچنین مشخص می‌شود که استفاده از کارتنی که دو طرف آن با کاغذ پلی اتیلن دو پلاستیک دهه بخش پا به منفی دارد، باعث نتایج بهتر استفاده از آزمون‌های کیفی نان نسبت به بستبندی با پلاستیک در طول 72 ساعت نگهداری ایجاد تکرده است، بنابراین باعث شکل شدن ظاهر بستبندی شده، همچنین باعث حفظ خصوصیات نان در طول حمل و نقل، نگهداری و جلوگیری از باعث افزایش امتیاز نهایی می‌شود. استفاده از فیلم سه لایه (OPP/PE) با این دو لاشه (PP/PE/PE) تفاوت معنی‌داری نداشت.

با توجه به جدول تجزیه واریانس نتایج آزمون میرکوئی (رشد کیک)(جدول 8)، مشاهده می‌شود که بین اعتماد از لاشه‌های متفاوت در دو نوع بستبندی در طول 4 روز نگهداری در سطح احتمال 1 درصد تفاوت معنی‌دار وجود داشته ولی استفاده از کارتن در همه پلاستیک‌ها در طول 72 ساعت نگهداری تفاوت معنی‌داری ایجاد نکرده است. همچنین بین زمان‌های نگهداری نیز در همه بستبندی‌ها در سطح احتمال یک درصد تفاوت معنی‌دار وجود داشته و با بررسی جدول 9 و مقایسه میانگین‌ها مشخص می‌شود که بیشترین کیک‌زدگی با ترتیب مربوط به نانهای بستبندی شده با دو لاشه پلی‌اتیلن (OPP/PE) و پلی‌اتیلن (PP/PE/PE) و فیلم‌های می‌باشد. با توجه به پایین‌تردن درصد رطوبت این نمونه‌ها و وجود هم‌بستگی مثبت بین رشد کیک و درصد رطوبت، در نتیجه که بالاترین درصد رطوبت را داشته، رشد کیک مشاهده شد.

ناهجایی، جوزف (1993) و کامسوارا (100) هم‌بستگی دارد. با توجه به نتایج مندرج در جدول 8 مشاهده می‌شود که بین تیمارهای متفاوت معنی‌دار از نظر مقاومت به کیک‌زدگی وجود دارد (P<0.001). با بررسی جدول مقایسه میانگین‌ها، بیشترین مقاومت در پلاستیک کیک‌زدگی مربوط به بستبندی
برای مدت زمان کوتاه و کمتر از یک هفته، برای نان تافتون

پیشنهاد می‌شود.

سیاست‌گذاری

بخشی از هزینه این پژوهش از طریق طرح ملی "بررسی

ضایعات گندم در تولید و مصرف" که در دانشکده کشاورزی

دانشگاه تهران اجرا می‌شود، تأمین شده است که بدین سیله

شورای پژوهش‌های علمی کشور و دانشگاه تهران سیاست‌گذاری

می‌شود.

منابع مورد استفاده

1. احمدی نژاد. م. 1373. تغییرات کیفی مصرف و صنعتی کردن تولیدان کشور. مجموعه مقالات اجلاسی تخصصی نان، انتشارات

استیت تحقیقات تخیلی و صنایع غذایی کشور، تهران.

2. مصطفی زاده. ف. و ش. خسروی. 1373. پاسخ‌های صنعتی انتشارات دانشگاه پزشکی.

3. مرکز مطالعات اقتصادی. 1374. اصول ویژه تبدیل مواد غذایی پزشکی اول، نشر مشهد.


