ارزیابی تغییرهای فیزیکوشیمیایی و میکروبی رب گوجه فرنگی فله در طی نگهداری در سردخانه

مهندس امیر حسین الهامی راد، دکتر فخری شهیدی

چکیده

در این پژوهش، رژیم‌های فیزیکوشیمیایی و میکروبی رب گوجه فرنگی فله، که در شرایط کامل‌شکنی ساخت‌پذیر بوده و نگهداری شده بود، مورد ارزیابی قرار گرفت. تا به این طریق بتوان فقط ضعف روش موجه را شناسایی کرده و با توجه به نتایج بدست آمده، برای اصلاح روشهای صحیح اقدام نمود. نمونه‌های رب فله مورد نظر به دو گروه تقسیم شدند. گروه اول از نمونه‌های رب فله که در مدت زمان نگهداری ۸ روز و دما سردخانه (۱۸±۲ درجه سانتی‌گراد) تغییر در چسبانی و رنگ و شکریه‌های اصلی مبتلا بودند و گروه دوم از نمونه‌های رب فله که در مدت زمان نگهداری ۸ روز و دما سردخانه (۱۸±۲ درجه سانتی‌گراد) نتوانستند تغییری در چسبانی و رنگ و شکریه‌های اصلی بیابند طبقه‌بندی شدند.

مقدمه

وضعیت خاص سردخانه‌های گوجه فرنگی و هم‌زمان برداشت آن در یک منطقه، در پارامتر اوراق میزان گوجه فرنگی تحت‌الحمایه کارخانه‌ها با نتایج و عمده‌ای در این موارد نظر به استرداد می‌باشد.

واژه‌های کلیدی: رب فله، آلودگی‌های میکروبی رب، رژیم‌های فیزیکوشیمیایی رب

1. عضو هیئت علمی (مریم) علوم صنعت غذایی، دانشگاه آزاد اهلسالم سیزور
2. دانشیار علوم و صنایع غذایی، دانشگاه کشاورزی، دانشگاه فردوسی مشهد
باکتری‌های استیدلاتیک و باکتری‌های مقاوم به اسید فکسین به فعالیت‌های بدن می‌باشند. (Corynebacterium) لیستریا (Listeria) کورتیا (Kuria) و گوشه‌های مختلف استپرهکوس (Lactobacillus) موجب فساد ریب گوشه‌های فرنگی شده و به روند تولید آن اثر بکار گرفتند.

از مهم‌ترین گونه‌های باکتری مقاوم فاسیل‌های زعفران به کار گرفته شده‌است. (Hansenula) محتوای هایژن‌زولا (Candida) (Aureobasidum) (Trichosporon) (Torulopsis) ساکاروکاریوس (Saccharomyces) اندازه‌های نمودار (10، 11، 12، 13 و 27)

مشخص شده است که در قارچ‌های بی‌پوسته بالا (Zygosaccharomyces bine) گوشه‌های فرنگی (Gose) فعال فاسیل‌های در مدل مقاومت حارثی کم که دارند، بیشتر در کنار اتوبایور خود تغییر می‌کند. در این دسته از باکتری‌ها در سایر مدل‌ها، از هم‌کارکرد در نظر گرفته شده است. بر اساس حاضری‌ها، خاصیت نارنجی تغییر می‌کند.

میکرویی مواد ناهنجاری باعث بکارگیری در سطح مقاوم، می‌باشد. بر اساس نوازندگان استعداد را، فله کیکزه به عنوان باکتری‌های گوشه فرنگی (Gose) بی‌پوسته بالا (Zygosaccharomyces bine) اولیه ایجاد می‌کند. در این دسته از باکتری‌ها در سایر مدل‌ها، از هم‌کارکرد در نظر گرفته شده است. بر اساس حاضری‌ها، خاصیت نارنجی تغییر می‌کند.

میکرونیا مواد ناهنجاری باعث بکارگیری در سطح مقاوم، می‌باشد. بر اساس نوازندگان استعداد را، فله کیکزه به عنوان باکتری‌های گوشه فرنگی (Gose) بی‌پوسته بالا (Zygosaccharomyces bine) اولیه ایجاد می‌کند. در این دسته از باکتری‌های گوشه فرنگی (Gose) بی‌پوسته بالا (Zygosaccharomyces bine) اولیه ایجاد می‌کند. در این دسته از باکتری‌ها در سایر مدل‌ها، از هم‌کارکرد در نظر گرفته شده است. بر اساس حاضری‌ها، خاصیت نارنجی تغییر می‌کند.
بیش از ۱۰ میلیون کیلوگرم از مواد سیاهه‌ای فوراندهای فیزیکی و مکرو‌بیولوژیکی در روب‌گوجه فرنگی و مواد جانبی پیش‌بینی می‌کند، که به عنوان مصرف و تجزیه مواد قندی (فیروزک و گلورک) می‌باشد. تغییرات در ویژگی‌های فیزیکی و شیمیایی این نوع روب‌گوجه فرنگی با باراک‌های قسمت مرتفع است. به طوری که این پیش‌بینی سازش می‌تواند، مراحل تولید، سولفوری و پس از این تغییرات فراوانی چند نگرش قابل توجه در روب‌گوجه فرنگی انجام شده توسط سایر محققان جهت الحاق این است. به‌طور کلی، بیشترین مقدار بیش از ۱۰ کیلوگرم از مواد جانبی از روی گوجه فرنگی معرف آئودی مکرو‌بیولوژیکی می‌باشد (۲۴).

بیش از ۱۰ میلیون کیلوگرم از مواد سیاهه‌ای فوراندهای فیزیکی و مکرو‌بیولوژیکی در روب‌گوجه فرنگی و مواد جانبی پیش‌بینی می‌کند. به طوری که این پیش‌بینی سازش می‌تواند، مراحل تولید، سولفوری و پس از این تغییرات فراوانی چند نگرش قابل توجه در روب‌گوجه فرنگی انجام شده توسط سایر محققان جهت الحاق این است. به‌طور کلی، بیشترین مقدار بیش از ۱۰ کیلوگرم از مواد جانبی از روی گوجه فرنگی معرف آئودی مکرو‌بیولوژیکی می‌باشد (۲۴).
مواد و روش‌ها
نمونه‌های رب مورد نیاز، پس از تولید در یک آگر از کارخانه‌های صنایع غذایی، در داخل بسته‌های بازبستیکی ۱۵۰ کیلوگرمی با ارتفاع تقریبی ۱ متر، با پوشش درونی دولاهی از جنس پلی اتیلن، به شکل بسته‌بندی محوصول ویژه‌ای قرار گرفتند. با توجه به تیمارها، فاکتورهای مورد بررسی عبارت از انواع درصد ۱۳ مسنج در اسپرس و در حال سطح کردن نمک‌پاشی و عدم نمک‌پاشی در سطح بی‌پوشانی مورد بررسی قرار گرفتند. بافت نمونه‌های نتیجه‌گیری در کنار هر دو نمونه پوشانی شده و در طی این بین این روش از نظر سطحی، لایه نمونه‌ها و شکاف عمودی در مدت دماه، دقت ۰.۵ درجه سانتی‌گراف، در دمای تا ۳۵ (به میزان ۳ کیلوگرم به ازای هر بشکه ۱۵۰ کیلوگرمی) بر روی نمک‌های با نمونه‌های با بریکس ۳۲ (به بشکه) و نمک‌های با نمونه‌های با بریکس ۳۲ (به بشکه) تیمارهای اعمال شده مربوط به بریکس ۳۲ نمک، بریکس ۳۸ بدون نمک، بریکس ۳۸ نمک و بریکس ۳۸ بدون نمک بودند. تعداد کل نمونه‌های تولید شده عبارت بودند از:

۲ نمونه بردازش شده در هر دو نمونه با نمونه‌های بدون نمک در تولید شده عبارت بودند از:

دستگاه‌های آزمایشگاهی: آزمایشگاه‌های آزمایشگاهی، طراحی، بازبستیکی، رزازی و غیره.

جدول ۱: نمونه‌برداری از نمک‌پاشی مورد بررسی در ۶ تناب زمانی مختلف اندازه و شکل‌ها

<table>
<thead>
<tr>
<th>مقدار نمونه‌برداری</th>
<th>تناب زمانی</th>
<th>تعداد</th>
<th>نتایج</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰۰۰ نمونه‌برداری</td>
<td>۶</td>
<td>۶۰۰۰</td>
<td>تغییرات متوسط</td>
</tr>
</tbody>
</table>
ارزیابی تغییرات فیزیکی شیمیایی و میکروبی ریب غوشه نشانه‌های فله

نتایج و بحث

بررسی نتایج حاصل از آزمون‌های میکروبی نشان داد که تعداد کل باکتری‌ها در تمامی تیمارها به طور قابل توجهی افزایش یافته است. شبیه منحنی تغییر در شمارش کلی باکتری‌ها، در دوره تولید و همچنین در 24 ساعت اولیه سردهاتناریزار، افزایش قابل توجهی داشته ولی به تدریج سیر صعودی در تمامی تیمارها کننده‌شد و در نهایت روند کاهشی داشت. روند کاهشی جمعیت باکتری‌های مقاوم به اسید، در تیمارهای دارای نکه‌ی طور معدنی داری شدیدتر از سایر تیمارها بوده است (p<0.01). به‌طوری که سطح نهایی این میکروبگانیسم‌ها در تیمارهای حاوی نکه‌ی پایین‌تر از سطح اولیه (زمان صفر) قرار گرفته است (شکل 2). در اواخر دوره سردهاتناریزاری نیز شکل سطحی روب در نمونه‌های با نکه‌ی تاریخ‌دار نمک به تمامی‌ترین نکه‌ی پایین‌تر جلوگیری می‌کند. به همین علت روند افزایش باکتری‌ها مقاوم به اسید در تمامی تیمارها تقیدی‌تر یکسان بوده است. به‌تدریج با کاهش زمان و انتشار نکه‌ی در لایه‌های تحتانی، اثر بالازندگی آن مشخص‌تر گردید که در نتیجه روند تغییر در ماه‌های بعدی کننده‌شد و سپس نزول نشان‌می‌دهد. روند تغییر تعداد باکتری‌های مقاوم به اسید از حدود ماه چهارم به بعد، به خصوص در تیمارهای با نکه‌ی، کاهش معنی‌داری داشته است (p<0.01).

تغییر عدد هوراد با استفاده از لام مخصوص هوای و مشاهده ریسه‌های کیکی در زیر میکروسکوب با بزرگ‌نمایی x90 انجام شد (12). تغییر در تعداد باکتری‌های مقاوم به اسید با کشت میکروسکوپی در محیط ارتفاع سطروم آگار (Orange Serum Agar) تغییر شمارش کلی باکتری‌ها به روش کشت سطحی (Surface plating) در محیط پلی‌پتول آگار (G9) به اسید از دمای 37° C به مدت 24 ساعت، انجام شد. به‌طور میکروگانیسم‌های مقاوم به استفاده از فاکتور گیر این میزان به سرعت آزمایش فاکتوریل، در قابل طرح کاملاً تصادفی مورد بررسی قرار گرفت و نتایج‌های این انجام شد. مقایسه میانگین‌ها از آزمون جنده دامنه‌ای دانکن صورت یافت.

می‌گوید که این مسئله سبب می‌شود تا میزان رشد میکرو‌بی‌ری در
به نظر می‌رسد که وجود نمک به همراه نگه‌داری طلا در دمای 0°C بر باکتری‌های مقاوم به اسید اثر کشش دهنده است. تأثیر کششی ناشی از دماهای سرد، در نمونه‌های بدون نمک، کاهش‌کننده است.

بررسی روند تغییر عدد هوارده در طی زمان نشان می‌دهد که عدد هوارده در هر 24 ساعت روند صعودی داشت. این تغییر در محدوده اطمینان 99% معنی‌دار بوده است. در نتیجه، عدد هوارده در نمونه‌های صاف، در محدوده اطمینان 99% نفوذ و سنگینی نمک در اسید سطحی داشته است (شکل 3).

استاندارد ایران جدایکردن هوارده مجاز در ربو گوجه‌فرنگی 0/70 می‌باشد (28). این در حالتی است که میانگین عدد هوارده در تمامی تیمارهای مورد بررسی، برای نمونه‌های فاقد نمک افزایش یافته است.

شکل 2. تغییر باکتری‌های مقاوم به اسید در طی زمان

شکل 3. روند تغییر عدد هوارده در طی زمان

(رگرسیون خطی

\[y = ax + bx \]

ارزیابی تغییر اسیدیت در طی زمان نشان می‌دهد که اسیدیت در تغییر می‌کند. به طور معنی‌داری کاهش یافته است (P ≤ 0/01).

به طور معنی‌داری کاهش یافته است. درجه توزیعی شدت در سایر اسید‌های موجود در محیط با کلروفیور سبز، بیشتر سبز است. در نتیجه، عدد هوارده در نمونه‌های صاف، در محدوده اطمینان 99% نفوذ و سنگینی نمک در اسید سطحی داشته است (شکل 3).

شکل 1. گزارش‌های منی بر وجود اسید مایلی در مقادیر بیشتر از اسید سیتریک وجود دارد (24).

شکل 2. تغییر باکتری‌های مقاوم به اسید در طی زمان

(y=a+bx)

شکل 1. گزارش‌های منی بر وجود اسید مایلی در مقادیر بیشتر از اسید سیتریک وجود دارد (24).

شکل 2. تغییر باکتری‌های مقاوم به اسید در طی زمان

(y=a+bx)

به طور معنی‌داری کاهش یافته است (P ≤ 0/01).

به طور معنی‌داری کاهش یافته است. درجه توزیعی شدت در سایر اسید‌های موجود در محیط با کلروفیور سبز، بیشتر سبز است. در نتیجه، عدد هوارده در نمونه‌های صاف، در محدوده اطمینان 99% نفوذ و سنگینی نمک در اسید سطحی داشته است (شکل 3).

شکل 1. گزارش‌های منی بر وجود اسید مایلی در مقادیر بیشتر از اسید سیتریک وجود دارد (24).

شکل 2. تغییر باکتری‌های مقاوم به اسید در طی زمان

(y=a+bx)
بررسی تغییر اسیدیتی در طی زمان (یا+bx)

شکل 4. روند تغییر اسیدیتی در طی زمان (در گرگسون غیط)

شکل 5. روند تغییر pH در طی زمان

میکروبی ماده غذایی است (24). بر اساس نتایج حاصل در این پژوهش، مقدار اسید لاکتیک کل در نمونه‌های فاقد نمک، پس از دو هفته نگهداری به بالاتری از سطح مذکور رسیده است، ولی پس از آن مقدار تغییر ناجی‌بوده است. احتمالاً عامل مهم‌ترین شدن روند صعودی میزان اسید لاکتیک، نگهداری طولانی مدت در دماهای سرد بوده که بر فعالیت عوامل میکروبی مولد اسید لاکتیک اثر بی‌بایدند داشته است. در مورد نمونه‌های با نمک، میزان کل اسید لاکتیک، حتی در انتهای دوره سردرخشانگذاری با بیش از سطح مذکور بوده است.

میزان تغییر ماده خشک کل در طی زمان در تمامی تیمارها معنی‌دار بوده است (P<0/01). با وجود عمل نمک پانتی در سطح که سیب افزایش درصد ماده خشک و نمک در نمونه‌های با نمک می‌شود، از تنابن زمانی 2 به بعد میزان ماده خشک کل در سطح این نمونه‌ها بر طور قابل توجهی کاهش یافته. در نیمه این رفتار، تغییر‌های اسمی در لایه‌های سطحی رابطه با آب‌دهی که با دچاری در نمک در قسمت‌های فوقانی است. به طور که آب موجود در نقاط محصور در اثر به‌بیان اسمی از لایه‌های پایین تر به سمت لایه‌های سطحی حرکت می‌کند. میزان ماده خشک کل در نمونه‌های فاقد نمک نسبت به تنابن زمانی 1 به بعد کاهش قابل توجهی نشان داده است. در نهایت، بر اساس نظریه دوفازی شا به سینرسیس (Syneresis) می‌باشد که این فاز
شکل 7: روند تغییر ماده خشک کل در طی زمان

با اکثریت مقالات به اسید و حد نهایی اسید لاکتیک از قبل توجه داشته است.

با توجه به موارد نام برده شده و مقایسه روند تغییر پارامترهای
مورد بررسی در تیمارهای اعمال شده، می‌توان نتیجه گرفت که
تیمارهای با نمک در مقایسه با تیمارهای بی‌نمک یک اثر شرایط
کیفی مولکول‌بری در نمای پیوسته بوده و در مقایسه تیمارهای
برایکس 3/2 با نمک و براکس 3/8 با نمک، تفاوت قابل
توجهی مشاهده شد. بررسی‌های میکروبیولوژیکی رتب
فلز نشان می‌دهد که در فاصله زمانی تولید از انتقال نمونه‌ها به
سربندخانه، شمارش کلی باکتری‌ها تعداد باکتری‌های ماقوم به
اسید و عدد هواورد افزایش قابل توجهی داشته است. افزایش
قابل توجه اسید لاکتیک در فاصله زمانی 48 ساعت اولیه پس از
تولید، بیانگر این مطلب است که عوامل میکروبی مولد اسید
لاکتیک در شرایط مذکور قادر به فعالیت هستند.

با توجه به دمای تنخور رود درون پسته‌ها

و مدت زمانی که طول می‌کشد تا دما مقصود
به حمایت (78-82°C) و مدت زمانی در حمایت (37-40°C)
رشد و برای نمک‌پاشی خشک گردید
مقدت زمانی در حمایت 48 ساعت در شرایط دما محسوب می‌شود و
فضای آزاد) به نظر می‌رسد که شرایط مناسب برای رشد انتها
میکروگانیسم‌های ترموفیل فراهم گردید. بنابراین می‌توان گفت
که محله سرد کردن تدریجی نمودن‌ها در دما محسوب که هدف
اصلی آن خشک کردن سطحی بوده، به منظور نمک‌پاشی است;
مرحله‌های حساس و بهره‌برداری در فاکتور تولید روبه‌رو می‌باشند.

آبی محصول از فاز جامد جدا می‌شود. عامل دیگری که
احتمالاً در کاهش میزان ماده خشک (به خصوص در لاکتیئی
سطحی) مؤثر است کیفیت زنگی شدید در نمونه‌های فاقد نمک
است که در اثر مصرف پروتئین‌ها و مواد فلزی، ماده خشک
کل کاهش می‌یابد. به علت عدم استفاده از نفوذنیاپر
جذب رطوبت از محیط سربندخانه نیز می‌تواند عدم کاهش
میزان ماده خشک شود (شکل 7). در هر حال کاهش میزان ماده
خشک در لاکتیئی سطحی در اثر پیدایش اسید و یا سیتروسین
با افزایش ماده خشک کل در لاکتیئی تحت حمایت همراه است.

نتیجه‌گیری

بررسی تغییر شمارش کلی باکتری‌ها و تعداد باکتری‌های ماقوم
به اسید و شمارش میکروب‌سکویی کیکها به روش هوارد در
تیمارهای اعمال شده در این پژوهش، نشان می‌دهد که استفاده
از براکس 3/8 (25-30) در تولید روبه‌رو همراه با عمل نمک‌پاشی
در سطح و نگه‌داری در دمای صفر درجه سانتی‌گراد فیل متغیر
برئره محدود کننده بر روی تغییرات میکروبی داشته و نتوانسته‌اند
را به طور کامل متوسط سازد، ولی در هر صورت بر
رشد سطحی خارج‌ها و توانایی آنها در ایجاد پرگنه اثر قابل
توجه‌ی داشته است.

بررسی آماری نشان می‌دهد که تفاوت برایکس 3/8 در
سطحی که در این پژوهش استفاده شده است، بر روی تغییر
پH عدد هواورد، شمارش کلی باکتری‌ها، تعداد

178
از 48 ساعت به بعد 8-5 ساعت کاهش داد. پس از آن، نمک یا سردکن انجم شده و پس از ۲ روز، نمک‌ها را به اتاق بیش از ۱۰۰° سردکن متقابل کرده‌اند. نتایج آنها به کمتر از ۱۰ کاهش پایه و در نهایت بستری که به مساحت ۵۰ اتفاق مشابه استفاده از لامپ مارواری به خشک کردن آلودگی‌های سطحی مخصوص و سالم سازی و اثاث ملزم. در سه روز پایانی به روش ایری خرواه شد. به همین دلیل، شباهت‌های می‌تواند به دست آید، سطح محصول نا به یک عدد حداقل 10 در گرفته شود. به‌طوری‌که عبور از غیرشنج سرعت سرده شدن و خشک شدن سطحی، کیفیت محصول نیز در سطح بالاتری هفظ می‌شود. از طرفی مشکل بالا بردن رطوبت نسبی می‌بایست در مناطق شمالی کشور نیز، به‌طور متوسط خواهد شد. می‌توان با تعیین یک فن روز دیوار اتاق، رطوبت فضای دوستی را به دو جفت منقل کرد.

ابعاد اتاق مورد نظر می‌توانند بر اساس طرفتی‌های تولید رنگ فله در محصول و در حال هر یک تغییر شود. لازم به ذکر است که طرح مذکور در پایلوت صنایع غذایی انتشار به نمایش گذاشته، هدف‌واری به‌طور از از اینجاست که‌اش که در سرده و خشک کردن سطحی به‌طور داشته‌اند. در هر حال از نظر بررسی‌های مشابه راه‌های طراحی و اجرا اتاق مذاکرات و تحقیقات صنعتی جوانه‌ای که به‌طور استمراری فن‌ها، ابعاد و طرفتی اتاق انجم شود.

سیاسی‌گزار

بدرست وسیله از زحمات بدرست خانم مهندس نوربخش و خانم مهندس فلسفی در مؤسسه استاندارد و تحقیقات صنعتی خراسان، که نشر و یزی‌های در انجام مراحل مختلف طرح داشتند، تحقیقات و قدردانی می‌شود.
منابع مورد استفاده

1. آریام، ن. 1371. شناسایی بакتری‌های اسپوروزا در روب‌های فرنگی، پایان‌نامه کارشناسی ارشد، دانشگاه کشاورزی، دانشگاه فردوسی مشهد.
2. آل مهدی، م. 1365. میکروب‌شناسی عمیق، مرکز نشر دانشگاهی، تهران.
3. پروانه، و. 1371. کنترل کیفی و ارزش افزوده میکروب‌های مخ آلاینده و سایر میکروب‌های داتر. انتشارات دانشگاه تهران.
4. حسینی، ز. 1373. روش‌های متقابل در تجزیه میکروب‌های داتر. انتشارات دانشگاه شیراز.
5. خسروشاهی‌اصل، ا. 1376. شیمی تجزیه میکروب‌های داتر. انتشارات دانشگاه ارومیه.
6. راهنمای میکروب‌شناسی عمیق. 1371. انتشارات مروک.
7. روح‌بخش، ع. 1379. کنترل بهداشتی مواد غذایی. انتشارات شرکت سهامی چهر، تهران.
8. کریمی، گ. 1371. آزمون‌های میکروبی مواد غذایی. انتشارات دانشگاه تهران.
9. لامع، ح. و اخشنی، 1375. مبانی بیونکلولری و میکروب‌شناسی منشی، مرکز انتشارات علمی دانشگاه آزاد اسلامی، تهران.
10. مرتضوی، ع. 1371. آزمون‌های میکروبیولوژی مواد غذایی. انتشارات گلفش، مشهد.
11. مرتضوی، ع. 1372. میکروبیولوژی مواد غذایی. مرکز نشر مسیح.
12. مرتضوی، ع. و ف. طباطبایی. 1377. تکسیم‌های قارچی. انتشارات دانشگاه فردوسی مشهد.
13. موسيه استاندارد و تحقیقات صنعتی ایران. 1372. روش‌کاری فرنگی. چاب شمش، شماره 76.