پیروکیلن در بوته برنج پس از گرانول‌پاشی در خاک
و ارتباط آن با کنترل بیماری بایست برنج

عبدالحسین جمالی زواره ۱، عباس شریفی نهاری ۲، منوچهر ایزدیار ۳ و اقبال طاهری ۴

چکیده

بیماری بایست برنج از بیماری‌های پرخاشگر این محصول بوده و یکی از راه‌های کنترل آن استفاده از ترکیبات قارچ‌کش است. در این برسی فارمکرات پیروکیلن به صورت گرانول در پای بوته برنج مصرف گردیده. سپس به تواحل زمانی مختلف نمونه‌هایی از باغ ساگه و برگ بوته‌ها گرفته و پیروکیلن در آنها با روش گریم‌تکنیکی عضایی شده. همچنین در زمان‌های مختلف پس از کاربرد پیروکیلن، بوته‌ها در خاک باغ بهترین بیماری و پس از این هفته شدت بیماری بررسی شد. پیروکیلن در گروه یک روز پس از کاربرد، خاک‌پذیری بازیابی و حداکثر میزان آن حدود هفت روز پس از کاربرد بازیابی شده و سپس به تدریج کاهش یافته و تا پس از حدود ۲۸ روز تقریباً به حد عادی بازگردیده. در گروه دوم، میزان ترکیب در شدت بایست برنج ۱۰/۰ کپسیل بهترین بیماری آنها ادامه داشت و پس از آن، نیاز به کنترل کاهش یافت.

نمونه‌برداری: داده‌های ریزروکیرین پس از گرانول‌پاشی پای بوته، توسط چاقوی جدید به صورت یک‌پناهی برگ‌ها امکان‌پذیر بوده و به پروکیلین کنترل بیماری، ارتباط خوبی با تغییرات غلظت پیروکیلن در گروه در گروه نشان داد (R² = ۰/۹۴۳ و وجود ۲ ppm از ترکیب در گروه برگ، بیماری و را ۹۰/۰ % کنترل کرد. بین میزان کنترل بیماری و غلظت ترکیب در پایت ساگه، وابستگی قابل توجهی وجود نداشت (R² = ۰/۳۰۰).

واژه‌های کلیدی: بایست برنج، پیروکیلن، وابستگی‌های سیستمیک، بازیابی

۱. استاد علوم زراعی، دانشکده کشاورزی، دانشگاه شهید ۲. استادیار کشاورزی، دانشکده کشاورزی، دانشگاه تهران، کرج
۳. محقق مؤسسه تحقیقات آفت و بیماری‌های گیاهی، سازمان تحقیقات کشاورزی تهران
۴. محقق و مدیر بخش سم‌شناسی آزمایشگاه کنترل گذرا و دارویی، تهران

۲۰۵
مقدمه

بیماری بلافاصله وقوع که توسط فارگریس با انگیزه گی نشان‌دهنده این ابزار (Cooke)Sacch.

محصول بسیاری از کانون‌های برگ خیز دنیا از جمله ایران است. این بیماری اکثر در مرحله پنج‌تایه شدید باند تام پوشه‌ها یا از سی می‌ترد و آلوگی زیاد کردن خونه باعث کاهش مقدار قابل توجهی از محصول و مشو و پذیرای خرسانات برای ایجاد می‌کند (1). در ایران بیماری عمدتاً بر بهره‌گیری از ارقام مقاوم و روش‌های مناسب زراعی بهره‌گیری از ترکیبات قارچی که کنونی می‌باشد است. تأثیر بیماری قارچی بر روی کشت‌های مختلف و اثرات تخصصی کاریکاتور (Coratop) در طرف و مقاوم بیماری در مقابل برخی ترکیبات از طرف دیگر، بررسی‌های مکرو برای تعیین ترکیبات جدید را از می‌سازد.

Pyricularia grisea

۵۰ میکروگرم بر میلیلیتر با غلظت‌های کمتر، از بر رشد شفاف قارچی P. grisea. با ایجاد این بیماری، از مهم‌ترین بیماری‌های این

در محیط کشت نمادانش ویژه‌ای از پیریکولین در سطح کننده در غلظت یک میکروگرم بر میلیلیتر

به‌طور کامل جلول‌گیری کرد. همچنین لولوشک و سیستم (13)

گزشته کردن که بیماری بلافاصله در غلظت‌های دربروی گزارش کردن که در کنترل بیماری بلاست با عبور یکی پزشکی و گرانول در خاک

نفوذ قارچ به این‌نام جلول‌گیری می‌کند. گزارش این قارچ کش در

کنترل بیماری بلاست با عبور یکی پزشکی و گرانول در خاک

ناپ شده است. فیلیپی و پرایو (4) و گزارش کردن که

شیمی‌بندی با این قارچ کش (به میزان ۴ گرم ماده موثر بر هر

کیلوگرم بذر) در هم آمایی‌ها با برای خاک عبور پروریکیکل [به فرم گرانول

کوراتوب (Coratop) در محله پنج‌تایه بازی، بلاست برگ

رنا تا ۵۵ كنترل در و عملکرد از ۵۲٪ افزایش.

در مورد ژئاری، انتقال و سایر ویژگی‌های سیستمیکی

پیریکولین در سطح قارچ چهار کنترل بر این بررسی‌های

محوری صورت گرفته است (3 و 10). در این پژوهش برای

از ویژگی‌های سیستمیکی این ترکیب و ارتباط آن با کنترل

بیماری بلاست برگ بررسی شد.

مواد و روش‌ها

1. بیماری بلافاصله در گلخانه و در گل‌خانه‌های پلاستیکی متوسط

به قطر ۲۱ سانتی‌متر (پرورش بافتند. خاک مورد استفاده،

مرکب از دو قسمت رس و بی‌قسط کود آلی بود و کود

شیمی‌ای به میزان ۴٪ گرم اوره و ۲٪ گرم نفثه برای هر

گل‌خانه مصرف شد. پس از پرورش کقدر در گل‌خانه و مطرف کردن

خاک، بذر رقم حسن بی‌زیستی که بیماری بلاست حساس این

و قیاس بعد از ۴۸ ساعت خیس‌سازی یا برای، در آنها کشت شد.

پس از چوختن زنی، روی عوز ایزی بیماری سیستم آتی، که یک گرفته به

مرحله چهاربرگی رسیده و امتداد بیماری شدند. شمار ۹۰ گل‌خانه

برای اکثریت پیریکولین و ۷۰ گل‌خانه به عنوان شاهد در نظر

گرفته شد.
پیروکلین در بونه برنج پس از غارت‌پاشی در خاک و...
شکل 1. رابطه بین لگاریتم غلظت پروفیلن در محلول و نسبت سطح زیر منحنی کرومانتوگرام مربوط به آن در روش گاز کرومانتوگرافی روی پوشه‌ها شمارش شده، میانگین شماره چهار روز یک پوشه و میزان کنترل بیماری در پوشه‌های تیمار شده نسبت به شاهد محاسبه گردید.

تایبیه و بحث
الف) پروفیلن در بافت
در جدول 1 نسبت سطح زیر منحنی کرومانتوگرام مربوط به پروفیلن استخراج شده از نمونه‌های گاهی در زمان‌های مختلف پس از کاربرد ترکیب ذکر شده است.

فرمول خط استاندارد بین لگاریتم غلظت‌های مشخص پروفیلن در محلول و سطح زیر منحنی کرومانتوگرام در مراحل مختلف پروفیلن استخراج شده. نمونه‌های از این فرمول در شکل 1 آمده است و نشان می‌دهد که با استفاده تندیک (97) (\(R^2 = 0.97 \)) بین این متغیر و نتایج وجود دارد و با توجه کمی پروفیلن در بافت گیاه با این فرمول قابل اعتماد خواهد بود. به هر گونه از فرمول خط استاندارد و داده‌های جدول 1 غلظت پروفیلن در بافت گیاه در زمان‌های مختلف پس از کاربرد آن محاسبه گردید. شکل 2 تغییر غلظت ترکیب در بافت ساقه و پره را نشان می‌دهد. شاهده می‌شود که غلظت پروفیلن در بافت گیاه تا حدود 2 روز پس از کاربرد آن افزایش و سپس به تدریج کاهش یافته، به طوری که در بافت

208
بررسی‌های محققین دیگر در زمینه جذب و انتقال پرپورکین در باتن گیاهی این نتایج را تأکید می‌کند. به‌طور و همکاران (3) نشان دادند که پس از غوطه‌وری درون بذرها باتن در محلول پرپورکین، این ترکیب به سرعت توسط بذرها جذب گردید و پس از چند ساعت بدر، قارچ کش به درون ریشه‌ها و برگ‌ها بردش. غلتگی کلی فارق کش در گیاهچه از 7 تا 34 روز پس از کاربرد، کمتر از نیاز عام می‌باشد. نتایج پژوهش حاضر است در بررسی‌های تیبو و همکاران (10) نیز ترکیب پرپورکین که به صورت گرانول در خاک یک رفت از طریق ریشه‌ها جذب گردید. غلتگی آن در پایان برگ ظرف سه روز به صورت خود ریسید و تا چهار هفته پس از کاربرد بالاتر از 0.1ppm باشد که از نظر زمان جذب و دوام در باتن، هم‌اکنگ با نتایج این پژوهش است.

ب) اثر پرپورکین در کتنر بیماری

میزان کتلر بیماری در زمان‌های مختلف پس از کاربرد پرپورکین در شکل ۳ نشان داده شده است. با کاربرد پرپورکین در خاک، بیماری پس از این دوره ۶/۱۰/ کاهش یافت و پس از چهار روز به‌خوری کتنر شد. کتلر بیماری تا چهار هفته ادامه داشت و پس از آن تأثیر ترکیب به‌درجه کاهش یافت.

جدول ۱: نسبت سطح زیرمتنی کرومات (درصد) مربوط به پرپورکین استخراج شده از نمونه‌های گیاهی در زمان‌های مختلف

<table>
<thead>
<tr>
<th>فاصله زمانی سس استخراج شده از کاربرد پرپورکین</th>
<th>ساعت</th>
<th>برگ در حاکمیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 12 ساعت</td>
<td>12 روز</td>
<td></td>
</tr>
<tr>
<td>1 تا 2 روز</td>
<td>1 روز</td>
<td></td>
</tr>
<tr>
<td>2 تا 3 روز</td>
<td>2 روز</td>
<td></td>
</tr>
<tr>
<td>3 تا 4 روز</td>
<td>3 روز</td>
<td></td>
</tr>
<tr>
<td>4 تا 5 روز</td>
<td>4 روز</td>
<td></td>
</tr>
<tr>
<td>5 تا 6 روز</td>
<td>5 روز</td>
<td></td>
</tr>
<tr>
<td>6 تا 7 روز</td>
<td>6 روز</td>
<td></td>
</tr>
<tr>
<td>7 تا 8 روز</td>
<td>7 روز</td>
<td></td>
</tr>
<tr>
<td>8 تا 9 روز</td>
<td>8 روز</td>
<td></td>
</tr>
<tr>
<td>9 تا 10 روز</td>
<td>9 روز</td>
<td></td>
</tr>
<tr>
<td>10 تا 11 روز</td>
<td>10 روز</td>
<td></td>
</tr>
<tr>
<td>11 تا 12 روز</td>
<td>11 روز</td>
<td></td>
</tr>
<tr>
<td>12 تا 13 روز</td>
<td>12 روز</td>
<td></td>
</tr>
<tr>
<td>13 تا 14 روز</td>
<td>13 روز</td>
<td></td>
</tr>
<tr>
<td>14 تا 15 روز</td>
<td>14 روز</td>
<td></td>
</tr>
<tr>
<td>15 تا 16 روز</td>
<td>15 روز</td>
<td></td>
</tr>
<tr>
<td>16 تا 17 روز</td>
<td>16 روز</td>
<td></td>
</tr>
<tr>
<td>17 تا 18 روز</td>
<td>17 روز</td>
<td></td>
</tr>
<tr>
<td>18 تا 19 روز</td>
<td>18 روز</td>
<td></td>
</tr>
<tr>
<td>19 تا 20 روز</td>
<td>19 روز</td>
<td></td>
</tr>
<tr>
<td>20 تا 21 روز</td>
<td>20 روز</td>
<td></td>
</tr>
<tr>
<td>21 تا 22 روز</td>
<td>21 روز</td>
<td></td>
</tr>
<tr>
<td>22 تا 23 روز</td>
<td>22 روز</td>
<td></td>
</tr>
<tr>
<td>23 تا 24 روز</td>
<td>23 روز</td>
<td></td>
</tr>
<tr>
<td>24 تا 25 روز</td>
<td>24 روز</td>
<td></td>
</tr>
<tr>
<td>25 تا 26 روز</td>
<td>25 روز</td>
<td></td>
</tr>
</tbody>
</table>

از نظر دیامتر در گیاه، پرپورکین تا حدود ۲۸ روز پس از کاربرد در بافت‌برگ، پیشنهادی می‌باشد. (1) برای در ۲۰ppm وجود داشت، گرچه در این زمان در بافت ساقه، قابل بازیابی تبرد. ۴۵ روز پس از کاربرد در بافت‌برگ نیز به حد غیرقابل بازیابی رسید.
کاهش زیاد درصد کنترل بیماری در روز ۱۱۰ که در شکل ۴ نشان داده می‌شود. به روز عمده ناشی از کاهش طبیعی آلودگی در کل بیماری از جمله بیماری‌های شاهد است که سبب کم شدن اختلاف میزان آلودگی در دو تیمار شده است.

در بررسی‌های شیمیایی و همکاران (۸) کاربرد پیروکلین به‌صورت تیمار ریشه سه روز قبل از تلخیح اسپری، از ایجاد بیماری روی پیکر به‌خوبی جلوگیری کرد که با نتایج کنترل بیماری در روز دوم تا مدت چهارم در پیروهش حاضر هم‌هندی دارد. از نظر طول مدت کنترل بیماری در پیروهش بهتر و همکاران (۳) نگرش‌های جدیدی در گیاه به طول ۱۱۰ روز پراکنی کنترل آلودگی کاملاً بود که مشابه نتایج این پروپاژه است. در گروه پرپاژ و فیلیپس (۶) کاربرد پیروکلین به‌صورت تیمار

شکل ۳ میزان کنترل بیماری بلافاصله برخی و ارتباط آن با غلظت پیروکلین در باغ برگ

شکل ۴ رابطه رگرسیون بین غلظت پیروکلین در باغ برگ و میزان کنترل بیماری

ربیشه در مزارع، شدت بلایت بزرگ را در رقم حساس تا ۲۸ روز پس از کاشت کمتر از ۵/۱۰ نگه داشت. همچنین در بررسی دیگری در زمینه جذب و انتقال پیروکلین در گیاه (۲)، اثر ترکیب در کنترل بیماری نا هنگام نمایه ماند. در تحقیق‌های سوسو و همکاران (۱۰) تن در دوام اثر پیروکلین در کنترل بیماری تا ۲۸ روز گزارش شده است. در پژوهش حاضر میزان بیماری تا ۲۸ روز پس از کاربرد پیروکلین کمتر از ۵/۱۰ بود و پس از آن افزایش کمی نشان داد. این اختلاف نتایج می‌تواند تثبیت اختلاف شرایط در آزمایش مورد نظر و گلخانه‌های باشد. به‌علاوه سوسو و همکاران (۱۰) در آزمایش‌های خود از فرمول‌های خاصی استفاده کرده‌اند که طول مدت جذب و تأثیر ترکیب را افزایش می‌دهد.
میزان کنترل بیماری و غلظت ترکیب در فاصله ساقه وایستگی
قابل توجهی وجود ندارد (P<0.01).

سیاستگرایی

از کارکنان آزمایشگاه بیماری‌های گیاهی دانشکده کشاورزی
دانشگاه تهران-کرج، کارشناسان و تکنیک‌های آزمایشگاه
بررسی آفات و بیماری‌های گیاهی بندر انزلی و کارشناسان و
تکنیک‌های بخش میکروسکوپی آزمایشگاه کنترل این و داروی
تهیه که در انجام این پژوهش نهایت همکاری را نمودند،
تشکر می‌شود.

متابع مورد استفاده

1. اخوی، م. 1377. بررسی امکانات تولیدی بیماری‌های بیماری‌نافذ (P. oryzae Cav.) در شمال ایران. رساله دکتری، دانشکده
کشاورزی، دانشگاه تهران، 253 صفحه.

2% granules and it’s fate in rice plant. Ciba Geigy, Agrochemicals Research Institute, Sankyo Company, Limited
8pp.

5. Filippi, M.C. and A.S. Prabhu. 1997b. Integrated effect of host plant resistance and fungicidal seed treatment on rice

46(1):22-23.

(Ed.), Agricultural Chemicals of the Future Rowman and Allanheld, Totowa.

compounds inhibit melanization and epidermal penetration by Pyricularia oryzae. J. Pest. Sci. 7(2): 161-166.

211