ارزیابی چند عصاره گری به منظور تعیین پتاسیم قابل استفاده سیر در برخی از خاک های همدان

علی رضا حسین پور

چکیده

استان همدان از عمدتاً تین مناطق تولید سیر (Allium sativum) در ایران است. ولی با این وجود پرورش های انگلیسی در مورد وضعیت پتاسیم در مزارع سیر مورد زمین است و تاکنون عصاره گری محاسبی برای استخراج پتاسیم قابل استفاده به صورت معرفی نگردیده است. این پژوهش با هدف تعیین عصاره گری با عصاره گری محاسبی برای تعیین پتاسیم قابل استفاده خاک و سطح جهانی پتاسیم در 10 نمونه از خاک های استان همدان انجام شد. این آزمایش در قالب طرح کاملاً تصادفی و به صورت دوتنوریل با دو سطح صفر و 200 میلی گرم پتاسیم در کیلوگرم خاک در سه تکرار و عصاره گری پتاسیم قابل استفاده به وسیله 14 عصاره گری انجام شد.

نتایج این پژوهش نشان داد که کاربرد کود پتاسیم باعث افزایش عملکرد، ظرفیت و چند پتاسیم به وسیله سیر شد. بر اساس مقدار پتاسیم استخراج شده عصاره گری در چهار حوزه گزارش گردید که نسبتی همیشه عصاره گری در هر کیلوگرم بیشتر یا بزرگ‌تر بود.

مقدمه

پتاسیم در خاک به شکل های محلول، تبادلی، غیر تبادلی (ثنیت شده) و ساختمانی وجود دارد. جمعی از پتاسیم نیز در پی بافت

1. استادیار خاکشناسی، دانشکده کشاورزی، دانشگاه بروülی سبیل، همدان

واژه های کلیدی: کود پتاسیم، سیر، پتاسیم قابل استفاده، عصاره گری
استفاده شده است(1). در بررسی شریفی و کلباسی (2) در خاک‌های مختلف خشک، کلر کلسیم ۱۰۰۰ مولار و استات ساده به عنوان بهترین عصاره‌گیری معرفی شدند. در بررسی کربنیک و کلباسی (۳) عصاره‌گیری استات مزینی، اسید سولفوریک، مورکان و کلباسی کلسیم ۱۰۰۰ مولار به عنوان بهترین عصاره‌گیری معرفی شدند.

استان همدان از استان‌های عمده تولید سیر در کشور است ولی تا اکنون بررسی‌های انجام شده برای همکاری همبسته‌گری و عصاره‌گیری مناسب برای استخراج پنتاسیم قابل استفاده در این اراضی معرفی گردیده است. این پژوهش به‌هدف تعیین عصاره‌گیری با عصاره‌گیری مناسب برای ارتباط پنتاسیم قابل استفاده و نیز بررسی کنترل بهره‌مندی پنتاسیم برای سیر در فاصله ۱۰ دنی و سه ماه به شماری استان همدان در یک آزمایش گل‌داتی انجام شد.

مواد و روش‌ها

به منظور تعیین عصاره‌گیری با عصاره‌گیری مناسب پنتاسیم برای تعیین پنتاسیم قابل جذب و تعیین جدی برقراری پنتاسیم برای سیر (Allium sativum) خاک از نقاط عمدت تولید سیر در همدان که دارای وزی‌گاهی منتویی از نظر فرستاده، کناره‌گیری کلاته‌گوری و پنتاسیم عصاره‌گیری شده با استان آمومی مولار بودن انجام شد. وزی‌گاهی ویژه‌ای خاستگاه و شیمیایی خاک‌ها با توجه به روش‌های معمول آزمایشگاهی تعیین گردید (8 و 14). عصاره‌گیری استفاده شده و روش عصاره‌گیری در جدول ۱ آورده شده است.

آزمایش به صورت فاکتوریل در قالب طرح کاملاً تصادفی در ۱۰ نمونه خاک با دو سطح پتنسیم (سفر و ۲۰۰ میلی گرم در کیلوگرم خاک از سولفوریک پتنسیم) در سه نکار انجام گردید. کلر کلسیم پلاستیکی که زمین‌های باستان بود با ۳ کیلوگرم خاک بر گرمی. نظر به این‌که خاک گل‌دان‌ها ناباید از نظر سایر عناصر غذایی کمبودی داشته باشد، میزان ۰،۵ و ۵ تهیه شد.
جدول 1. مشخصات روش‌های عصاره‌گیری استفاده شده

<table>
<thead>
<tr>
<th>شماره</th>
<th>شماره معن</th>
<th>زمان به تغذیه (رقیه)</th>
<th>غلظت به عصاره‌گیری (میلی‌گرم)</th>
<th>نام عصاره‌گیر</th>
<th>شماره</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18</td>
<td>10</td>
<td>0/02</td>
<td>کارلید استرانسیم</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>10</td>
<td>0/1</td>
<td>کارلید باریم</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>10</td>
<td>0/01</td>
<td>کارلید کلسیم</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>متابولیسم شیمی</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>10</td>
<td>1/00</td>
<td>امست آمونیم 1</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>10</td>
<td>1/00</td>
<td>امست آمونیم 2</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>10</td>
<td>1/00</td>
<td>استمن سیدیم</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td>10</td>
<td>0/01</td>
<td>کارلید استرانسیم</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
<td>10</td>
<td>0/01</td>
<td>امست کارلیدریک</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>1/4</td>
<td>0/25</td>
<td>امست کارلیدریک</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>1/00</td>
<td>0/25</td>
<td>آب فقط</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>1/00</td>
<td>0/25</td>
<td>امست سولفوریک</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>1/00</td>
<td>0/25</td>
<td>امست سولفوریک</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>1/00</td>
<td>0/25</td>
<td>امست نیتریک جووان</td>
<td>14</td>
</tr>
</tbody>
</table>

شاخش‌های گیاهی: شامل جذب پتاسیم، جذب اضافی، عملکرد نسبی، پاسخ گیاه و انرژیست غلظت با توجه به فرمول‌های زیر تیمیت شد:

\[\text{جذب پتاسیم} = \text{جمله گرم در گلدن } \] (میلی‌گرم در کیلوگرم غلظت پتاسیم در گلدن ون غده)

\[\text{جمله اضافی} = \text{جمله بیشتری به وسیله گیاه ثناش شده} \]

\[\text{جمله پتاسیم به وسیله گیاه ثناش} = \text{عملکرد نسبی (در صد)} \]

\[100 \times \text{عملکرد گیاه ثناش/عملکرد گیاه ثناش} \]

عملکرد گیاه ثناش - عملکرد گیاه ثناش = پاسخ گیاه

فسایش غلظت = غلظت پتاسیم گیاه ثناش - غلظت پتاسیم گیاه ثناش

تعداد 100 میلی‌گرم ریز به مقدار 100 میلی‌گرم در کیلوگرم در ذریت گلدن در فصل پاییز و رشد در طول فصل رشد 100 میلی‌گرم در کیلوگرم در فصل پاییز و رشد (واکست نهایی) گیاهان در داخل گلدن خارج و پس از جدای شدن هواپیایی این گیاه عامله کامل با مثبت رشته و آب مثبت شته شده. سپس گلدن‌هایی سیب در آن تهیه دار به مقدار 70 درجه سانتی‌گراد قرار داده شد که پس از خشک شدن کامل وزن غده اضافه‌گردنی شد. سپس گلدن‌های سیب با آب‌بری به مقدار 150 درجه سانتی‌گراد قرار داده شد. برای تعیین کردن دو رقم در ساعت در واحد 150 درجه سانتی‌گراد در کهربال کاسکی‌دانه و سپس به وسیله 10 میلی‌گرم ریز به مقدار 2 میلی‌گرم عصاره‌گیری گردد. غلظت پتاسیم در عصاره‌ها به روش طبقاتی نشان انی تعیین گردد.
نتایج و بحث

تعدادی از وزنهای فیزیکی و شیمیایی خاکهای بررسی شده در جدول 2 نشان داده شده است. اطلاعات این جدول نشان می‌دهد که خاک‌ها از نوع وسیع در وزنهای فیزیکی و شیمیایی برخوردارند. به علت نمونه‌داری تغییرات رسم در این خاک‌ها از 70 تا 75 درصد است.

جدول 3 تأثیر پتانسیم بر عملکرد، غلظت و جذب پتانسیم سیر را نشان می‌دهد. کاهش پتانسیم در دوباره خاک‌ها سبب افزایش عملکرد، غلظت و جذب پتانسیم شده و در پی یافتن خاک‌ها این افزایش معنی‌دار است (P<0.01).

ایجاد ارتباط بین مقدار عنصر غذایی که به بسیار کم محدود عصاره‌گیری از خاک استخراج می‌شود بر مقدار جذب عنصر یکی از مراحل اصلی از آن خاک می‌باشد که همبستگی تامینه می‌کند. در بررسی همبستگی علاوه بر مقدار جذب عنصر توسط گیاه از شاخص‌های دیگری مانند غلظت عنصر در کیسه، عملکرد، عامل‌کرد نسبی، پاسخ گیاه، افزایش غلظت و جذب اضافی نیز استفاده می‌شود.

ارتباط استخراج خاک به وسیله عصاره‌گیری مختلف با استفاده از همبستگی ساده یکرتیکی، مقادیر تانسیم استخراجی به وسیله عصاره‌گیری در جدول 4 و ضریب‌های همبستگی آنها در جدول 5 آراشده است. بر اساس مقادیر تانسیم استخراجی از خاک به وسیله عصاره‌گیری می‌توان عصاره‌گیری مورد استفاده در این پژوهش را در چهار گروه اصلی قرار داد. گروه اویل عصاره‌گیری یک مقادیر پتانسیم استخراجی به وسیله آنها در خاک‌ها کمتر از 100 میلی گرم در کیلوگرمی شامل کلرید استرانتسیم 200/600 میلی‌گرم کلرید در کل میلی‌گرم می‌باشد. این جدول نشان می‌دهد که همبستگی آنها با یکدیگر نسبتاً بالا و معنی‌دار است (جدول 5). گروه دوم عصاره‌گیری که مقادیر تانسیم استخراجی به وسیله آنها در خاک‌ها بهبودی
جدول 2. تعدادی از ویژگی‌های فیزیکی و شیمیایی خاک‌های مطالعه شده*

<table>
<thead>
<tr>
<th>شماره</th>
<th>نعمت‌های برداری</th>
<th>pH</th>
<th>محلول</th>
<th>کلسیم معادل</th>
<th>تاداب کاتیونی</th>
<th>شن</th>
<th>سیلت</th>
<th>رس</th>
<th>کربن</th>
<th>گنجایش</th>
<th>کریت</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>برگ‌چین</td>
<td>7.3</td>
<td>0.26</td>
<td>0.24</td>
<td>12/8</td>
<td>8/77</td>
<td>10/6</td>
<td>5/8</td>
<td>68/4</td>
<td>3/4</td>
<td>1/10</td>
</tr>
<tr>
<td>2</td>
<td>موجین</td>
<td>7.3</td>
<td>0.26</td>
<td>0.24</td>
<td>12/8</td>
<td>8/77</td>
<td>10/6</td>
<td>5/8</td>
<td>68/4</td>
<td>3/4</td>
<td>1/10</td>
</tr>
<tr>
<td>3</td>
<td>سولان</td>
<td>7.0</td>
<td>0.30</td>
<td>0.30</td>
<td>15/3</td>
<td>5/30</td>
<td>0/8</td>
<td>0/5</td>
<td>64/3</td>
<td>3/3</td>
<td>3/10</td>
</tr>
<tr>
<td>4</td>
<td>مربیانجی</td>
<td>7.9</td>
<td>0.30</td>
<td>0.30</td>
<td>15/3</td>
<td>5/30</td>
<td>0/8</td>
<td>0/5</td>
<td>64/3</td>
<td>3/3</td>
<td>3/10</td>
</tr>
<tr>
<td>5</td>
<td>امیر آباد</td>
<td>8.0</td>
<td>0.30</td>
<td>0.30</td>
<td>15/3</td>
<td>5/30</td>
<td>0/8</td>
<td>0/5</td>
<td>64/3</td>
<td>3/3</td>
<td>3/10</td>
</tr>
<tr>
<td>6</td>
<td>علی آباد</td>
<td>8.7</td>
<td>0.30</td>
<td>0.30</td>
<td>15/3</td>
<td>5/30</td>
<td>0/8</td>
<td>0/5</td>
<td>64/3</td>
<td>3/3</td>
<td>3/10</td>
</tr>
<tr>
<td>7</td>
<td>دستجرد</td>
<td>7.8</td>
<td>0.30</td>
<td>0.30</td>
<td>15/3</td>
<td>5/30</td>
<td>0/8</td>
<td>0/5</td>
<td>64/3</td>
<td>3/3</td>
<td>3/10</td>
</tr>
<tr>
<td>8</td>
<td>گنج تیه</td>
<td>7.8</td>
<td>0.30</td>
<td>0.30</td>
<td>15/3</td>
<td>5/30</td>
<td>0/8</td>
<td>0/5</td>
<td>64/3</td>
<td>3/3</td>
<td>3/10</td>
</tr>
<tr>
<td>9</td>
<td>حسین آباد</td>
<td>7.7</td>
<td>0.30</td>
<td>0.30</td>
<td>15/3</td>
<td>5/30</td>
<td>0/8</td>
<td>0/5</td>
<td>64/3</td>
<td>3/3</td>
<td>3/10</td>
</tr>
<tr>
<td>10</td>
<td>یکین آباد</td>
<td>7.7</td>
<td>0.30</td>
<td>0.30</td>
<td>15/3</td>
<td>5/30</td>
<td>0/8</td>
<td>0/5</td>
<td>64/3</td>
<td>3/3</td>
<td>3/10</td>
</tr>
</tbody>
</table>

* pH: شوری در عصاره 3 به 1 آب به خاک تعیین گردید.

جدول 3. اثر کاربرد پتانسیم بر عملکرد سبز، غلظت و جذب پتانسیم در گیاه سیب

<table>
<thead>
<tr>
<th>شماره</th>
<th>عملکرد (گرم در گلدان)</th>
<th>غلظت (ملی گرم در گلدان)</th>
<th>تیمار شده</th>
<th>شاهد</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>146/6</td>
<td>4/5/6</td>
<td>8/5/6</td>
<td>6/3/6</td>
</tr>
<tr>
<td>2</td>
<td>131/6</td>
<td>3/4/6</td>
<td>6/3/6</td>
<td>6/3/6</td>
</tr>
<tr>
<td>3</td>
<td>115/6</td>
<td>2/3/6</td>
<td>6/3/6</td>
<td>6/3/6</td>
</tr>
<tr>
<td>4</td>
<td>100/6</td>
<td>1/2/6</td>
<td>6/3/6</td>
<td>6/3/6</td>
</tr>
<tr>
<td>5</td>
<td>90/6</td>
<td>0/1/6</td>
<td>6/3/6</td>
<td>6/3/6</td>
</tr>
<tr>
<td>6</td>
<td>80/6</td>
<td>0/0/6</td>
<td>6/3/6</td>
<td>6/3/6</td>
</tr>
<tr>
<td>7</td>
<td>70/6</td>
<td>0/0/6</td>
<td>6/3/6</td>
<td>6/3/6</td>
</tr>
<tr>
<td>8</td>
<td>60/6</td>
<td>0/0/6</td>
<td>6/3/6</td>
<td>6/3/6</td>
</tr>
<tr>
<td>9</td>
<td>50/6</td>
<td>0/0/6</td>
<td>6/3/6</td>
<td>6/3/6</td>
</tr>
<tr>
<td>10</td>
<td>40/6</td>
<td>0/0/6</td>
<td>6/3/6</td>
<td>6/3/6</td>
</tr>
</tbody>
</table>

* مقایسه با گروه‌های مربیانجی در هر پارامتر است.

جوشن سایر عصاره‌گیرها می‌تواند در ارزیابی پتانسیم قابل استفاده سبز استفاده شود. از طرفی استعداد می‌تواند به دلیل گران و بودن به عنوان عصاره‌گیر بیشتر نمایندگری پژوهشگران مختلف بشه به محل پژوهش عصاره‌گیرهای استان آمیونیوم ا و انیون آری و اسید نتیجه یک مولار

شاخ به پیش می‌گیرد. کلیه عصاره‌گیرها به جز یک اسید نتیجه

مولار جوشان هنگامی مهیا می‌شود داد. به نظر می‌رود به دست آمده می‌توان اظهار داشت که به جز عصاره‌گیرهای استان آمیونیوم ا و انیون آری و اسید نتیجه یک مولار

49
جدول ۳. میانگین پتاسیم استخراج شده از خاک با روش های مختلف عصاره گیری (می گرم در کیلوگرم) *

<table>
<thead>
<tr>
<th>شماره</th>
<th>همراه با</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
<th>۷</th>
<th>۸</th>
<th>۹</th>
<th>۱۰</th>
<th>۱۱</th>
<th>۱۲</th>
<th>۱۳</th>
</tr>
</thead>
<tbody>
<tr>
<td>شماره</td>
<td>همراه با</td>
<td>۱</td>
<td>۲</td>
<td>۳</td>
<td>۴</td>
<td>۵</td>
<td>۶</td>
<td>۷</td>
<td>۸</td>
<td>۹</td>
<td>۱۰</td>
<td>۱۱</td>
<td>۱۲</td>
<td>۱۳</td>
</tr>
</tbody>
</table>

* مشخصات هر عصاره گیر در جدول ۷ آورده شده است.
این صفحه شامل سوالات و پاسخ‌های مربوط به آمار و ویژگی‌های محصول است. توضیحات و جزئیات بیشتر در زیر ذکر شده است:

| نام محصول | جمع‌وزن | طول | عرض | висوک | ظرفیت
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>محصول 1</td>
<td>2.3 kg</td>
<td>10 cm</td>
<td>5 cm</td>
<td>0.8 m</td>
<td>5 L</td>
</tr>
<tr>
<td>محصول 2</td>
<td>1.5 kg</td>
<td>8 cm</td>
<td>4 cm</td>
<td>0.6 m</td>
<td>3 L</td>
</tr>
<tr>
<td>محصول 3</td>
<td>3.0 kg</td>
<td>12 cm</td>
<td>6 cm</td>
<td>1.0 m</td>
<td>8 L</td>
</tr>
</tbody>
</table>

توجه: این جدول فقط جزئی از اطلاعات کلی است و باید به وسیلهٔ مسئولان یا افراد مربوط به ساخت و ساز مطالعه و تأیید شود.

جدول 6: ضرایب هم‌بستگی (r) پیشی‌بینی استخراج شده بوسیله عصایره‌گرها و شاخ‌های گیاهی

<table>
<thead>
<tr>
<th>شماره عصاره‌گر</th>
<th>عملکرد نشیمی</th>
<th>جذب مضحل</th>
<th>جذب اضافی</th>
<th>فاصله غلتک</th>
<th>فاصله غلات ست</th>
<th>افزایش غلات ست</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.75</td>
<td>0.50</td>
<td>0.25</td>
<td>0.30</td>
<td>0.50</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.70</td>
<td>0.45</td>
<td>0.17</td>
<td>0.22</td>
<td>0.40</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.65</td>
<td>0.40</td>
<td>0.14</td>
<td>0.21</td>
<td>0.35</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.60</td>
<td>0.35</td>
<td>0.11</td>
<td>0.18</td>
<td>0.30</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.55</td>
<td>0.30</td>
<td>0.08</td>
<td>0.15</td>
<td>0.25</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0.50</td>
<td>0.25</td>
<td>0.06</td>
<td>0.12</td>
<td>0.20</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0.45</td>
<td>0.20</td>
<td>0.05</td>
<td>0.10</td>
<td>0.18</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0.40</td>
<td>0.15</td>
<td>0.03</td>
<td>0.08</td>
<td>0.15</td>
</tr>
</tbody>
</table>

در بخش دیگر این بررسی سطح بحرانی پاسیم برای عصاره‌گرها به روش نموداری کبیت-لسیون (p) تعیین شد (شکل های 1 و 2). مفهوم سطح بحرانی پاسیم که تخمینی بر توسط کبیت و نلسون ارائه گردید سطحی از پاسیم عصاره‌گری است که خاک استیکه که خاک استاتیکی را که ارتفاع بسیار به کود در آنها زیاد است از خاک‌هایی که ارتفاع بسیار در آنها کم است، چند می‌کند. این بر اساس فرضیه از خاک‌های تند پاسیم آن کمتر از حد بحرانی است، پاسیم مصرفی در کود مصرفی و با افزایش عملکرد به حدی خواهد بود که کود به روز می‌گردد. این ارائه بستگی به تعیین ارتفاع بسیاری است که ارتفاع بسیار به کود و با افزایش قابل ملاحظه‌ای عملکرد در خاک‌های این گروه بسیار بیشتر از گروهی است که مقدار آزمون خاک این گروه از سطح بحرانی است. سطح بحرانی پاسیم برای 90 درصد عملکرد نسبی با روش مهالجی 1 کلریت استراتاسیم 2/0 مولار، کلریت متوافقتی را برای استخراج پاسیم قابل استفاده گیاه پیشنهاد کرده‌اند (18 و 19). سالومون (19) روش کلریت کلسیم 210/0 مولار را برای استخراج پاسیم قابل استفاده گیاه درخت در خاک‌های سریع به کار برده و دریافت که این عصاره‌گیر می‌تواند در این خاک‌ها یا دیگر مناسب برای روش مدلول لاکنتان آمونیوم - سدیم استیکی به‌اشتب. سالوتو (7) در خاک‌های مجارستان عصاره‌گری استات آمونیوم را برای عصاره‌گری پاسیم قابل استفاده مناسب دانستند. بیکل و اوکرک (5) در خاک‌های یپسیلانونی به هم‌بستگی عصاره‌گیر مهالجی 3 و استات آمونیوم اشاره کرده و به دلیل رابطه خوب بین پاسیم استخراجی به‌وسیله این عصاره‌گیر و جذب پاسیم به وسیله ذرت، این عصاره‌گیر را بر استات آمونیوم ترجیح دادند. گریزی و اوکرک (9) عصاره‌گیری بر برخی این استات آمونیوم 2-5 تیا آی را به‌عنوان عصاره‌گیر مناسب معرفی کرده‌اند.
شکل 1. تعیین حد پرورشی پناسیم به روش نموداری کیت ـ نلسون با عصاره‌گیریهای مختلف
شکل ۲. تعیین حد بحرانی پناسیم به روش نموداری کیت - نلسون با عصاره گیاهی مختلف
دوره آزمون‌های برای تعیین پتانسیل قابل استفاده سیر عصاره‌گیری در پایان‌کردن این تکهٔ پژوهش، سعی شده تا این امکان شرايط بررسی‌های مراحلی نشود. در این حواله، شرایط‌های مراحلی موجود در کلیه پایان‌ناتوانه‌های است كان در تعیین نتایج به‌دست آمده شرایط مراحلی با اختیار برخورد کرده می‌شود. بنیاد و سیاست‌گرایی بهینه‌سازی محتوای محروم‌پذیره و از دسترسی به عناوان کارشناسی در انجام این برخوردهای نقش داشته‌اند و اهدافی می‌شود.

نتایج‌گیری
نتایج این پژوهش نشان داد که از بین 14 عصاره‌گیری استفاده شده، عصاره‌گیری استان آمونیوم 1 مولار، در نهایت امکان‌آسیب و نشان داد که برای تعیین سطح بحرانی پتانسیل برای بین‌ریزه در تعدادی از خاک‌های شالیزاری استان گیلان، مجزه علوم و فنون کشاورزی و منابع طبیعی (1:17-169)

1. توقفی، ح. 1377. بررسی پاسخ بذر به کود پتاسیم در خاک‌های شالیزاری شمال ایران. مجله علوم کشاورزی ایران(39):563-570.
2. شریفی، م. و. م. کیقبادی. 1380. آزمایش عصاره‌گیری مناسب برای استخراج پتاسیم قابل جذب درخت در خاک‌های منطقه مرکزی استان اصفهان، مجله علوم و فنون کشاورزی و منابع طبیعی (1):71-71.
3. کاووشی، م. و. م. کیقبادی. 1381. مقایسه روش‌های عصاره‌گیری پتاسیم خاک برای تعیین سطح بحرانی پتانسیل برای بین‌ریزه در تعدادی از خاک‌های شالیزاری استان گیلان، مجله علوم و فنون کشاورزی و منابع طبیعی (3): 71-71.