ارزیابی چند عصاره‌گیری به منظور تعیین پتاسیم قابل استفاده سیر در برخی از خاک‌های همدان

علی‌رضای حسین پور

چکیده

استان همدان از عمدته ترین مناطق تولید سیر (Allium sativum) در ایران است. ولی با این وجود بررسی‌های انگلیسی در مورد نقش پتاسیم در مراعات سیر صورت گرفته است. نتایج عصاره‌گیری مناسب برای استخراج پتاسیم قابل استفاده سیر، معرفی نگردیده است. این پژوهش با هدف تعیین عصاره‌گیری‌های مناسب برای تعیین پتاسیم قابل استفاده خاک و سطح جریانی پتاسیم در 10 نمونه از خاک‌های استان همدان انجام شده است. این آزمایش در قالب طرح کاملاً تصادفی و به صورت فاکتوریل با دو سطح صفر و 200 میلی‌گرم پتاسیم در کیلوگرم خاک در سه تکرار و عصاره‌گیری پتاسیم قابل استفاده به وسیله 14 عصاره‌گیر انجام شده است. نتایج این پژوهش نشان داد که کاربرد کود پتاسیم باعث افزایش عملکرد، میزان و جذب پتاسیم به وسیله سیر شد. بر اساس نتایج پتاسیم قابل استخراج در همین عصاره‌گیری‌ها در چهار گروه قرار گرفته، به نوبه‌های هم‌پیوستگی عصاره‌گیری‌ها در هر گروه و سیاره‌ای می‌باشد. در این پژوهش، به دلیل هم‌پیوستگی بین سایر عصاره‌گیری‌ها با شاخه‌های عملکرد نسبی و پاسخ گیاهی عصاره‌گیری‌ها را می‌توان با عناوین عصاره‌گیری مناسب دانست. سطح بحرانی پتاسیم به روش نموداری کیت می‌تواند نشان دهد، سطح بحرانی پتاسیم برای 90 درصد عملکرد نسبی با روش مدل‌سازی کلیک شد. کاربرد استراتژی استراتژیک، استراتژی هدف‌گذاری کود 200/مولار، کلرید کلرید/کلرید 1/مولار، کلرید اسید کلرید/کلرید 1/مولار، استراتژی اسید کلرید/کلرید/کلرید 25/مولار و کلرید/کلرید/کلرید 25/مولار را به ترتیب 0.1367.0.0001.0.0001.0.0001.0.0000.0000.0000.0 می‌گرم در کیلوگرم خاک می‌کند.

واژه‌های کلیدی: کود پتاسیم، پتاسیم قابل استفاده، عصاره‌گیری

مقدمه

پتاسیم در خاک به شکل‌های محلول، غیر محلولی (تربیت شده) و ساختارهای موجود در این ماده قابل جلب و جذب خاک می‌گردد. پتاسیم یکی از محورهای نیز در بقای خاک می‌باشد.

1. استفاده‌ها خاک‌شناسی، دانشکده کشاورزی، دانشگاه بروجرد سیستان. همدان

45
استفاده شده است(1) در بررسی‌های مختلف و گوناگونی در خاک‌های مناطق خشک، کلر کلسیم ۱/۱۰ مولار و استات سدیم به عنوان بهترین عصاره‌گیر معرفی شدند. در بررسی کاهووسی و کلاروسی (۲) عصاره‌گیرهای استات منینیم، اید سولفوریک، مورگان و کلر کلسیم ۱/۱۰ مولار به عنوان بهترین عصاره‌گیر معرفی شدند.

محدودیت‌های استفاده از استات‌های به دست آمده می‌تواند در کنار محدودیت‌های مربوط به استفاده از استات‌های مصنوعی باشد. بنابراین استفاده از استات‌های به دست آمده می‌تواند به بهبود کیفیت محصول و کاهش هزینه تولید کمک کند.

مواد و روش‌ها

به منظور تعیین عصاره‌گیری عصاره‌گیرهای مناسب برای تعیین پتانسیل نقش توزیع در کشاورزی، استفاده از مدل‌های ریاضی می‌تواند اهمیت داشته باشد. بنابراین در این مطالعه به کار برده شده است. روش کاربردی در این مطالعه به‌صورت طراحی طرح‌های کنترلی بوده است. در این روش، نمونه‌های مختلف به صورت تصادفی در یک آزمایش‌گاهی انجام شد.

کیفیت استفاده از استات‌های به دست آمده به دلیل خاک‌های خشکی و خاک‌های برکناری است. به همین علت، تحقیقاتی به کار رفته در این مقاله به بررسی استفاده از استات‌های به دست آمده می‌توجه کند.

پژوهشگران مختلف بسته به محل پژوهش، عصاره‌گیرهای مختلفی را برای استخراج پانتسیم قابل استفاده می‌پذیرند. بنابراین، استفاده از استات‌های به دست آمده می‌تواند به بهبود کیفیت محصول و کاهش هزینه تولید کمک کند. بنابراین در این مقاله به کار برده شده است. روش کاربردی در این مطالعه به‌صورت طراحی طرح‌های کنترلی بوده است. در این روش، نمونه‌های مختلف به صورت تصادفی در یک آزمایش‌گاهی انجام شد.

کیفیت استفاده از استات‌های به دست آمده به دلیل خاک‌های خشکی و خاک‌های برکناری است. به همین علت، تحقیقاتی به کار رفته در این مقاله به بررسی استفاده از استات‌های به دست آمده می‌توجه کند.
جدول 1. مشخصات روش‌های عصاره‌گیری استفاده شده

<table>
<thead>
<tr>
<th>شماره</th>
<th>نام عصاره‌گیر (مولار)</th>
<th>شماره</th>
<th>تعداد جذب اضافی</th>
<th>زمان به تعادل (دقیقه)</th>
<th>غلظت (میلی‌گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>باریم</td>
<td>18</td>
<td>2</td>
<td>100</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>کلرید مس</td>
<td>18</td>
<td>-</td>
<td>101</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>کلرید بازین</td>
<td>18</td>
<td>-</td>
<td>101</td>
<td>0.1</td>
</tr>
<tr>
<td>4</td>
<td>دی‌تی‌پی‌ای</td>
<td>16</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>5</td>
<td>استاتر سدیم</td>
<td>10</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>استاتر سدیم</td>
<td>15</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>7</td>
<td>استاتر سدیم</td>
<td>7</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>8</td>
<td>کلرید استرانسیم</td>
<td>18</td>
<td>-</td>
<td>100</td>
<td>0.1</td>
</tr>
<tr>
<td>9</td>
<td>اسید کلریدریک</td>
<td>18</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>10</td>
<td>اسید سولفوریک</td>
<td>10</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>11</td>
<td>اسید کلریدریک</td>
<td>18</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>12</td>
<td>استاتر سدیم</td>
<td>10</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>13</td>
<td>آب مغذی</td>
<td>14</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>14</td>
<td>اسید نتریک کیوان</td>
<td>36</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

100 میلی‌گرم در کیلوگرم روی، آهن و فسفر به ترتیب از منابع سولفات‌های سیلوسترین و مونوکلرید نیکلیک به‌دست‌آمده کلرید استرانسیم. این گونه‌ها به‌صورت کود اوره به مقدار 50 میلی‌گرم در کیلوگرم در دو قرارداد داشته‌اند. در طول فصل رشد، مراقبت‌های لازم انجام شد و در پایان فصل رشد (اواخر تابستان)، گیاهان از داخل گلدانا خارج و پس از جفاکرد قسمت‌های 100 میلی‌گرم غلظت‌های کلریدهای تمام با استثنا دریابند که به آن فوراً رشده شود. سپس در درجه سه‌گروه صرفاً در آن تهیه دار در دمای 70 درجه سانتی‌گراد قرار داده شد که پس از خشک شدن کامل، از خشک شدن پس از درگیری. غلظت‌های سیر با آسیب برقرار کرده و پیدا شد. یک گرم از غلظت‌های پوست شده به مدت دو ساعت در دمای 55 درجه سانتی‌گراد که در کوره‌کردن سازوکارهای سیلوسترین و سپس به‌وسیله عصاره‌گیری گردید. غلظت‌های تاسیس در عصاره‌ها به روش‌های منظورتعیین پایین‌ترین قابل استفاده می‌باشد.

[1] غلظت غلظت‌های نسبی (درصد) = 100 ⋅ (عصاره‌گیری تیمار شده/عصاره‌گیری شاهد)
[2] عصاره‌گیری شاهد = عصاره‌گیری گیاه = پاسخ گیاه
[3] غلظت تیمار شده - غلظت تیمار شده
[4] غلظت تیمار شده - غلظت تیمار شده
[5] غلظت تیمار شده - غلظت تیمار شده
[6] غلظت تیمار شده - غلظت تیمار شده

47
به منظور بررسی ارتباط عصاره‌گیره‌های پتاسیم، ضرایب همبستگی بین مقدار بنامی انتخاب عصاره‌گیره با روشهای مختلف عصاره‌گیری تعیین شد. هم چنین برای انتخاب عصاره‌گیری مناسب، رابطه بین شاخص‌های گیاهی و بنامی استخراجی به‌وسیله عصاره‌گیره‌ها نمودارهای استخراج از همبستگی ساده تعیین گردید. پایین‌تر حاصل بنامی برای عصاره‌گیره‌های که با شاخص‌های گیاهی همبستگی معنی‌داری داشته، به روش نمو و دریافت شد.

نتایج و بحث

تعدادی از ۴۴ گونه‌های فیزیکی و شیمیایی خاک‌های ایرانی و دیگر نقاط جهان در جدول ۱ داده شده است. اطلاعات این جدول نشان می‌دهد که خاک‌های از نوع وسیعی در یوزگان فیزیکی و شیمیایی به‌تراکم‌های داده شده است. به‌نوعی و در این حاصل این ارتباط با بنامی استخراج همبستگی معنی‌داری دارد (جدول ۲).

جدول ۲ تأثیر بنامی بر عملکرد، ظهور، جذب و همبستگی سپر را نشان می‌دهد که افزایش عملکرد، ظهور و جذب با بنامی شده و در پیش‌بینی خاک‌های افزایش معنی‌دار است (0.01 < P). این نتایج به‌ارتباط استخراج شده به وسیله عصاره‌گیره‌های مختلف با استفاده از همبستگی ساده بررسی شد. مقدار بنامی استخراجی به وسیله عصاره‌گیره‌ها در جدول ۳ و ضریب‌های همبستگی آنها در جدول ۴ آنها است. بر اساس مقایسه بنامی استخراجی از خاک با بنامی عصاره‌گیره‌ها می‌توان عصاره‌گیره‌های مورد استفاده در این پژوهش را در چهار گروه اصلی قرار داد. در گروه اول عصاره‌گیره‌های که مقدار بنامی استخراجی به وسیله آنها در خاک‌های کمتر از ۱۰۰ میلی‌گرم در کیلوگرم شاخص کلرید استخراجی مناسب (۰.۲۰/۰.۲۵ مولار) نشان داده شدند. مقدار بنامی به وسیله عصاره‌گیره‌ها در این گروه چهار گروه، به‌نوعی و در این حاصل این ارتباط با بنامی استخراج همبستگی معنی‌داری دارد (جدول ۳).

نتایج بنامی بر عملکرد، ظهور، جذب و همبستگی سپر را نشان می‌دهد که افزایش عملکرد، ظهور و جذب با بنامی شده و در پیش‌بینی خاک‌های افزایش معنی‌دار است (0.01 < P). این نتایج به‌ارتباط استخراج شده به وسیله عصاره‌گیره‌های مختلف با استفاده از همبستگی ساده بررسی شد. مقدار بنامی استخراجی به وسیله عصاره‌گیره‌ها در جدول ۳ و ضریب‌های همبستگی آنها در جدول ۴ آنها است. بر اساس مقایسه بنامی استخراجی از خاک با بنامی عصاره‌گیره‌ها می‌توان عصاره‌گیره‌های مورد استفاده در این پژوهش را در چهار گروه اصلی قرار داد. در گروه اول عصاره‌گیره‌های که مقدار بنامی استخراجی به وسیله آنها در خاک‌های کمتر از ۱۰۰ میلی‌گرم در کیلوگرم شاخص کلرید استخراجی مناسب (۰.۲۰/۰.۲۵ مولار) نشان داده شدند. مقدار بنامی به وسیله عصاره‌گیره‌ها در این گروه چهار گروه، به‌نوعی و در این حاصل این ارتباط با بنامی استخراج همبستگی معنی‌داری دارد (جدول ۳).

نتایج بنامی بر عملکرد، ظهور، جذب و همبستگی سپر را نشان می‌دهد که افزایش عملکرد، ظهور و جذب با بنامی شده و در پیش‌بینی خاک‌های افزایش معنی‌دار است (0.01 < P). این نتایج به‌ارتباط استخراج شده به وسیله عصاره‌گیره‌های مختلف با استفاده از همبستگی ساده بررسی شد. مقدار بنامی استخراجی به وسیله عصاره‌گیره‌ها در جدول ۳ و ضریب‌های همبستگی آنها در جدول ۴ آنها است. بر اساس مقایسه بنامی استخراجی از خاک با بنامی عصاره‌گیره‌ها می‌توان عصاره‌گیره‌های مورد استفاده در این پژوهش را در چهار گروه اصلی قرار داد. در گروه اول عصاره‌گیره‌های که مقدار بنامی استخراجی به وسیله آنها در خاک‌های کمتر از ۱۰۰ میلی‌گرم در کیلوگرم شاخص کلرید استخراجی مناسب (۰.۲۰/۰.۲۵ مولار) نشان داده شدند. مقدار بنامی به وسیله عصاره‌گیره‌ها در این گروه چهار گروه، به‌نوعی و در این حاصل این ارتباط با بنامی استخراج همبستگی معنی‌داری دارد (جدول ۳).

نتایج بنامی بر عملکرد، ظهور، جذب و همبستگی سپر را نشان می‌دهد که افزایش عملکرد، ظهور و جذب با بنامی شده و در پیش‌بینی خاک‌های افزایش معنی‌دار است (0.01 < P). این نتایج به‌ارتباط استخراج شده به وسیله عصاره‌گیره‌های مختلف با استفاده از همبستگی ساده بررسی شد. مقدار بنامی استخراجی به وسیله عصاره‌گیره‌ها در جدول ۳ و ضریب‌های همبستگی آنها در جدول ۴ آنها است. بر اساس مقایسه بنامی استخراجی از خاک با بنامی عصاره‌گیره‌ها می‌توان عصاره‌گیره‌های مورد استفاده در این پژوهش را در چهار گروه اصلی قرار داد. در گروه اول عصاره‌گیره‌های که مقدار بنامی استخراجی به وسیله آنها در خاک‌های کمتر از ۱۰۰ میلی‌گرم در کیلوگرم شاخص کلرید استخراجی مناسب (۰.۲۰/۰.۲۵ مولار) نشان داده شدند. مقدار بنامی به وسیله عصاره‌گیره‌ها در این گروه چهار گروه، به‌نوعی و در این حاصل این ارتباط با بنامی استخراج همبستگی معنی‌داری دارد (جدول ۳).

نتایج بنامی بر عملکرد، ظهور، جذب و همبستگی سپر را نشان می‌دهد که افزایش عملکرد، ظهور و جذب با بنامی شده و در پیش‌بینی خاک‌های افزایش معنی‌دار است (0.01 < P). این نتایج به‌ارتباط استخراج شده به وسیله عصاره‌گیره‌های مختلف با استفاده از همبستگی ساده بررسی شد. مقدار بنامی استخراجی به وسیله عصاره‌گیره‌ها در جدول ۳ و ضریب‌های همبستگی آنها در جدول ۴ آنها است. بر اساس مقایسه بنامی استخراجی از خاک با بنامی عصاره‌گیره‌ها می‌توان عصاره‌گیره‌های مورد استفاده در این پژوهش را در چهار گروه اصلی قرار داد. در گروه اول عصاره‌گیره‌های که مقدار بنامی استخراجی به وسیله آنها در خاک‌های کمتر از ۱۰۰ میلی‌گرم در کیلوگرم شاخص کلرید استخراجی مناسب (۰.۲۰/۰.۲۵ مولار) نشان داده شدند. مقدار بنامی به وسیله عصاره‌گیره‌ها در این گروه چهار گروه، به‌نوعی و در این حاصل این ارتباط با بنامی استخراج همبستگی معنی‌داری دارد (جدول ۳).
جدول ۲. تعدادی از ویژگی‌های نیزیک و شیمیایی خاک‌های مطالعه‌شده

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>شرایط محلی</th>
<th>شرایط شوری</th>
<th>pH</th>
<th>شرایط کلیل</th>
<th>کلسیم معادل آلی</th>
<th>کلسیم معادل کربنات</th>
<th>کلسیم معادل گلی</th>
<th>ورودی</th>
<th>فریجین</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱</td>
<td>۱۲ ۴۲</td>
<td>۰/۰۳</td>
<td>۷/۳</td>
<td>۱/۲۴</td>
<td>۱/۲۲</td>
<td>۰/۳۳</td>
<td>۰/۰۷</td>
<td>۰/۲۶</td>
</tr>
<tr>
<td>۲</td>
<td>۱</td>
<td>۱۲ ۴۲</td>
<td>۰/۰۳</td>
<td>۷/۳</td>
<td>۱/۲۴</td>
<td>۱/۲۲</td>
<td>۰/۳۳</td>
<td>۰/۰۷</td>
<td>۰/۲۶</td>
</tr>
<tr>
<td>۳</td>
<td>۱</td>
<td>۱۲ ۴۲</td>
<td>۰/۰۳</td>
<td>۷/۳</td>
<td>۱/۲۴</td>
<td>۱/۲۲</td>
<td>۰/۳۳</td>
<td>۰/۰۷</td>
<td>۰/۲۶</td>
</tr>
<tr>
<td>۴</td>
<td>۱</td>
<td>۱۲ ۴۲</td>
<td>۰/۰۳</td>
<td>۷/۳</td>
<td>۱/۲۴</td>
<td>۱/۲۲</td>
<td>۰/۳۳</td>
<td>۰/۰۷</td>
<td>۰/۲۶</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

جدول ۳. اثر کاربرد پتاسیم بر عملکرد سیب، غلظت و جذب پتاسیم در گیاه سیب

<table>
<thead>
<tr>
<th>شماره</th>
<th>تیمار شده</th>
<th>شاهد</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۶۸/۴۲</td>
<td>۸۵/۴۲</td>
<td>۵۳/۱۶</td>
<td>۵۸/۰۳</td>
<td>۵۸/۰۳</td>
<td>۱۱/۱۱</td>
<td>۱۲/۵۴</td>
<td>۱۱/۱۱</td>
<td>۱۲/۵۴</td>
<td>۱۱/۱۱</td>
<td>۱۲/۵۴</td>
<td>۱۱/۱۱</td>
</tr>
<tr>
<td>۲</td>
<td>۷۷/۴۲</td>
<td>۸۵/۴۲</td>
<td>۵۳/۱۶</td>
<td>۵۸/۰۳</td>
<td>۵۸/۰۳</td>
<td>۱۱/۱۱</td>
<td>۱۲/۵۴</td>
<td>۱۱/۱۱</td>
<td>۱۲/۵۴</td>
<td>۱۱/۱۱</td>
<td>۱۲/۵۴</td>
<td>۱۱/۱۱</td>
</tr>
<tr>
<td>۳</td>
<td>۷۷/۴۲</td>
<td>۸۵/۴۲</td>
<td>۵۳/۱۶</td>
<td>۵۸/۰۳</td>
<td>۵۸/۰۳</td>
<td>۱۱/۱۱</td>
<td>۱۲/۵۴</td>
<td>۱۱/۱۱</td>
<td>۱۲/۵۴</td>
<td>۱۱/۱۱</td>
<td>۱۲/۵۴</td>
<td>۱۱/۱۱</td>
</tr>
<tr>
<td>۴</td>
<td>۷۷/۴۲</td>
<td>۸۵/۴۲</td>
<td>۵۳/۱۶</td>
<td>۵۸/۰۳</td>
<td>۵۸/۰۳</td>
<td>۱۱/۱۱</td>
<td>۱۲/۵۴</td>
<td>۱۱/۱۱</td>
<td>۱۲/۵۴</td>
<td>۱۱/۱۱</td>
<td>۱۲/۵۴</td>
<td>۱۱/۱۱</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

* مقایسه میانگین‌ها بین تیمار و شاهد در هر پارامتر است.

جوشان سایر عصاره‌گیرها می‌توانند در ارزیابی پتاسیم قابل استفاده بر اساس سبک استفاده شوند. از طرفی استدیم به دلیل گران بودن به عنوان عصاره‌گیر پیشنهاد نمی‌گردد. پژوهش‌گران مختلف بسته به محل جایگذار و عصاره‌گیرهای استات آلومینیوم از ۲، دی و آی و اسید نیتریک پسیال موثر.
جدول ۳: میانگین پتاسیم استخراج شده از ۲۰ خاک با روش‌های مختلف عصاره‌گیری (می‌گرم در کیلوگرم)\(^*\)

<table>
<thead>
<tr>
<th>شماره گیری</th>
<th>شماره‌گیری</th>
<th>شماره‌گیری</th>
<th>شماره‌گیری</th>
<th>شماره‌گیری</th>
<th>شماره‌گیری</th>
<th>شماره‌گیری</th>
<th>شماره‌گیری</th>
<th>شماره‌گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۲</td>
<td>۳</td>
<td>۴</td>
<td>۵</td>
<td>۶</td>
<td>۷</td>
<td>۸</td>
<td>۹</td>
</tr>
<tr>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
</tr>
<tr>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
</tr>
<tr>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
</tr>
<tr>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
</tr>
<tr>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
</tr>
<tr>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
</tr>
<tr>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
</tr>
<tr>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
<td>۹۷۹</td>
</tr>
</tbody>
</table>

* مشخصات در عصاره‌گیری در جدول ۲ ارائه شده است.
جدول 5 ضرایب هم‌بستگی (ρ) بین عوارض‌گیرها

<table>
<thead>
<tr>
<th>عوارض‌گیر</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.78</td>
<td>.49</td>
<td>.85</td>
<td>.80</td>
<td>.77</td>
<td>.87</td>
<td>.87</td>
<td>.86</td>
<td>.86</td>
<td>.83</td>
<td>.79</td>
<td>.69</td>
<td>.75</td>
<td>.51</td>
</tr>
<tr>
<td></td>
<td>.59</td>
<td>.54</td>
<td>.74</td>
<td>.86</td>
<td>.87</td>
<td>.77</td>
<td>.79</td>
<td>.87</td>
<td>.86</td>
<td>.85</td>
<td>.79</td>
<td>.59</td>
<td>.65</td>
<td>.44</td>
</tr>
<tr>
<td></td>
<td>.45</td>
<td>.54</td>
<td>.80</td>
<td>.78</td>
<td>.87</td>
<td>.83</td>
<td>.87</td>
<td>.77</td>
<td>.89</td>
<td>.88</td>
<td>.77</td>
<td>.54</td>
<td>.65</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>.24</td>
<td>.28</td>
<td>.78</td>
<td>.80</td>
<td>.87</td>
<td>.77</td>
<td>.87</td>
<td>.83</td>
<td>.86</td>
<td>.88</td>
<td>.76</td>
<td>.52</td>
<td>.65</td>
<td>.42</td>
</tr>
<tr>
<td></td>
<td>.31</td>
<td>.29</td>
<td>.76</td>
<td>.80</td>
<td>.87</td>
<td>.83</td>
<td>.87</td>
<td>.77</td>
<td>.89</td>
<td>.88</td>
<td>.77</td>
<td>.54</td>
<td>.65</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>.38</td>
<td>.32</td>
<td>.75</td>
<td>.79</td>
<td>.87</td>
<td>.77</td>
<td>.87</td>
<td>.83</td>
<td>.86</td>
<td>.88</td>
<td>.76</td>
<td>.52</td>
<td>.65</td>
<td>.42</td>
</tr>
<tr>
<td></td>
<td>.42</td>
<td>.42</td>
<td>.74</td>
<td>.80</td>
<td>.87</td>
<td>.83</td>
<td>.87</td>
<td>.77</td>
<td>.89</td>
<td>.88</td>
<td>.77</td>
<td>.54</td>
<td>.65</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>.38</td>
<td>.39</td>
<td>.73</td>
<td>.80</td>
<td>.87</td>
<td>.83</td>
<td>.87</td>
<td>.77</td>
<td>.89</td>
<td>.88</td>
<td>.77</td>
<td>.54</td>
<td>.65</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>.42</td>
<td>.42</td>
<td>.74</td>
<td>.80</td>
<td>.87</td>
<td>.83</td>
<td>.87</td>
<td>.77</td>
<td>.89</td>
<td>.88</td>
<td>.77</td>
<td>.54</td>
<td>.65</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>.38</td>
<td>.39</td>
<td>.73</td>
<td>.80</td>
<td>.87</td>
<td>.83</td>
<td>.87</td>
<td>.77</td>
<td>.89</td>
<td>.88</td>
<td>.77</td>
<td>.54</td>
<td>.65</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>.42</td>
<td>.42</td>
<td>.74</td>
<td>.80</td>
<td>.87</td>
<td>.83</td>
<td>.87</td>
<td>.77</td>
<td>.89</td>
<td>.88</td>
<td>.77</td>
<td>.54</td>
<td>.65</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>.38</td>
<td>.39</td>
<td>.73</td>
<td>.80</td>
<td>.87</td>
<td>.83</td>
<td>.87</td>
<td>.77</td>
<td>.89</td>
<td>.88</td>
<td>.77</td>
<td>.54</td>
<td>.65</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>.42</td>
<td>.42</td>
<td>.74</td>
<td>.80</td>
<td>.87</td>
<td>.83</td>
<td>.87</td>
<td>.77</td>
<td>.89</td>
<td>.88</td>
<td>.77</td>
<td>.54</td>
<td>.65</td>
<td>.43</td>
</tr>
</tbody>
</table>

* نکته: در سطح 1 درصد معنی‌دار است.
** نکته: در سطح 5 درصد معنی‌دار است.
جدول 6: ضرایب هم‌بتغیل (۳) پتاسیم استخراج شده به دوسلسه عصاره‌گیرها و شاخص‌های گیاهی

عصاره‌گیر	پتاسیم نسبی	جهاب اضافی	جهاب محصول	عملاکرد	شماره	عصاره گیر
دیگر...	-0.6ns	0.5ns	-0.6ns	0.8ns	0.8ns	1
دیگر...	-0.2ns	0.3ns	-0.5ns	0.7ns	0.7ns	2
دیگر...	0.6ns	0.2ns	-0.6ns	0.6ns	0.7ns	3
دیگر...	-0.6ns	0.5ns	-0.6ns	0.8ns	0.8ns	4
دیگر...	-0.6ns	0.5ns	-0.6ns	0.8ns	0.8ns	5
دیگر...	-0.6ns	0.5ns	-0.6ns	0.8ns	0.8ns	6
دیگر...	-0.6ns	0.5ns	-0.6ns	0.8ns	0.8ns	7
دیگر...	-0.6ns	0.5ns	-0.6ns	0.8ns	0.8ns	8
دیگر...	-0.6ns	0.5ns	-0.6ns	0.8ns	0.8ns	9
دیگر...	-0.6ns	0.5ns	-0.6ns	0.8ns	0.8ns	10
دیگر...	-0.6ns	0.5ns	-0.6ns	0.8ns	0.8ns	11
دیگر...	-0.6ns	0.5ns	-0.6ns	0.8ns	0.8ns	12
دیگر...	-0.6ns	0.5ns	-0.6ns	0.8ns	0.8ns	13
دیگر...	-0.6ns	0.5ns	-0.6ns	0.8ns	0.8ns	14

در پیش دیگر این بررسی سطح بحرانی پتاسیم برای عصاره‌گیرها به روش نموداری کیت - نلسون (۶) تعیین شد (شکل ۱ و ۲). مفهوم سطح بحرانی پتاسیم که نخستین بار توسط کیت و نلسون ارائه گردید سطحی از پتاسیم عصاره‌گیر بشود که باید استخراج زنده جایگزین نیست. عملکرد پتاسیم این عصاره‌گیرها می‌تواند در این عصاره‌گیرها جایگزین مناسبی برای روش متدول لاکتات آمونیوم-اسید استیک بایش (۷) در خاک‌های مجارستان عصاره‌گیر استیک آمونیوم را برای عصاره‌گیر پتاسیم قابل استفاده مناسب دانست. پیکل و اوراک (۵) در خاک‌های پنیلوپانیا به همه‌گونه عصاره‌گیر مهلیک ۱ و استیک پتاسیم آمونیوم اشکالی دارد و به دلیل رابطه خوب بین پتاسیم استخراج به‌وسیله این عصاره‌گیر و جذب پتاسیم به سلول‌های خاکی، این عصاره‌گیر را بر اساس استیک آمونیوم ترجیح دادند. گرزی و اوراک (۹) عصاره‌گیری پی‌کرنت آمونیوم - دی‌پی ای مهلیک ۳ و استیک آمونیوم - ای پی ای را به‌عنوان عصاره‌گیر مناسب معرفی کردند.
شکل 1. تغییر حد پنج‌ستون تپاسیس به روش نموداری کیت - نسبت با عصاره‌گیره‌های مختلف
شکل 2. تعیین حد بحرانی پتاسیم به روش نموداری کیت - نلسون با عصاره گیاه‌های مختلف روش عصاره گیاه‌های مختلف

۵۴
بیندی و سیله از معاونت‌های محترم پژوهشی دانشگاه طهران به فرهنگ نوآوری و هم چنین خانم مهندس ندا هاشمیان که به عنوان کارشناس در انجام این پژوهش همکاری داشته است، تشکر و قدردانی می‌شود.

نتیجه‌گیری
نتایج این پژوهش نشان داد که از بین 14 عصاره‌گیری استفاده شده، عصاره‌گیری استانه آمونیوم 1 مولار، دی‌تا بی‌ای و اسید نیتریک یک‌مایلی و مولار چودین به عنوان یک روش

تمایز مورد استفاده
1. توپیک، ح. ۱۳۷۷. بررسی پایه برخی کودتایی به کودی‌های خاک‌های شمالی ایران. مدل علم کشاورزی ایران (۲) (۳): ۸۳-۸۶.
2. شریفی، م. و ک. کبکی. ۱۳۸۰. انجام پیشرفت پیشرفت یافته‌های کارشناسی در کودتایی خاک‌های مکانیکی استان اصفهان. مجله علمی و فنی کشاورزی و منابع طبیعی (۱) (۶): ۳۷-۴۱.
3. کارویسی، م. و ک. کبکی. ۱۳۸۱. مقایسه روش‌های عصاره‌گیری خاک برای تعیین سطح بحرانی پتانسیل برای بروز در تعدادی از خاک‌های شمالی ایران. مجله علمی و فنی کشاورزی و منابع طبیعی (۲): ۳۷-۴۷.