تغییر پذیری برخی از خصوصیات کیفی خاک سطحی در مقیاس زمین‌نما در اراضی مرنعی

اطراف شهرستان سیرمیر

حسین خادمی و حمیده خیرای

چکیده

بررسی خصوصیات کیفی و پدیده‌زیکی خاک بر روی ارتفاعات اراضی شیدایدار و میان‌مرجعی، موجب بهره‌برداری بهتر از خاک در این‌گونه اراضی را فراهم می‌سازد. در این مقاله، شناخت و تغییرات کیفیتخی در واقع میزان تغییرات خاکی در مدیریت بهتر آنها، به‌وسیله مطالعه‌ای در زمین مقدماتی بیان می‌گردد. تغییرات کیفیتخی در خاک به‌وسیله میزان تغییرات خاکی در مدیریت بهتر آنها، به‌وسیله مطالعه‌ای در زمین مقدماتی بیان می‌گردد. تغییرات کیفیتخی در خاک به‌وسیله میزان تغییرات خاکی در مدیریت بهتر آنها، به‌وسیله مطالعه‌ای در زمین مقدماتی بیان می‌گردد.

پژوهش با هدف بررسی دقیق میزان تغییرات خاکی در خاک سطحی در میزان زمین‌نما در اراضی مرنعی اطراف شهرستان سیرمیر، برای نمونه‌برداری از انواع مختلف خاک در مراکز انتخابی، نقطه‌ای که محل گروه‌ها و بنیان‌های خاک سطحی از دو بکلمه 100 تا 1500 سم بودند، واکنش‌های محل واقع نشان داده می‌کنند. تغییرات آن‌زیر استاتیک، نشان‌سازی می‌کند و این مطالعه را بررسی کرد.

واژه‌های کلیدی: زمین‌نما، کلیه‌شعر، شیب‌پشتی، پودری‌شیب، انتهای شیب، گروه‌های خاک، تغییرات خاک
در ارتباط با تأیید، میزان گذاری جمعیت بر روی رشد جهانی ایفا می‌کند. شناخت کلیه خصوصیات یک جفت از مورولوژیکی، ژنتیکی و بیولوژیکی ضروری است. این بررسی‌ها باعث خواهد شد تا میزان موجود به گونه‌های مورد استفاده قرار گیرند که ضمن تأیید گذاری جمعیت بر روی رشد جهانی، بهبود آن‌ها و کنترل گذاری در اعتیاد در مناطقی از جهان به رشد و شکوفایی رسیدگان که از خاک آنها از کیفیت خوب و مناسب برخوردار بوده است (۱۵).

با توجه به نقش خاک در کوسمیته، ارتباطات مستقیم و غیر مستقیم بین خاک و سیستم‌های چه به‌وسیله خاک حاوی است و ارتباط بین کیفیت خاک و شاخص‌های سلامت خاک به‌هم‌بودن در اراضی، زمین‌نما (Landscape) و آب و هوا، تعیین برای کیفیت خاک پیش‌بینی شده است.

"کیفیت و سلامت خاک" یا نامگر توانایی دائم خاک به عنوان پژوهش‌های جدید در داخل کوسمیته، در حفظ کیفیت آب و هوا، حفظ تولیدات گیاهی و حیوانی و کیفیت آن و در نهایت توانایی حفظ سلامت انسان است (۱۶).

در اراضی مواجه (Hummocky terrain) و پیوستگی‌های کیفی و بیولوژیکی خاک بیشتر از اراضی مسطح است و طول، جهت و انحای شیب، فاکتورهای مؤثر بر آلگ سیستم‌های تغییرات می‌باشند. بنابراین تغییرات هستهای خاک بر روی خاک به توجه به موضع یا مفتونی در میزان زمین می‌تواند علائم بر حسب محیط زیست در افرادی به وجود و حفظ کیفیت خاک در کشاورزی بیاید. نیاز مناسب به خاک، کاربرد کرده. گابرلری علی‌اکبری و همکاران و جمله موارد فوق نیز به طور عمده رابطه و پژوهش‌های بیولوژیکی خاک و موضع و شیب بین خاک و سطح خاک در تغییرات کیفیت خاک از میزان زمین‌نما دقیقاً مورد بررسی قرار گرفته است.

بر اساس بررسی‌های ارزیابی میزان و قابلیت اراضی سمریم، حدود ۳۷/۶ درصد از کل اراضی این منطقه به موانع یا (Plateau) (Dissected plain) یا ذاتی های بردی بهره‌برداری می‌شود. غیره چون اراضی در سایر نقاط زاویه‌ای نیز قرار گرفته‌اند و در طرف دیگر از اراضی با میزان نگیر نقطه‌ای یا بررسی‌های اقتصادی از جنین زمین‌نماهای
تغییر بذری برخی از خصوصیات کیفی خاک سطحی در مقیاس ...

در افزایش pH گل اشباع توسط دستگاه pH مندر متر pH اهم - 62 (31).

و اندام‌گیری هدایت الکتریکی عایشان ابعاد بوسیله دستگاه هدایت سنج مدل pH آزمایش‌های صحرایی: در فاکتور رطوبت خاک در TDR 15 سانتی‌متری به وسیله دستگاه (Time - Domain Reflectometry) فرخ پروفس کم عمق در محل گره‌ها شیبکه در 120 نقطه تیعین شد.

نتایج و بحث

به منظور مقایسه پارامترهای کیفیت خاک در اجرای متفاوت زمین‌نما به دلیل فراهم نیوبند پیش‌فرض‌های آزمون‌های پارامتری از جمله غیر نظمی بودن توزیع داده‌ها و نابرایر واریانس جوامع آماری (جداول 1 تا 2) از آزمون‌های آماری غیرپارامتری Mann - Whitney و کروسکال - ولیس برای مقایسه شد. در نتیجه، شکل خاک پس از هوا خشک شدن از 80 میلی‌متری عبور داده شده و تجزیه‌های زیر روي نوعی نمونه‌ها انجام گرفت.

الف) اندازه‌گیری درصد موارد آلی به روش اکسیداسیون تر (والکی بالا)

ب) اندازه‌گیری تنس میکروی با استفاده از ظروف سر بسته و به روش نیتراسیون برگشته با سود باریک‌مانده

ج) اندازه‌گیری فعالیت آنزیم ساختار به روش طبیعی و برهم (34). این روش بر اساس نهایت کلریدمکریک پاراانیفتول فسفات‌های آزاد شده به وسیله آمریم ساختاری - فرآیند انکوزپاسیون خاک با محلول سدیم پاراانیفتول فسفات باقر شده و تولید

می‌باشد.
شکل ۱. مدل سه بعدی (DEM) مقطع نمونه برداری شده (حداکثر اختلاف ارتفاع ۱۶ متر)

شکل ۲. معرفی اجزای یک نمودار جمعیت
جدول 1. خصوصیات آماری فعالیت آنزیم فسفاتاز و تنفس میکروبری در موقعیت‌های منطقه‌ای و کل منطقه (mg CO₂/gr.day) و (μmolp-NP/g/hr)

<table>
<thead>
<tr>
<th>موقعیت</th>
<th>شاخص کیفیت خاک</th>
<th>فعالیت آنزیم فسفاتاز</th>
<th>تنفس میکروبری</th>
</tr>
</thead>
<tbody>
<tr>
<td>آماره</td>
<td>تعداد نمونه</td>
<td>میانگین</td>
<td>میانه</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1/8</td>
<td>1/7</td>
</tr>
<tr>
<td>انحراف معیار</td>
<td>4/9</td>
<td>1/3</td>
<td>1/4</td>
</tr>
<tr>
<td>خوشه‌پرکندگی</td>
<td>4/9</td>
<td>1/3</td>
<td>1/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 2. خصوصیات آماری منفی‌های ضخامت افق A و درصد رطوبت حجمی در موقعیت‌های منطقه‌ای و کل منطقه

<table>
<thead>
<tr>
<th>درصد رطوبت حجمی</th>
<th>ضخامت افق A (cm)</th>
<th>شاخص کیفیت خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>آماره</td>
<td>تعداد نمونه</td>
<td>میانگین</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1/8</td>
</tr>
<tr>
<td>انحراف معیار</td>
<td>4/9</td>
<td>1/3</td>
</tr>
<tr>
<td>خوشه‌پرکندگی</td>
<td>4/9</td>
<td>1/3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 3. خصوصیات آماری فاکتورهای کربن آلی و pH در موقعیت‌های منطقه‌ای و کل منطقه

<table>
<thead>
<tr>
<th>PH</th>
<th>شاخص کیفیت خاک</th>
<th>کربن آلی (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>آماره</td>
<td>تعداد نمونه</td>
<td>میانگین</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1/8</td>
</tr>
<tr>
<td>انحراف معیار</td>
<td>4/9</td>
<td>1/3</td>
</tr>
<tr>
<td>خوشه‌پرکندگی</td>
<td>4/9</td>
<td>1/3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
جدول ۴. خصوصیات آماری متغیر هدایت الکتریکی در موقعیت‌های مختلف شیب و کل منطقه

<table>
<thead>
<tr>
<th>موقعیت</th>
<th>کل منطقه</th>
<th>پایه شیب</th>
<th>انتهای شیب</th>
<th>شیب پشتی</th>
<th>فلش شیب</th>
</tr>
</thead>
<tbody>
<tr>
<td>آماره</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱/۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۷/۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۸/۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۹/۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>خاک</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱/۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۷/۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۸/۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۹/۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>فرضیه پراکندگی %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

مقدار کریب آلی وجود دارد (شکل ۳). استرس رطوبتی از عوارض دیگری است که جمعیت تولید می‌کنه و تغییرات میکروکارئنیسمها را تحت تأثیر قرار می‌دهد. مشابه استرس رطوبتی در قسمت‌های مختلف شیب که تغییرات میکروکارئنیسمها در خاک را نسبت به خاک‌های پایین شیب محدود می‌کنه (۳۳). خشک شدن خاک باعث از بین رفتن مقادیر زیادی از بوماس میکروکارئنیسم می‌شود (۱۰).

نفس میکروکارئنیسم باید اثر آزادسازی عناصر غذایی از ماده آلی و می‌شود که برای رشد گیاه ضروری است. ماده آلی کلید بقاء حاوی‌شدن خاک است و آثار مهمی بر خصوصیات بیولوژیکی خاک دارد. عناصر اصلی غذایی در ماده آلی خاک غالب هستند. تمام ماده آلی خاکهای زیادی با نسبت تجزیه شده، عاپیده تحت تأثیر جامعه میکروکارئنیسم قرار می‌گیرد. برای این هرگونه کوششی در ارزیابی جریان عناصر غذایی و انرژی در سیستم‌های جناغ به تغییر جامعه میکروکارئنیسم خاک انجام می‌گیرد (۷).

(ب) تغییرات آزمایش فاصله

در هر فاصله‌ای آزمایش فاصله تایید نشان می‌دهد که تفاوت معنی‌داری بین تمام موقعیت‌های شیب به استثنای پایه و انتهای
نمودار جمع‌های تفسیر میکروثیبهای مختلف شبیه

شکل ۳ نمودار جمع‌های تفسیر میکروثیبهای مختلف شبیه. ً% نشانگر داده های پرت هستند. ۰ مقادیر ۱/۵ تا ۳ پرای فاصله بین چاپرک‌ها بین اجزای سوم و کمتر از چاپرک اول را نشان می دهند و ً% مقادیر ۳ پرای و بیشتر فاصله بین چاپرک‌ها بین اجزای سوم و کمتر از چاپرک اول را نشان می دهند.

مختصات شبیه

فاعلیت آنزیم فسفاتاز در خاک به تعدادی از

محصولاتی های محیطی از جمله مقدار مواد آلی، آب گریفگی، تراکم، افزودن کود، شرکت ورود فلزات مشخص و حشره‌کش‌ها

حساسیت است (۸۵ و ۲۳). بالارزینه ی همبستگی

فعالیت این آنزیم با مواد آلی و دصد و رشته‌سازی (غیر قابلیتی

به‌ترین) ۶۴/۳٪ مشاهده شد. جدایی فعالیت این آنزیم

در منطقه‌های با حداکثر مواد آلی (پایه و انتهای شب و تا حدی

در قله شبیه) و حداکثر در بخش‌های تغییر فعالیت به تعداد

با حداکثر مواد آلی دیده شد. به‌طور کلی فعالیت‌های آنزیمی

خاک با مقدار مافی آلی خاک را به‌بیان می‌نماید. فعالیت و

خاک وربزی بر روی که متحرک به کاهش ضخامت افق سطحی و

کاهش تعداد گاز آلی در لایه شرکت می‌دهند. فعالیت آنزیمی

را به شدت کاهش می‌دهند. هم‌چنین یک درصد مقدار آلی دسته از

میکروگانیسم‌ها که تولید این آنزیم خارج سلولی را کنترل

می‌کند در پراکندگی مکانی فعالیت این آنزیم مؤثرند. بنابراین,

شیب در سطح ۵ درصد وجود دارد. فعالیت این آنزیم از ناحیه

شانه شبیه به سمت پایان و انتهای شب افزایش نشان می دهد.

عملکرد شبیه از طریق نظر همانند شبیه شش است (شکل ۴).

آنزیم‌های خاک که از ارگانیسم‌های زیره و یا سلول‌های

مرده شناخته می‌گردد در تشکیل بی‌بازی از واکنش‌های خاک

ماند تجزیه مواد آلی و گردش عناصر غذایی نقش حیاتی دارد.

همچنین تأثیر این آنزیم بر خصوصیات فیزیکی خاک‌ها

شناسه شده است (۱۵ و ۲۰). آنزیم فسفاتاز از جمله آنزیم‌های

است که به‌عنوان شاخص فعالی از کیفیت خاک استفاده می‌شود.

ارزیابی ارتباط بین فعالیت‌های آنزیم‌های معدنی کننده مواد

غذایی مثل فسفاتاز، اروز و سولفاناز با مقدار مواد آلی تجمع

یافته می‌شود در ارزیابی درجه کنترل بیولوژیکی عناصر غذایی

و یا پایداری سیستم عناصر در سیستم مؤثر باشد. تعدادی از

عناصر غذایی کلیدی (P و S، C، N) در ناحیه حساس هستند نه تنها

تنزیل یا تریفیک کیفیت سیستم‌های خاک است (۲۰).
تغییر ناهنجاری در فعالیت آنزیم فسفاتاز در مویقیت‌های مختلف شیب

شکل 2. نمودار جمع‌آوری فعالیت آنزیم فسفاتاز در مویقیت‌های مختلف شیب

تغییرات فعالیت‌های آنزیم فسفاتاز در مقیاس زمین‌نما ناشی از شدت‌ها و واکنش‌های منفی اثر پروسه‌های خاک است که به‌عنوان خود به‌وسیله فرآیندهای پدپلوزیکی و هیدرولیزیکی کنترل می‌شوند. اگر چه واضح است که فعالیت این آنزیم شدیداً به وسیله تورپرگافی کنترل شود، تورپرگافی خود به‌عنوان عامل کنترل کننده نیست. مقدار مواد آلی و درصد رطوبت حجمی در اجرای شیب مهم‌ترین فاکتور مؤثر برفعالیت آنزیم فسفاتاز می‌باشد. بخصوص ارتباط متقابل نسبتاً قوی بین مواد آلی، درصد رطوبت حجمی و فعالیت این آنزیم این فرضیه را حمایت می‌کند. در حقيقة تأثیر مویقیت‌های زمین‌نما بر فعالیت آنزیم فسفاتاز نتیجه تأثیری این است که مویقیت‌های زمین‌نما بر پراکندگی مکانی مواد آلی، رطوبت و احتمالاً بیوماس میکرو‌بی‌ادر (11، 4، 23) می‌گذارد.
شکل 5. نمودار جمع‌آوری ضخامت افق A در موضوع‌های متفاوت شیب

معنی‌دار در سطح 5 درصد هستند. باه و انتهای کم‌دهد و قله و شانه شیب حداکثر ضخامت افق A را داراست و شیب پشتی از این نظر در درجه بعدی قرار می‌گیرد. علت این تفاوت را می‌توان به‌طور عمده به تفاوت در سرعت فرسایش و تجمع مواد در سطح‌های متفاوت زمین نما نسبت داد. شانه و قله شیب به‌دلیل فرسایش شدید، به ویژه تحت مغزداری و تماشای یک سویه تیک گرددن است و در مقابل پهناوری‌های زمین‌نما از جمله پایه و انتهای شیب محل تجمع خاک‌های سطحی گنی از مواد آلی بالا است. اینگونه شیب به‌دلیل شیب پشتی نیز به مقدار قابل توجهی تخریب شده است. حاکم آب‌یکی از مهم‌ترین نقش‌های مؤثر در قرار گرفتن شکل خاک و تکامل زمین نماست. توزیع آب مهم برای واکنش‌های که باعث تغییرات پدودنزیکی می‌شود و هم برای سیاسی از جنبه‌های عملی رفتار خاک مهم است. آب در طول شیب به‌صورت چرخیدن سطحی و عمیق حکمت
موضعین شیب

شکل ۶ نمودار جمعی ای درصد رطوبت حجمی در موقعیت‌های متفاوت شیب

به‌شمار مواقع مناسب با شیب است (۱۶). فاکتور‌های فیزیکی و شیمیایی بیان نمودن نوع جهت و کیفیت حرکت آب روند دار نیست. هزینه‌های رشد و تغییر می‌کنند و خصوصیات خاک‌ها هم به دلیل وابستگی مستقیم با این فاکتورها منجر می‌باشد.

پارامترهای شیمیایی pH

دیگر اجرای شیب‌داری رطوبت حدی‌رhythmic. بنا برای این، تزئین‌های شیب مانند زاویه طول، جهت و انحناش شیب بر روانه و زهکشی تأثیر می‌گذاردند و در نتیجه مقدار رطوبت با موقعیت‌های شیب تغییر می‌کند. مقدار رطوبت به‌شمار می‌گیرد که در محیط مورد نظر می‌باشد. (۲۳). یکی از مهم‌ترین جهای ناهنجاری‌های تأثیر آن بر حرکت آب در خاک است. در بعضی خاک‌ها حرکت جابجایی مهم‌ترین عامل تغییرات فنودی‌بری است. مقدار حرکت جابجایی به شدت تغییرات نفوذپذیری درجه شیب، شرایط فیزیکی و گردهای هیدرولیکی دارد و در
\(\text{موضعیت سیب} \)

\(\text{شکل 7. نمودار جمع‌ای pH خاک در موضوعیت‌های متغیر رفمزایش سیب} \)

dلیل این نتایج را می‌توانی به فرمسایش و تبدیل در معرض قرار گرفتن خاک غنی از کربنات‌های کلسیم افکن‌های زیرین در بخش‌های بالایی سیب (شانه سیب و شبیه یا شبیه) و نسبت داد. علاوه بر این، بهدلیل بالا بودن مواد آلی در بخش‌های انتهایی شبیه و وجود کمیت‌های اسید‌های آلی، کاهش قسمت‌ها مورد انظار می‌باشد. بالا بودن بیوماس میکروبی و در نتیجه افزایش فشار و قشره‌های آنرک سیب از دلایل دیگر کاهش \(\text{pH} \) در این قسمت‌های است.

\(\text{ب) قرین آلی} \)

شکل 8 اثر موقعیت‌های سیب بر درصد کربن آلی را نشان می‌دهد. همان طور که مشاهده می‌شود بین تمام اجراً شیب به جز شیب یافته با شانه سیب تفاوت معنی‌دار در سطح 5 درصد وجود ندارد. پایه و انتهای شبیه حداکثر و شانه شبیه حداکثر ماده آلی را داراست. علت این تفاوت فرمسایش خاک‌های سطحی غنی از مواد آلی از قسمت‌های بالایی سیب

\(\text{ج) هفت‌بی‌الکتریکی (EC)} \)

هفت‌بی‌الکتریکی از شانه سیب به سمت پایه شبیه رفمزایش
نتیجه‌گیری
نتایج نشان می‌دهد که تأثیر شدیدی بر تغییر خصوصیات کفی خاک دارد. با توجه به مقدار متفاوت در اجزای مختلف به پیشنهاد می‌باشد که برای نیاز انتخاب می‌شود. لیست اعمال روش‌های متفاوت در قسمت به مصرف شیب پوشیده در روش‌های نسبتاً سانتی مورد استفاده در محیط عمیق نیست.

علت تفاوت بسیار فاکتور کفی خاک بر اساس ویژگی‌های مورد بررسی در قسمت‌های مختلف شیب را می‌توان به طور عمده به تفاوت در سرعت فرایش و تجمع مواد و درجه تخریب متغیر در بخش‌های مختلف لندی نسبت داد. بدانن شیب به‌دلیل فرسایش شدید بردی شد معیوب می‌باشد. با توجه به یک‌جا دارد که در منطقه حاکم‌تربیت‌ریازی که متحمل گردیده است و در مقابل بخش‌های پاپین زمین تفاوت بسیار و انتخاب شیب محل تجمع خاک‌های سطحی غی از جمله پاپین و انتخاب شیب محل تجمع خاک‌های سطحی غی از...
نگرفتی برخی از خصوصیات کیفی خاک سطحی در مقياس...
خصوصیات کیفی خاک تصمیم‌گیری مدیریتی مناسب اندازه‌گیری شد. در علاوه خصوصیات خاک‌های عمیق و به‌ویژه وجوه‌هایی که مصرف ورود غنی می‌خورند که بر روی کیفیت خاک‌ها و میزان محصولاتی که آنها تولید می‌کنند، این موضوع را تأثیرگذار کرده‌اند. در نهایت، بر اساس این مدل، نتایجی مربوط به خاک‌های طبیعی و خصوصیات آن‌ها در حال حاضر دیده می‌شود.

مقدمه

۱. جهاد‌سازندگی این استان اصفهان، ۱۳۶۷. طرح شناسایی بوش‌گاهی و ارزیابی منابع نفتی از شهرستان سمنان. مطالعات تکیه‌گذاری

۲. فرورودن. م. ۱۳۷۴. راهنمایی ساخت و سازهای زمین‌فرش‌بندی در منطقه گزارش‌نامه‌های کشاورزی. پایان‌نامه کارشناسی ارشد

۳. محویت. ع. ۱۳۸۰. ارزیابی خاک کاربردی. انتشارات دانشگاه بین‌المللی، همدان.

