بررسی اکولوژیکی ازتویاکتر در دو منطقه مرتعی آذربایجان و اثر تلفیق آن روی رشد و تغذیه معدنی گیاه گندم

چکیده

اطلاعاتی نسبت به کاملی در مورد نقش ازتویاکتر کروکوکوم - یک تیپت کندنه آزاد ازتل - در خاک‌های کشاورزی وجود دارد، با این حال آگاهی سالم در مورد اهمیت اکولوژیکی این باکتری‌ها در مناطق مرتعی بسیاری به‌پیش در ایران نخورده است. این بررسی به منظور بررسی ارتباط بین عوامل اکولوژیک و عوامل مربوط به خاک با جمعیت باکتری‌ها انجام گرفته است. نمونه‌های خاک از دو منطقه مرتعی مشهد و خواج‌که از نظر اکولوژیکی، نوع خاک و پوشش گیاهی از یکدیگر کاملاً متفاوت پرودند، انتخاب شده‌اند. نتایج بدست آمده نشان داد که جمعیت ازتویاکتر با مقدار کربن آلی و pH خاک بتریب همیپستگی معنی دارد مثبت و منفی دارد. پوشش گیاهی نیز روی جمعیت باکتری‌ها می‌شود موثر بوده و علاوه بر کاهش جمعیت در خاک‌های قافل، پوشش، ریزوسفر گیاهان ترکیبی بیشتری جمعیت و ریزوسفر گیاهان ترکیبی کمتری جمعیت ازتویاکترها را داشت. همچنین اثر تلفیق باکتری‌های جدا شده از خاک مورد مطالعه نیز رشد و تغذیه معدنی در گندم به عنوان گیاه مدل مورد بررسی قرار گرفت.

نتایج نشان داد که رشد اندام هواپی و ریشه به تریت از تریت کود ازتل (+) به سمت تیمار تلفیق با ازتویاکتر (+4) و تیمار توان (N+4) توسط به شاهد (N) افزایش یافته، تیمارهای ساده‌گانه موفقیت باعث افزایش جدید و انتقال پاسیم به اندام هواپی شده، با این حال تأثیر تیمار (+4) بر روی این پارامتر های ازتل به تأثیر تیمارهای (+4) و (+4) بوده است، این موضوع در مورد جذب ازتل تأثیر صادق بوده، نتایج نشان داد که ازتویاکتر با اثر احتمالی ترکیبات آلی تولید شده در ریشه که پاتاسیم را به خود به اندام هواپی انتقال می‌دهند توسط مثبت داشته نتایج نشان داد که ازتویاکترها به ترتیب رشد و مقدار کروکوکول در گسترش موثرند، بلکه به‌طور اختصاصی رشد ترکیبی و خصوصاً انتقال عناصر نیز تأثیر مثبتی دارند، به نظر می‌رسد این اثرات باعث بیشتری شده.

واژه‌های کلیدی: جمعیت ازتویاکتر، تلفیق با ازتویاکتر، گندم، جذب و انتقال عناصر غذایی، خاک مرتعی

1. استادیار فیزیولوژی گیاهی، دانشکده علوم طبیعی، دانشگاه تبریز
2. استادیار خاکشناسی، دانشکده کشاورزی، دانشگاه تبریز
3. دانشجوی سابق کارشناسی ارشد، علوم گیاهی، دانشکده علوم طبیعی، دانشگاه تبریز
مقدمه
باکتری‌های دیازوتروف با زندگی آزاد توزیع گسترده‌ای در خاک‌ها دارند. این باکتری‌ها بی‌هوایه، بی‌هوایه اخیاری و با‌هوایی می‌باشند. از مهم‌ترین جنس‌هایی که عمدهاً در مجاورت ریشه‌گونه‌های گرماپذیر می‌توان به ازتوآکتر (Azospirillum) و پس‌صخوانوس (Enterobacter) و پست‌دود إليکسیا (Pseudomonas) اشاره کرد. از این میان، ازتوآکترها به دلیل فراوانی و روش انشار با انواع مختلف کندنگ‌ها مورد توجه قرار گرفته‌اند و در خاک‌های مناطق معتدله نیز کندنگ‌هایی شدیدتر اهمیت را دارند. گفته می‌شود که در خاک‌های زراعی با زشک‌های خوب بی‌هوای منتشر کرده است. تأثیر ازتوآکترها در افزایش عملکرد خاک‌ها در شرایط مختلف و توسعه مصرف آزاد نشان داده شده است.

چندین آزمایش مربوطه برای بررسی اثر تلقیح با آزمایشگاهی ازتوآکتر روش‌های و عملکرد گونه‌های زراعی حره و معادلات آنها انجام شده است (22). بر اساس تلقیح با این باکتری‌ها افزایش عملکرد دانه به (20) در گندم و جوگرگانش درصد (13). این اتفاق در عملکرد و عملکرد نهایی با تثبیت از مرغوب شده است (23). نمودار عامل این باکتری‌ها یافته است (22). تأثیر تلقیح ازتوآکترهای یادبوده شده در کود دامی روند عملکرد محصولاتی مانند (20) و افزایش بی‌هوای نقطه است (27). تأثیر تلقیح ازتوآکترهای کروکوکوم و آزمایشگاهی همراه با کود دامی رشد. تجربیات ماهد خشک، تولید دانه و پرورش را برای محیط‌های مختلف شرایط باریک آزمایشگاهی مانند خاک، سطح ترک یا زراعی در مناطق مختلف شامل حاره‌ای و کوه‌هایی رشته کندنگ‌های در خاک‌های مختلف متغیر بوده و عملکردی مایه‌ای کمیاب به‌کلیه دچترشان و در خاک‌های قبیر و اسیدی کمبود (24).

ازتوآکترها توانایی ساختن ویتامین‌های B۱، B۲، B۶، B۸، H، B۱۲ و پاتونیک اسید و نیکوتینیک اسید (21) را دارا به و تولید این ویتامین‌ها تحت شرایط بدون آزمایشگاهی و تغذیه کافی کربن افزایش می‌یابد. (16). همچنین ازتوآکترها قادر به ساختن افزایش می‌یابد. (16) و انواع عاملی رشد مناسب می‌کند (24).

چربی و سیستم همگن (17، 28، 30).

در خاک‌هایی که محدودیت می‌کرجند وجود دارد، به‌طور مقدمه ازتوآکترها در تحقق از آن‌ها می‌توان به آزمایشگاهی واگری ای C/N آنها در تحقیقات افزایش می‌یابد. نه نه مایه‌های گیاهی باعث افزایش نسبت کربن آلی در خاک می‌باشد. ریشه گیاهان در حال رشد نیز عامل افزایش کربن آلی خاک است. گفته می‌شود که این توجه به این می‌توان در طی فتوستات در گیاهان عالی به شکل ترشحات ریشه و یا سول‌های ریشه
بررسی اکولوژیکی از توکارتر در دو منطقه مرتعی آذربایجان و...
به اندازه 1/5 کیلوگرم خاک (کنارانه شده از الک 4 میلیمتری) و 1/2 وزن خاک کود گازوی پوسته، ریخته شد. برخی مشخصات خاک مورد استفاده (مربوط به استحکام تحقیقاتی) خلاصه پوشان در این آزمایشات در جدول 1 آمده است. مقادیر آب به اندازه 50٪ ظرفیت سبوس به خاک اضافه شد و هر روز با توزیع گلدانها کنترل گردید. طرح کاملاً تصادفی در چهار تریم شالی نیترات آمونیوم (+N)، تلخیح با ازتوکتر (A+) و شاهد (+A-N) مرکز کنار تکرار اعمال شد. گلدان‌ها در شرایط گل‌خانه‌ای در دما 20 درجه سانتی‌گراد طول دو هفته رشدانی 16 ساعت و شدت روشنایی 2000 ÷ 2000 و لوس دکمه‌ای شدند. در هفته‌ی اول به همه تیمارها محلول عناصر غذایی غیر مصرفی به همه‌ی کود ارائه 35 میلی گرم از هر شکل نیترات آمونیوم به ارتفاع هر کیلوگرم خاک اضافه شد. برای این مقادیر نیترات مورد نیاز گیاه در این خاک با توجه به مقادیر کریم آلی که همه بر روی محاسبه گردید 25 گرم در کیلوگرم خاک بود.

برای تلفیق باکتری به گاه، مقادیری از کلی خالص باکتری از لوله آزمایش حاوی محيط کشت جامد جنسون با سیم کشت استریل برداشته شده و به محيط کشت میانبر جنسون مانیتور دار اضافه و در شبکی اکتیون قرار داده 26 درجه سانتی‌گراد نگهداری شد. سپس از افزایش جمعیت باکتری‌ها شیری گنا به 6000 ناتوکمی، جمعیت باکتری‌های 10 در یک نمایندگی بین تعبیر شد. (۴) Mc Farland، محصول‌های استاندارد بر اساس روش حجم‌های مختلف از سولفولریک 1/10 و باریک 1/10 تهیه شد و خط استاندارد تریم گردید.

برای تلفیق گیاهان با باکتری از ورمیکولریت به‌عنوان حامل استفاده شد. به 100 گرم ورمیکولریت بودر شده و استریل، 1 گرم از آن در داخل خاک قرار گرفت، سپس آن پوشانده شده و میلی‌یکی سیس باکتری اضافه شد. در این خاک نهایی به این خاک مقداری گرم pH = 7 سنجش گردید.

کشت گیاه و تلفیق آن با ازتوکترها در ایستگاه‌بررسی‌ها که در محیط رقیم اسید (Triticum aestivum L. var. Omid)

احدازگیری پارامترهای خاک EC اندازه‌گیری pH

کرای آلی خاک به‌روش والکی بک انجام گرفت (۳۳). ازت خاک به‌روش کلیدنالی با استفاده از دستگاه مکروکلیدال مدل 2300 اندازه‌گیری شد. مقادیر پتاسیم و سدیم خاک در عصاره به‌وسیله شده است. آمیزه‌نرم در (JEANWAY PEP7 (مدل pH = 7

سنجش گردید.

کشت گیاه و تلفیق آن با ازتوکترها در ایستگاه‌بررسی‌ها که در محیط رقیم اسید (Triticum aestivum L. var. Omid)
بررسی اکولوژیکی ازتوباکتر در دو منطقه مرطوبی آذربایجان و…

جدول 1. پرخی و ویژگی‌های فیزیکی و شیمیایی خاک به کار رفته در این پژوهش

<table>
<thead>
<tr>
<th>ماهه</th>
<th>سبیل</th>
<th>رس</th>
<th>Mn</th>
<th>Fe</th>
<th>K</th>
<th>P</th>
<th>O.C</th>
<th>EC</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/5</td>
<td>15/2</td>
<td>3/52</td>
<td>7/3</td>
<td>1/3</td>
<td>4/3</td>
<td>2/0</td>
<td>3/9</td>
<td>1/8</td>
<td>7/2</td>
</tr>
</tbody>
</table>

باکتری‌ها، 0.1% از این هر گرم حامل و هر گیاه بود. فرآیند در نهایت با خاک پوشانده شده و در هر گلدان 8 عده بذر گندم با این روش کاشته شد.

بردشت و سنگش پاتامرهای مرطب به گیاه
پس از 30 روز رشد در گلدانهای بارشی، بارش گردید. و در نهایت با چهار نوع پوشش گیاهی از جمله پوشش گیاهی مورد بررسی، تهیه شد. سپس همپسگی بین این زمانها با جمعیت باکتری تعیین گردید. تجزیه و تحلیل جنگی محتویات داده‌های سری‌بندی‌گرگان به جز در مورد متغیر کیفی پوشه گیاهی به روش کام و با استفاده از نرم‌افزار SAS انجام گرفت.

نتایج
مشخصات ازتوباکتر کروکوکوم جدا شده از خاک
پس از قرار دادن خمیر اشاع خاک به مدت 15 روز در انواع 26 درجه سانتی‌گراد، تغییرات در پیوسته و دوز رز سطح گل ظاهر شدند. به روز پس از انتقال این کلیه‌ها به محیط کشت جامد جنسی، گلی‌های شفاف کروکوکی شکل ظاهر شد. به منظور استفاده شیمیایی باکتری آزمایش‌هایی از جمله رنگ آنی آب کرم، آزمون تحرک، آزمون کاسانلار، ایجاد رنگ‌دهی‌های فیتوواس نامحلول در آب و تولید صورت گرفت که نتایج این بررسی در جدول 2 آمده است.

در بررسی‌های میکروسکوپی، ازتوباکتر کروکوکوم به اشکال میله‌ای دوپاری (روبی) و کوکا (کیست) به صورت مرگ‌زده شده. همچنین باکتری‌ها به دلیل دارا بودن زئک پیروانی متحرک بودند. در کشت‌های دو هفته‌ای باکتری‌ها متوسط و در انتهای پرینگ شده که مراحل تبدیل به کیست را

در یک مجموعه مطالعه، وابستگی بین بررسی‌های توماس Tukey و تولید همبستگی بین بررسی‌های ANOVA مقدارهای بردشت و سنگش از آزمون ANOVA می‌تواند نشان دهنده اثرات با وابستگی میانگین با توجه به ترکیب نقش ریشه (g) اندازه‌گیری می‌گردد.
جدول 2. برخی مشخصات باکتری ازتوباکتر کروکوم که در این بررسی مورد آزمایش قرار گرفت

| مورفولوژی | رنگ آمیزی گرم | تحرک | تشکیل کیست | کاتالاز | تولید H2S | تولید بر سطح | بالن | محلول در آب | دیئلولاسیون کننده‌الکل | - | - | - | + | + | + | - | + | + | - | + | + | + |
|------------|----------------|-----|----------|--------|---------|----------|--------|--------|----------------|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|

نتایج می‌باشد که در نظر گرفته شده در محفظه کشت جنیون، بعد از یک هفته این رشته‌های قهوه‌ای رنگی تولید شدند.

ارتباط بین وزن‌گیریهای شیمیایی خاک و جمعیت باکتری
برخی مشخصات شیمیایی خاک در منطقه میشوداغ و خواجات به ترتیب در جدول 3 و 4 آمده است. نتایج ارتباط بین پارامترهای خاک و نوع پوشش گیاهی با جمعیت ازتوباکتر کروکوم به شرح زیر است.

الف) ارتباط بین نوع پوشش گیاهی با جمعیت باکتری
همیشه‌گی جمعیت باکتری در سطح 1% و 5% بین نوع پوشش گیاهی و جمعیت باکتری در منطقه میشوداغ و خواجات وجود داشت و جمعیت باکتری تحت تأثیر نوع پوشش گیاهی قرار گرفت. جمعیت باکتری در رژیم‌های خاکی با تنوع اکثر مقدار برتری می‌شود. این نتایج 10 هزار در گرم خاک خشک) بود.

ب) ارتباط بین pH خاک با جمعیت باکتری
در منطقه pH در آزمایشگاه قارچ در هر دور منطقه کاهش یافته و بررسی از جدول می‌باشد.

d) ارتباط بین قابلیت جذب سدیم و پتاسیم خاک با جمعیت ازتوباکتر

هر چند این ارتباط ضعیف بین فراهمی سدیم و پتاسیم با جمعیت باکتری در هر دور منطقه دیده شد، ولی معنی که با افزایش فراهمی سدیم و پتاسیم تا به ۳میلی‌میکروگرام به سمت افزایش جمعیت باکتری گذاشته شد.

و جمعیت باکتری از منطقه همبستگی معنی‌داری بین EC و جمعیت باکتری وجود نداشت (جدول 5).

در مورد مدارهای منطقه خواجات، معمولاً همبستگی ضعیف می‌باشد.
جدول 3. جمعیت ازتیوباتکت کروکوکوم و ارتباط آن با برخی ویژگی‌های شیمیایی خاک و محل نمونه برداری در منطقه مرتعی میشوداغ

<table>
<thead>
<tr>
<th>جمعیت باکتری (هزار در گرم خاک خشک)</th>
<th>فراهمی پتانسیم (mg/Kg)</th>
<th>فراهمی سدیم (mg/Kg)</th>
<th>کربن آلی (%)</th>
<th>ارتفاع کل (%)</th>
<th>EC (μs/cm)</th>
<th>pH</th>
<th>نوع پوشش گیاهی</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>0.2</td>
<td>0.1</td>
<td>0.5</td>
<td>0.3</td>
<td>0.1</td>
<td>0.2</td>
<td>تبره گندمیان</td>
</tr>
<tr>
<td>80</td>
<td>0.4</td>
<td>0.3</td>
<td>0.7</td>
<td>0.5</td>
<td>0.2</td>
<td>0.35</td>
<td>تبره نیعود</td>
</tr>
<tr>
<td>70</td>
<td>0.6</td>
<td>0.5</td>
<td>0.9</td>
<td>0.7</td>
<td>0.3</td>
<td>0.4</td>
<td>تبره نیعود</td>
</tr>
<tr>
<td>1.2</td>
<td>0.8</td>
<td>0.6</td>
<td>1.0</td>
<td>0.8</td>
<td>0.4</td>
<td>0.5</td>
<td>تبره نیعود</td>
</tr>
<tr>
<td>3.0</td>
<td>1.0</td>
<td>0.8</td>
<td>1.2</td>
<td>1.0</td>
<td>0.6</td>
<td>0.6</td>
<td>تبره نیعود</td>
</tr>
<tr>
<td>0.5</td>
<td>1.2</td>
<td>1.0</td>
<td>1.4</td>
<td>1.2</td>
<td>0.8</td>
<td>0.7</td>
<td>تبره نیعود</td>
</tr>
<tr>
<td>1.5</td>
<td>1.4</td>
<td>1.2</td>
<td>1.6</td>
<td>1.4</td>
<td>1.0</td>
<td>0.8</td>
<td>تبره نیعود</td>
</tr>
<tr>
<td>2.5</td>
<td>1.6</td>
<td>1.4</td>
<td>1.8</td>
<td>1.6</td>
<td>1.2</td>
<td>0.9</td>
<td>تبره نیود</td>
</tr>
</tbody>
</table>

جدول 4. جمعیت ازتیوباتکت کروکوکوم و ارتباط آن با برخی ویژگی‌های شیمیایی خاک و محل نمونه برداری در منطقه مرتعی خواجه

<table>
<thead>
<tr>
<th>جمعیت باکتری (هزار در گرم خاک خشک)</th>
<th>فراهمی پتانسیم (mg/Kg)</th>
<th>فراهمی سدیم (mg/Kg)</th>
<th>کربن آلی (%)</th>
<th>ارتفاع کل (%)</th>
<th>EC (μs/cm)</th>
<th>pH</th>
<th>نوع پوشش گیاهی</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>1.0</td>
<td>0.8</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>تبره گندمیان</td>
</tr>
<tr>
<td>30</td>
<td>2.0</td>
<td>1.0</td>
<td>0.4</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>تبره گندمیان</td>
</tr>
<tr>
<td>40</td>
<td>3.0</td>
<td>2.0</td>
<td>0.6</td>
<td>0.5</td>
<td>0.6</td>
<td>0.6</td>
<td>تبره گندمیان</td>
</tr>
<tr>
<td>40</td>
<td>4.0</td>
<td>3.0</td>
<td>0.8</td>
<td>0.7</td>
<td>0.8</td>
<td>0.8</td>
<td>تبره گندمیان</td>
</tr>
<tr>
<td>50</td>
<td>5.0</td>
<td>4.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>تبره گندمیان</td>
</tr>
<tr>
<td>60</td>
<td>6.0</td>
<td>5.0</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>تبره گندمیان</td>
</tr>
<tr>
<td>70</td>
<td>7.0</td>
<td>6.0</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>تبره گندمیان</td>
</tr>
<tr>
<td>80</td>
<td>8.0</td>
<td>7.0</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>تبره گندمیان</td>
</tr>
</tbody>
</table>

جدول 5. نژاد آماری همبستگی بین جمعیت ازتیوباتکت کروکوکوم با پارامترهای خاک در دو منطقه مرتعی آذری‌باجان‌شرقي

<table>
<thead>
<tr>
<th>سدیم</th>
<th>فراهمی پتانسیم</th>
<th>کربن آلی</th>
<th>ارتفاع کل</th>
<th>EC</th>
<th>pH</th>
<th>منطقه میشوداغ</th>
<th>منطقه خواجه</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+5)</td>
<td>(+0/197)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>(0/426)</td>
<td>(0/328)</td>
</tr>
<tr>
<td>ns</td>
<td>ns</td>
<td>**</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>(-0/378)</td>
<td>(-0/243)</td>
<td>*</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
</tbody>
</table>

ns: غیر معنی‌دار
*: معنی‌دار در سطح 5%
**: معنی‌دار در سطح 1%
ارتفاع تلقیح گیاه گندم با ازتخواص این عامل، رشد و تغذیه مداوم گیاه

وزن خشک اندام هواپیمای گیاهان در تیمار های (+A), (+A+N) و (+A+N+K) بطور معنی‌داری بیشتر از شاهد (N) (بود ویژه بین تیمارها تفاوت معنی‌داری وجود نداشت (جدول 6). تعداد برگ‌ها تحت تأثیر تیمارهای سه گانه فوق افزایش یافت ولی اثر آنها از یکدیگر متفاوت نبود. تیمارهای کود ازتی، تلقیح با باکتری و با تکثیر ازتخواص معنی‌داری در غلظت کارفیل برگ‌ها شد. اثر تیمار ازتخواص بیش از تیمار تیمترات آمونیوم بود.

هرچند با تیمار توم تفاوت معنی‌داری نداشت (جدول 6).

هر سه تیمار کود ازتی، تلقیح و کود توم با تلفیح، وزن خشک ریشه و طول آن را نسبت به شاهد افزایش داده. تأثیر این تیمارهای یکسان نبوده و اثر تیمار توم تلقیح و کود بیش از اثر هرکدام به تنهایی بود (جدول 6).

ظرفیت پتاسیم ریشه در اثر تیمارهای سه گانه (+A), (+A+N) و (+A+N+K) و نسبت به شاهد افزایش یافته (شکل 1). تأثیر این سه تیمار یکسان نبوده و در تیمار تلقیح بیش از تیمار تیمترات آمونیوم بوده است. هرچند با تیمار توم تفاوت معنی‌داری نداشت. باران‌های جلب و انطال نیز تفاوت بین اثر تلقیح را از کود نشان داد. تأثیر تلقیح با ازتخواص روی چرب پاتاسیم بیش از دو تیمار کود و توم بود (شکل 2).

بیش از دو تیمار کود ازتی تایید نبود. اثر تیمار آمونیوم بوده است. هرچند با تیمار توم تفاوت معنی‌داری نداشت. باران‌های جلب و انطال نیز تفاوت بین اثر تلقیح را از کود نشان داد. تأثیر تلقیح با ازتخواص روی چرب پاتاسیم بیش از دو تیمار کود و توم بود (شکل 2).

بیش از دو تیمار کود ازتی تایید نبود. اثر تیمار آمونیوم بوده است. هرچند با تیمار توم تفاوت معنی‌داری نداشت. باران‌های جلب و انطال نیز تفاوت بین اثر تلقیح را از کود نشان داد. تأثیر تلقیح با ازتخواص روی چرب پاتاسیم بیش از دو تیمار کود و توم بود (شکل 2).
پرسی اکولوژیکی ازتوباکتر در دو منطقه مرتعی آذربایجان و…

جدول ۶: اثر تیمارهای کود ازتی (۶۰) و تلفیق توان با کود ازتی (+۰) در مقایسه با شاهد (۰) روی پارامترهای رشد و مقدار کلموفیل در گیاه گندم که به مدت ۶۰ روز در خاک و در شرایط گلخانه‌ای رشد کرده است. نتایج درصد تیمارها در صورت داشتن حداقل یک حرف مشترک معنی دار نیستند است (۰/۰)<p>‌</p>

<table>
<thead>
<tr>
<th>تیمار</th>
<th>زن خشک (میلی گرم/کیلو)</th>
<th>تعداد برگ (میلی گرم/کیلو)</th>
<th>کلموفیل (سانتی‌متر/کیلو)</th>
<th>طول ریشه</th>
</tr>
</thead>
<tbody>
<tr>
<td>-A-N</td>
<td>۳۸/۰±۶/۸<sup>a</sup></td>
<td>۲/۵۵±۰/۳۱<sup>b</sup></td>
<td>۰/۹۴±۰/۳<sup>b</sup></td>
<td>۲/۰۴±۰/۷۳<sup>b</sup></td>
</tr>
<tr>
<td>+N</td>
<td>۸۳/۰±۶/۲<sup>b</sup></td>
<td>۰/۴۳±۰/۲۸<sup>a</sup></td>
<td>۰/۹۴±۰/۳<sup>b</sup></td>
<td>۲/۰۴±۰/۷۳<sup>b</sup></td>
</tr>
<tr>
<td>+A</td>
<td>۸۳/۰±۶/۲<sup>b</sup></td>
<td>۰/۴۳±۰/۲۸<sup>a</sup></td>
<td>۰/۹۴±۰/۳<sup>b</sup></td>
<td>۲/۰۴±۰/۷۳<sup>b</sup></td>
</tr>
<tr>
<td>+A+N</td>
<td>۸۳/۰±۶/۲<sup>b</sup></td>
<td>۰/۴۳±۰/۲۸<sup>a</sup></td>
<td>۰/۹۴±۰/۳<sup>b</sup></td>
<td>۲/۰۴±۰/۷۳<sup>b</sup></td>
</tr>
</tbody>
</table>

شکل ۱: اثر تیمارهای کود ازتی (۶۰) و تلفیق توان با کود ازتی (+۰) در مقایسه با شاهد (۰) روی خلق پتاسیم در اندازه‌های ریشه و ریشه گیاه گندم که به مدت ۶۰ روز در خاک و در شرایط گلخانه‌ای رشد کرده است. (۰/۰)<p>‌</p>

83
شکل ۲. تیمار های کود ازتی (N⁺) و تلفیق با ازتویاکتر (A⁺) و تلفیق توم با کود ازتی (N⁺A⁺) در مقایسه با شاهد (N⁻A⁻) روی چند روند انتقال و اندازه‌گیری به‌کار گرفته شد. آماری ۶۰ روز در حاشیه و در شرایط گلخانه‌ای رشد کوده‌است.

شکل ۳. تیمارهای کود ازتی (N⁺) و تلفیق با ازتویاکتر (A⁺) و تلفیق توم با کود ازتی (N⁺A⁺) در مقایسه با شاهد (N⁻A⁻) روی گل‌گیاه‌های ازتی در حاشیه و در شرایط گلخانه‌ای رشد کوده است.
بررسی اکولوژیکی ازتیوکشر در دو منطقه مرتعی آذری‌بنم و...
آفریش نقدها و اندازه‌های در تیمارها در غلظت‌های کلروفیل-ن در تیمارهای A و +A نسبت به گیاهان شاهد افزایش نشان داد، این نتیجه قابل توجه بود زیرا از علائم شایع کمبود از پری برگ‌های که با کلروفیل آغاز می‌شود و غلظت کلروفیل بالغ بر مقدار از دیگر کادو از پری تیمار توم نش به نتیجه گیری می‌شد که این افزایش و تیمار در این نتیجه (جدول 5) کشتی بسیار بالا بود. در غلظت پنجمه نسبت به شاهد جذب پنجمه داشتی در این گروه این تیمارها کاهش یافت. از سوی دیگر، علیرغم داشتن بیشتر غلظت پنجمه در اندام هواپی، در گیاهان تلفیق نشده که کود از دریافت نکرد به واسطه، جذب پنجمه نشته که ایجاد به گیاهان شاهد بود. این موضوع مربوط به افزایش وزن خشک ریشه بود که در محاسبه پارامتر جذب به کار می‌رفت. فاصله غلظت پنجمه بالا گسترش قابل توجه پنجمه ریشه‌های در گیاهان که در خاک رشد کرده‌اند باعث افزایش سطح جذبی و تبادل افزایش جذب عناصر می‌شود. گاز‌رسان گر بسته نسبت به پرتو از ریشه‌های گیاهان تلفیق نشده، با بکرکی‌های یاد شده کوبنده و عناصر در کلروفیل-ن در تیمارها بود. بیشترین مقادیر جذب در افزایش کلروفیل-ن در این نتیجه (جدول 4) خود که به نظر واقعی موثر بود که پرتو از این نکته بود که بر اثر بیشتری در کلروفیل-ن در این نتیجه (جدول 4) خود که به نظر واقعی موثر بود که پرتو از این نکته بود که بر اثر بیشتری در کلروفیل-ن در این نتیجه (جدول 4) خود که به نظر واقعی موثر بود که پرتو از این نکته بود که بر اثر بیشتری در کلروفیل-ن در این نتیجه (جدول 4) خود که به نظر واقعی موثر بود که پرتو از این نکته بود که بر اثر بیشتری در کلروفیل-ن در این نتیجه (جدول 4) خود که به نظر واقعی موثر بود که پرتو از این نکته بود که بر اثر بیشتری در کلروفیل-ن در این نتیجه (جدول 4) خود که به نظر واقعی موثر بود که پرتو از این نکته بود که بر اثر بیشتری در کلروفیل-ن در این نتیجه (جدول 4) خود که به نظر واقعی موثر بود که پرتو از این نکته بود که بر اثر بیشتری در کلروفیل-ن در این نتیجه (جدول 4) خود که به نظر واقعی موثر بود که پرتو از این نکته بود که بر اثر بیشتری در کلروفیل-ن در این نتیجه (جدول 4) خود که به نظر واقعی موثر بود که پرتو از این نکته بود که بر اثر بیشتری در کلروفیل-ن در این نتیجه (جدول 4) خود که به نظر واقعی موثر بود که پرتو از این نکته بود که بر اثر بیشتری در کلروفیل-ن در این نتیجه (جدول 4) خود که به نظر واقعی موثر بود که پرتو از این نکته بود که بر اثر بیشتری در کلروفیل-ن در این نتیجه (جدول 4) خود که به نظر واقعی موثر بود که پرتو از این نکته بود که بر اثر بیشتری در کلروفیل-ن در این نتیجه (جدول 4) خود که به نظر واقعی موثر بود که پرتو از این نکته بود که بر اثر بیشتری در کلروفیل-ن در این نتیجه (جدول 4) خود که به نظر واقعی موثر بود که پرتو از این نکته بود که بر اثر بیشتری در کلروفیل-ن در این نتیجه (جدول 4) خود که به نظر واقعی موثر بود که پرتو از این نکته بود که بر اثر بیشتری در کلروفیل-ن در این نتیجه (جدول 4) خود که به نظر واقعی موثر بود که پرتو از این نکته بود که بر اثر بیشتری در کلروفیل-ن در این نتیجه (جدول 4) خود که به نظر واقعی موثر بود که پرتو از این نکته بود که بر اثر بیشتری در کلروفیل-ن در این نتیجه (جدول 4) خود که به نظر واقعی موثر بود که پرتو از این نکته بود که بر اثر بیشتری در کلروفیل-ن در این نتیجه (جدول 4) خود که به نظر واقعی موثر بود که پرتو از این نکته بود که بر اثر بیشتری در کلروفیل-ن در این نتیجه (جدول 4) خود که به نظر واقعی موثر بود که پرتو از این نکته بود که بر اثر بیشتری در کلروفیل-ن در این نتیجه (جدول 4) خود که به نظر واقعی موثر بود که پرتو از این نکته بود که بر اثر بیشتری در کلروفیل-ن در این نتیجه (جدول 4) خود که به نظر واقعی موثر بود که پرتو از این نکته بود که بر اثر بیشتری در کلروفیل-ن در این نتیجه (جدول 4) خود که به نظر واقعی موثر بود که پرتو از این نکته بود که بر اثر بیشتری در کلروفیل-ن در این نتیجه (ج
در صورتی که انتقال گیاهان روزانه از یک انتقال عناصر اعضا یا به‌طوری که می‌توان انتظار داشت که این انتقال عامل اعضا انتقال عناصر کمسفر از ریشه به اندام هواپیمایی نیز باشد. به‌طور کلی انتقال گیاهان روزانه از یک انتقال عناصر کمسفر دیگر مانند پاتسیم و پاتسیم در گیاه ارتباط نگاتانگی وجود دارد. به‌طوری‌که کمبود از و آنتی‌پاسیم در گیاه عامل کاهش سیسبیکینی رشته و کاهش صادرات آن به اندام هواپیمایی می‌باشد.