بررسی تغییرات کمی و کیفی میزان پروتئین، کلروفیل و کاروتئنید در گلزار تراریخت شده با آنتی سنوز ژن گلوتامین سنتنات (GS1) :

چکیده
بررسی گیاهان تراریخت در پروزه انتقال زن، از اهمیت ویژه‌ای برخوردار است. در این پژوهش، نسل دوم (\(T_2\) گیاهان تراریخت گلزا که از گلوتامین سنتنات در چهار جهت آنتی سنوز به آنها منتقل شده بود، مورد بررسی قرار گرفت. میزان پروتئین کل محلول برگ و مقدار کلروفیل‌های \(a\) و \(b\) کاروتئنید، با استفاده از روش اسکیپولوتوسی و معادلات مربوطه تعیین شد. میزان کمی پروتئین در برگ‌های کلزا در مراحل مختلف رشدی گیاه و تیمارهای مختلف بررسی شد. که در مرحله قبل از گلدره (MG1) شروع به افزایش نموده و در زمان گلدره (MG2) به پیشینه میزان رسید و در مراحل پسی برگ (SS) مقدار پیشینه کل کاهش نشان داد.

در مقایسه بین تیمار‌ها، تیمار A2 با پیشینه میزان پروتئین و تیمار A6 کمترین مقدار را نشان داد. از نظر میزان کلروفیل‌های \(a\) و \(b\) در بین تیمارهای بیشترین میزان کلروفیل‌های \(a\) و \(b\) از تراریخت شده از گیاهان تراریخت در SS مقایسه با کاهش شاهد از روش استانداردی است. استفاده شد. در مقایسه کلروفیل‌های باندی در پروتئین‌های استخراج شده از گیاهان تراریخت در MG1 شناخت نشان داد. به منظور مقداری کلروفیل‌های باندی در پروتئین‌های استخراج شده از گیاهان Tراریخت در SS مقایسه با کاهش شاهد از روش استانداردی است. استفاده شد. در مرحله MG2 با پیشینه میزان کلروفیل‌های باندی در پروتئین‌های استخراج شده از گیاهان Tراریخت در SS مقایسه با کاهش شاهد از روش استانداردی است. استفاده شد.

واژه‌های کلیدی: انتی سنوز ژن گلوتامین سنتنات، پروتئین، کلروفیل، آنتی سنوز تراریخت، گلزا
مقدمه
روغن و چربی مورد نیاز انسان برای متابولیسم است. نام‌بردهای چربی به‌طور گسترده‌ای در آلاینده‌ها و مواد غذایی یافت می‌شوند. مواد غذایی چرب و چربی به‌طور آنتی‌ژنیكی به دست آمده‌اند. این موضوع به دلیل دارا بودن مقادیر زیادی پروتئین و بیولوژی اسیدهای چرب غیرشایع، نشان می‌دهد که در کلسترول خون و تندرستی جهانی انسانی دارند. کل استاتیک یکی از مهم‌ترین دانه‌های روغن جهان محسوب می‌شود (22). حدود 47% از کل تولید روغن در جهان توسط کلاسیک‌های نام‌بردهایی قرار داشته که تولید و به‌کارگیری آن‌ها به‌طور سالیانه 2000 میلیون تن گرفته شده است. با توجه به اینکه در آمایشات دانه‌های روغن تولید داخل تعدادی بالا هزار تا می‌رسد، به چپ چروده 28% از نیاز روغن خام نیاز به استفاده از تولیدات این مواد غذایی بسیار است. به همین دلیل، اهمیت گیاه روغن کلاسیک از نظر انسان در زمینه اقتصادی و آنتی‌ژنیکی نسبت به استفاده از تکنیک‌های این موضوع بسیار زیادتر است. این گیاه به‌طور گسترده‌ای مورد استفاده قرار می‌گیرد و از آن‌ها تحقیقات مختلفی انجام شده است.

نکته‌ی آرام آنی این است که گیاه روغن محتوای مختلفی از دو نوع سلول متفاوتی دارد (7). یکی از درمان‌ها تولید یک هم‌جنسی آنتی‌ژنیکی در دستگاه‌های متفاوت بوده و دیگری این دستگاه در دستگاه‌های متفاوت است.

توانایی جدید آمیزش‌ها حاصل از ترکیب‌های مختلف گیاهی و کانابلیسم است. این نشان می‌دهد که در این موضوع کاربرد خاصی برای ترکیب‌های مختلف گیاهی و مواد غذایی وجود دارد.

نکته‌یی دیگر است که در میان انسان‌های اروپایی، آنتی‌ژنیکی به دست آمده‌اند. این موضوع به دلیل دارا بودن مقادیر زیادی پروتئین و بیولوژی اسیدهای چرب غیرشایع، نشان می‌دهد که در کلسترول خون و تندرستی جهانی انسانی دارند. کل استاتیک یکی از مهم‌ترین دانه‌های روغن جهان محسوب می‌شود (22). حدود 47% از کل تولید روغن در جهان توسط کلاسیک‌های نام‌بردهایی قرار داشته که تولید و به‌کارگیری آن‌ها به‌طور سالیانه 2000 میلیون تن گرفته شده است. با توجه به اینکه در آمایشات دانه‌های روغن تولید داخل تعدادی بالا هزار تا می‌رسد، به چپ چروده 28% از نیاز روغن خام نیاز به استفاده از تولیدات این مواد غذایی بسیار است. به همین دلیل، اهمیت گیاه روغن کلاسیک از نظر انسان در زمینه اقتصادی و آنتی‌ژنیکی نسبت به استفاده از تکنیک‌های این موضوع بسیار زیادتر است. این گیاه به‌طور گسترده‌ای مورد استفاده قرار می‌گیرد و از آن‌ها تحقیقات مختلفی انجام شده است.

نکته‌ی آرام آنی این است که گیاه روغن محتوای مختلفی از دو نوع سلول متفاوتی دارد (7). یکی از درمان‌ها تولید یک هم‌جنسی آنتی‌ژنیکی در دستگاه‌های متفاوت بوده و دیگری این دستگاه در دستگاه‌های متفاوت است.
کلروفیل هایی برگی با استفاده از روش تغییر یافته گوی و همکاران (9) انجام شد.

روش استخراج پروتونی و کلروفیل

نمونه‌های یک گرم برگ از ازت مایع پرون آورده و در هارو چینی کوچک، با فیلتر از ازت مایع، سایه‌ی به وسیله تبدیل شدند. پودر حاصل با 3 ml بافر استخراج (تربس کارااید (EDTA)، pH 7/5) (Tris-Hcl)، 50 میلی‌مول (100 میلی‌میلی‌گرم کلروفیل) و کلروفیل‌ها (Mercapto ethanol) 2 میلی‌مول و 2 میلی‌میلی‌گرم سیس (به (Aceton-ice cold) ریخته شدند و مدت 80 استات سرد شدند.

آنها اضافه گردید. نمونه‌ها با منظور سنجش مقدار کلروفیل هایی گیاهی در 230 فرکانس شدند (کتاب تکه‌داری به مدتها طولانی نیوده و لازم است که از روش استخراج استفاده ایستگفورتری میزان رنگانش‌ها ارسی (وای تکه‌داری) و نقش تولید. برای رشته و یا مشخصات نمونه روز آن نوع‌شنده روی نتیجه نشان داده شد که از درستی است. آزمایش روی بخش استخراج گرفن خط دمو لوله در توده‌های موازی با استفاده از اولترا سنتیفیزور (1000 دوی در دفعه) به مدت 22 دقیقه سنتیفیزور شدند. در این مرحله قسمت صاف شده محلول هر لوله (70 میلی‌گرم کلروفیل) به مدت 20 دقیقه شدند (Bradford) مقدار کمی پروتونی نمونه با به روش برادفوورد

اندازه‌گیری شد. (1) بقیه محلول استخراج شده با حجم از بافر محصول (تربس-کارااید 6/6 میلی‌مول (pH 8/8)، (9) کلروفیلول (W/V) و (9/10) و برودوم فنل بلو (100°C) فارر گرفته و سپس به مدت 2 دقیقه در آه یک فارن سنتیفیزور شدند. در نهایت محتوای داخل لوله‌ها به دو قسمت تقسیم گردیده و در دو ایندوز (100ml) ریخته و در فریزر 10°C (را) زمان مربوط به سپس برخی از پروتئین‌ها نمونه در این مدت مقدار کل محلول پرگی و به میلی‌گرم در لیتر کاملاً بی‌سیب با استخراج کردن و در ادامه از مسول‌های ترازیخت شده گیاه آماده شد (10). پروتئین حاضر در ادامه تحقیق قابل به منظور بررسی مولکولی نسل دوم گیاهان ترازیخت کرده که زن گلنواین سنتی در جهت آنتی‌سنس به اثر گیاه شده بود. انجام پذیرفت. در این بررسی تغییرات کمی پروتونی کل محلول پرگی و کلروفیل‌ها 9 و کاروتئنونید گیاهان ترازیخت کننده در مقایسه با گیاه شاهد ارزیابی پیوسته در هم‌نیم کلوگی‌ها باند حاصل از الکتروفورز پروتونی در گیاهان دیده و با استفاده از روش مقایسه و بررسی شد. (SIDS- PAGE)

مواد و روش‌ها

کار انتقال آنتی‌سنس زن گلنواین سنتی با یک ارگانیسم‌های انتخابی ترازیخت، قبلاً با روی آوردن کروموم انتخاب شده بویه (11). بذر گیاهان ترازیخت شده با آنتی‌سنس زن GS1 که متعلق به رقم و تالوگ (Westar) جنس یکی از گیاهان ترازیخت نسل اول (T0) به همراه شاهد (مجمع‌ا ۷ توده به‌توی) تیمارها آزمایشی را شامل دسته شد. کشت گیاهان در سطح گلخانه‌های (دبیا ۲۳-۲۴ و فتوتیپی به‌تعداد ۱۴ ساعت روش‌ها) در اندازه رشد که از اصول ننوشنده‌ها کشته و سه‌گروه اصلی انجام گرفت. تیمارهای ترازیخت آنتی‌سنس با علائم اختصاصی A (T1) و تیمار W.T شاهد با معرفی ساخته شد. تیمارها در قابل طرح بلوک‌های میلی‌گرم با داده‌های پیاده‌سازی طراحی و داده‌های میلی‌گر
الکتروفورز پروتئین‌ها

الکتروفورز پروتئین‌ها با استفاده از روش اس.دی.آس. پیچ با اعمال تغییرات، انجم شد (10). برای ان‌مترول‌زی، ۷ نهایی کننده و ۴ نهایی کننده پراپرایز بودند. در این‌ها، رنگ‌آمیزی به صورت بالا گزارش شد و مساحت بالایی نسبت به مساحت بالایی که برای این‌کار مقدار ۰/۵ کرم کولوماری الکترولیت بول (Actic acid) در آب استیک (۵۰ ml) در حالت الکتروفورز (Comasby brilliant blue) محلول و ۲۰۰ ml محلول الکتروفورز (Methanol) حل گردیده و ۵۰۰ ml اضافه شد. محلول رنگ‌آمیزی پس از صاف شدن با کاغذ صاف مخصوص در دمای زمین‌زمین یک دقیقه سانتی‌فرایژ گردید و سپس محلول بالایی به لوله‌های جدید منتقل شدند. در ادامه مقدار جذب نور در ۳ طول موج ۴۲۰، ۵۴۰ و ۶۴۰ نانومتر، توسط دستگاه اسیدکوئنترفترمی اندازه‌گیری شد که بس از جمعیت آدامه‌ها مقدار کولورفیل‌ها b و کاروتئنید طبق معادلات زیر محاسبه گردید:

\[
\text{Chl } a (\mu g \text{ ml}^{-1}) = 125 A_{450} - 255 A_{470}
\]

\[
\text{Chl } b (\mu g \text{ ml}^{-1}) = 18/29 A_{450} - 758 A_{470}
\]

\[
\text{Carotenoid (\mu g \text{ ml}^{-1})} = (1000 A_{470} - 372/299)
\]

c= a + b

کولورفیل

کاروتئنید

نتایج

پروتئین‌ها از روش برادفورد استفاده شد. در این‌ها، دانه‌های کولورفیل در حالت الکتروفورز (Comasby brilliant blue) محلول و ۲۰۰ ml محلول الکتروفورز (Methanol) حل گردیده و ۵۰۰ ml اضافه شد. محلول رنگ‌آمیزی پس از صاف شدن با کاغذ صاف مخصوص در دمای زمین‌زمین یک دقیقه سانتی‌فرایژ گردید و سپس محلول بالایی به لوله‌های جدید منتقل شدند. در ادامه مقدار جذب نور در ۳ طول موج ۴۲۰، ۵۴۰ و ۶۴۰ نانومتر، توسط دستگاه اسیدکوئنترفترمی اندازه‌گیری شد که بس از جمعیت آدامه‌ها مقدار کولورفیل‌ها b و کاروتئنید طبق معادلات زیر محاسبه گردید:

\[
\text{Chl } a (\mu g \text{ ml}^{-1}) = 125 A_{450} - 255 A_{470}
\]

\[
\text{Chl } b (\mu g \text{ ml}^{-1}) = 18/29 A_{450} - 758 A_{470}
\]

\[
\text{Carotenoid (\mu g \text{ ml}^{-1})} = (1000 A_{470} - 372/299)
\]

\[
\text{c= a + b}
\]

نتایج

پروتئین‌ها از روش برادفورد استفاده شد. در این‌ها، دانه‌های کولورفیل در حالت الکتروفورز (Comasby brilliant blue) محلول و ۲۰۰ ml محلول الکتروفورز (Methanol) حل گردیده و ۵۰۰ ml اضافه شد. محلول رنگ‌آمیزی پس از صاف شدن با کاغذ صاف مخصوص در دمای زمین‌زمین یک دقیقه سانتی‌فرایژ گردید و سپس محلول بالایی به لوله‌های جدید منتقل شدند. در ادامه مقدار جذب نور در ۳ طول موج ۴۲۰، ۵۴۰ و ۶۴۰ نانومتر، توسط دستگاه اسیدکوئنترفترمی اندازه‌گیری شد که بس از جمعیت آدامه‌ها مقدار کولورفیل‌ها b و کاروتئنید طبق معادلات زیر محاسبه گردید:

\[
\text{Chl } a (\mu g \text{ ml}^{-1}) = 125 A_{450} - 255 A_{470}
\]

\[
\text{Chl } b (\mu g \text{ ml}^{-1}) = 18/29 A_{450} - 758 A_{470}
\]

\[
\text{Carotenoid (\mu g \text{ ml}^{-1})} = (1000 A_{470} - 372/299)
\]

\[
\text{c= a + b}
\]

نتایج

پروتئین‌ها از روش برادفورد استفاده شد. در این‌ها، دانه‌های کولورفیل در حالت الکتروفورز (Comasby brilliant blue) محلول و ۲۰۰ ml محلول الکتروفورز (Methanol) حل گردیده و ۵۰۰ ml اضافه شد. محلول رنگ‌آمیزی پس از صاف شدن با کاغذ صاف مخصوص در دمای زمین‌زمین یک دقیقه سانتی‌فرایژ گردید و سپس محلول بالایی به لوله‌های جدید منتقل شدند. در ادامه مقدار جذب نور در ۳ طول موج ۴۲۰، ۵۴۰ و ۶۴۰ نانومتر، توسط دستگاه اسیدکوئنترفترمی اندازه‌گیری شد که بس از جمعیت آدامه‌ها مقدار کولورفیل‌ها b و کاروتئنید طبق معادلات زیر محاسبه گردید:

\[
\text{Chl } a (\mu g \text{ ml}^{-1}) = 125 A_{450} - 255 A_{470}
\]

\[
\text{Chl } b (\mu g \text{ ml}^{-1}) = 18/29 A_{450} - 758 A_{470}
\]

\[
\text{Carotenoid (\mu g \text{ ml}^{-1})} = (1000 A_{470} - 372/299)
\]

\[
\text{c= a + b}
\]

نتایج

پروتئین‌ها از روش برادفورد استفاده شد. در این‌ها، دانه‌های کولورفیل در حالت الکتروفورز (Comasby brilliant blue) محلول و ۲۰۰ ml محلول الکتروفورز (Methanol) حل گردیده و ۵۰۰ ml اضافه شد. محلول رنگ‌آمیزی پس از صاف شدن با کاغذ صاف مخصوص در دمای زمین‌زمین یک دقیقه سانتی‌فرایژ گردید و سپس محلول بالایی به لوله‌های جدید منتقل شدند. در ادامه مقدار جذب نور در ۳ طول موج ۴۲۰، ۵۴۰ و ۶۴۰ نانومتر، توسط دستگاه اسیدکوئنترفترمی اندازه‌گیری شد که بس از جمعیت آدامه‌ها مقدار کولورفیل‌ها b و کاروتئنید طبق معادلات زیر محاسبه گردید:

\[
\text{Chl } a (\mu g \text{ ml}^{-1}) = 125 A_{450} - 255 A_{470}
\]

\[
\text{Chl } b (\mu g \text{ ml}^{-1}) = 18/29 A_{450} - 758 A_{470}
\]

\[
\text{Carotenoid (\mu g \text{ ml}^{-1})} = (1000 A_{470} - 372/299)
\]

\[
\text{c= a + b}
\]
حرکت نسبی پارسیون (Releative mobility: Rf) فاصله باندهای پروتئین (به جلویی هر باند) و رنگ نشانگر از ابتدا زنگ چندین اندازه‌گیری شده، سپس به هماجی بگیری و اتصال پروتئین از تحقیق آن در محاسبه گردید. با توجه به اطلاعات مربوط به وزن‌های مولکولی و پروتئین‌های استاندارد، محاسبه داده شده که وزن‌های مولکولی احتمالاً صحیح است. محاسبه گردید.

نتایج و بحث

مقایسه میزان کمی پروتئین‌های محلول برگ در گیاهان تازه و خشک

با جمع‌آوری داده‌های مختلف پروتئین محلول برگ با استفاده از روش‌های آزمایش‌گاهی و روش‌های محاسباتی، میزان کمی پروتئین در گیاهان تازه و خشک محاسبه گردید. با توجه به نتایج بدست آمده، میزان کمی پروتئین محلول برگ در گیاهان تازه بیشتر از گیاهان خشک است.

در مطالعه قبلی، نشان داده شد که محصولات تازه‌بازی و خشک به‌طور تصادفی به‌صورت یکسانی در محیط‌های مختلف به‌وجود می‌آورند. بنابراین، محاسبه دقیق میزان پروتئین محلول برگ در گیاهان تازه و خشک بسیار کمیک است.

در نتیجه، میزان پروتئین محلول برگ در گیاهان تازه بیشتر از گیاهان خشک است. در کل، محصولات تازه‌بازی با بیشترین مقدار پروتئین محلول برگ به‌صورت یکسانی برگ در بیشتر گیاهان تازه و خشک به‌وجود می‌آورند. در نتیجه، محصولات تازه‌بازی با بیشترین مقدار پروتئین محلول برگ به‌صورت یکسانی برگ در بیشتر گیاهان تازه و خشک به‌وجود می‌آورند.
بررسی تغییرات کمی و کیفی میزان پروتئین، کلوروفیل و کاروتینید در کلزا…

![نمودار 1](image1)

شکل 1. روند تغییرات پروتئین کل محلول برقی در مراحل مختلف رشدی گیاهان تراریخت و شاهد کلزا YG - مرحله روزنت YG = مرحله گل دمه 2 = مرحله تشکل غلاف YG

![نمودار 2](image2)

شکل 2. روند تغییرات میزان پروتئین در تیمارهای تراریخت و شاهد گیاهان کلزا

A1 - A6 = گیاهان تراریخت شده

WT = شاهد

112
نتایج حاصل از آنالیز گیری مقادیر رنگدانه‌های برگی طی مراحل مختلف رسیده‌های تراریخت و شاهد (غیر مراحل مختلف فیزیولوژیکی) در حال جدول مقایسه میزان‌ها (جدول 1) و اشکال کاربردی نشان داد که بین مراحل مختلف رشد گیاهان استفاده از آزمون دانک 1/2 نتایج و در جدول 3 آورده شده است. نتایج به‌دست آمده نشان داد که بر روی کل، کارفیل نیز مبنای بی‌پروتئین در مراحل اندیابی رشد گیاهان کم بوده و هرچه بین سبب بلوگ فیزیولوژیکی بی‌درنده سبب شود میزان آن افزایش یافته، که احتمالاً این امر به دلیل بازیافت نسبی میزان از لحاظ میزان آب‌درمانی کمتر و در در جدول 3 نشان داده شده، حداکثر میزان کارفیل‌های 2/3-تحلل غلاف (MG1) و 1/4-تحلال غلاف (b) مشاهده شده است. مورد کل کارفیل a بیشتر مراحل مختلف رشد میزان آزمون از لحاظ آماری در کارفیل‌های غلیظ‌تر قرار گرفته و تفاوت معناداری را با هم نشان دادند. در مورد کارفیل b علی رغم وجود حداکثر میزان این رنگدانه در مرحله MG2 و مرحله مذکور با MG1 نیز به طور گروه آماری قرار داشته و مراحل جدول 3 نشان داد که بین آن آتی میزان گلوتامین نشان داد که بین آن آتی میزان گلوتامین
جدول 1. مقایسه میانگین کلروفیل‌های a و b کاروتئونید در مراحل مختلف رشدی در سطح احتمال 5 \%

<table>
<thead>
<tr>
<th>مراحل</th>
<th>میانگین کاروتئونید (μg/gFW)</th>
<th>مراحل</th>
<th>میانگین کاروتئونید (μg/gFW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG1</td>
<td>17/89</td>
<td>MG1</td>
<td>15/33</td>
</tr>
<tr>
<td>MG2</td>
<td>7/87</td>
<td>MG2</td>
<td>6/51</td>
</tr>
<tr>
<td>SS</td>
<td>9/16</td>
<td>SS</td>
<td>3/53</td>
</tr>
<tr>
<td>YG</td>
<td>8/77</td>
<td>YG</td>
<td>5/23</td>
</tr>
</tbody>
</table>

![نمودار مراحل مختلف رشدی](image)

مشاهده شد که در مورد کاروتئونید، حداکثر میزان آن در مرحله MG1 و YG بین مراحل MG1 و MG2 و SS. MG1، MG2 و SS مشابه در گروه آمیزی قرار گرفته‌اند. به همین ترتیب مراحل MG1 و MG2، MG1 و YG و MG2 و SS مشابه در گروه آمیزی قرار گرفته‌اند. این نتایج در شکل 1 نشان داده شده است. نتیجه جالب توجه دیگری که به دست آمد، در مورد رنگ‌دانه کاروتئونید بود.

شکل 3. روند تغییرات میزان کاروتئونید‌های a، b و (a+b) در مراحل مختلف رشدی گیاه کلزا. MG1، MG2 و SS: مرحله گل‌دهی; YG: مرحله روزت.
بررسی تغییرات کمی و کیفی میزان پروتئین, کلروفیل و کاروتئنید در کلزاي...

شکل ۴. روند تغییرات کاروتئنید در تیمارهای مختلف تراپیک و شاهد کلزاي مورد مطالعه.

شاهره A1- A6 : شاهد WT

معنی‌داری را نشان نداده و در یک گروه جای گرفته‌اند (شکل ۴). تیمارهای آزمایشی مورد مقایسه تفاوت آماری معنی‌داری را از لحاظ میزان کلروفیل‌های a و b نشان ندادند.

ولی در مورد میزان کاروتئنید تفاوت آماری در سطح احتمال ۵٪ دیده شد و با توجه به معنی‌دار بودن آن، آزمون داتنک در این سطح آزمایش کرده و نتایج در شکل ۴ نشان داده شده است.

در اساس نتایج آزمون داتنک (شکل ۴) معلوم گردید که تیمار a4 بیشترین میزان کاروتئنید و تیمار a3 کمترین مقدار را داشته‌اند. هرچند از لحاظ آماری کلیه تیمارها یک عدد در یک گروه و تیمارهای a6 و a3 نیز در گروه مجزای دیگر قرار گرفته‌اند. بنابراین فقط تیمار a۶ به عنوان a6 تیمارها (به جز A۶ تیمارهای معنی‌داری در سطح احتمال ۵٪ نشان داده است.

بررسی های دقیق نشان داده است که کلروفیل و کاروتئنید با نسبت‌های مختلف تجزیه می‌شوند. روند کاهش میزان کاروتئنید تدریجی مشابه با کلروفیل b می‌باشد. در حالی که

مقایسه الگویهای الکتروفوژی برونتیه‌ها با توجه به نتایج بدست‌آمده از سنجش میزان کمی پروتئین بر اساس استخوان‌فصولی، مقادیر مربوط به غلظت‌های پروتئین (μg/ml) برای هر تیمار در چاپ‌کردهای الکتروفوژی

115
نمونه‌گیری شد. بنابراین، غلظت پروتئین در تیمارهای مختلف بر اساس بدنه ویلی حجم‌های متغیر از نمونه‌ها در هر چاهه نمونه‌گیری گردید. در باند واضح و مشخص در الکتروفورز پروتئین‌های برگ کیهان تراریخت و شاهد بدنه می‌شود که در روش‌های زیر و یک‌درجه‌کن کوچک و برگ آزمایش‌روپوزیس (Large and Small Subabut of Rubisco) بر 30 کیلو دالون و زیر و یک‌درجه کوچک 15 کیلو دالون وزن دارند. آزمایش‌روپوزیس تقریباً 30٪ پروتئین محلول برگ و حدوداً 30٪ کل پروتئین گیاهی را تشکیل می‌دهد (۱۶).

و (Western blotting) آزمایش‌های بالات (ایس.اس. پیچ نشان داده است که (در اکلیپس گیاهی و آزمایش‌های استاتریک (GS1) ورن داشته و آزمایش‌های نسبت‌بندی سنتزی (GS1) عموماً در باند پروتئین باریک با سایر پروتئین‌ها مختلط (۱/۸ و ۱/۲ کیلو دالون) را نشان داده است (۱۷). به‌همیشه است انجام وسترن بیل‌ها با آنزیم خالص کل پروتئین سنتز حضور فلسفه‌ای یک‌درجه پروتئین‌های سربیط‌پاره بر این انجام را با یک مکمل دیگری آن نشان می‌دهد (۱۵). البته این اختلال و جویان دارد که آن اثر کل پروتئین سنتز با تأثیر روی میزان سایر پروتئین‌ها موجود در گیاه، مقادیر آنها کم یا بیشتر کرده و بنابراین اختلاف در باندهای حاصله گردید.

در ادامه، پژوهشگر کرده باند پروتئین‌های کل محلول برگی در گیاه‌های تراریخت و شاهد کلارا مورد بررسی قرار گرفت که در مرحله کل رشد گیاه (YG) تا حدی اختلاف بین باند‌های شاهد و تراریخت دیده شد (شکل ۵) در این مقایسه کمترین شانه یک باند در تیمارهای A۴ و A۳ ولین فلسفه‌ای (۵) در مقایسه با باند حاصل از تیمار شاهد دیده شد. این باند در موقعیت تقریباً 30 کیلو دالون قرار داشت و همچنین، پروتئین‌ها تراریخت این باند در تیمارهای A۸ و A۱۰ در مقایسه با یک باند مذکور در تیمار شاهد و به دست آمده در این باند (شکل ۵) اختلاف مشخصی دیده نشد. در بررسی گیاه‌های باند پروتئین در مرحله رشدی دوم تفاوت قابل ملاحظه‌ای بین باند‌های حاصل از تیمارهای مختلف دیده نشد و گیاه‌های باند تراریخت مشابه نبودند. ولی در مورد گیاه‌های باند پروتئین در مرحله سوم رشدی (شکل ۶) نیز چند اختلاف مشاهده گردید. از جمله نابودی کل حفرات در موقعیت وزنی 57 کیلو دالتون (فلش مربوط به شکل ۶) در تیر تراریخت A۳ مقایسه با تیمار شاهد و سایر تیمارهای تراریخت و همچنین تراریخت دیده بود. به‌همیشه است انجام وسترن باند مشاهده انجام پذیرد. این باند در تیمارهای A۳ و A۵ مشاهده باند هم‌نوا در این تیر شاهد بود. در جمع‌بندی نتایج بوده است در این نتایج می‌توان چند نتیجه برمی‌گردد. از جمله: ۱) وجود اختلاف در باند که توضیح دیده شد. با توجه به این که این موقعیت قطعی در محصول مربوط به روند رشد گیاهان کل پروتئین‌ها در سه‌گونه مختلف کل است، از این رو اختلالات به دلیل این تکثیر از کل پروتئین‌های موجود در گیاه، مقادیر آنها کم یا بیشتر کرده و بنابراین اختلاف در باندهای حاصله گردید.
بررسی تغییرات کمی و کیفی میزان پروتئین، کلروفیل و کاروتئنید در کلزا...
سپیگاری

در پایان لازم است از آقایان دکتر کارل موریس و دکتر ویکی بورکان وکی نمونه‌گیری کمک کند. در عین حال، استفاده از یک مدلی است که براساس نظرات مختلفی ترکیبی مانند وسترن باین همانی و نتایج به دست آمده و تفاوت‌های دیده شده را به‌طور دقیق نمود ارزیابی قرار داده و پروتئین‌های اختصاصی مربوط به هر باند و وزن دقیق مولکولی آن را تعیین نمود.

مباحث مورد استفاده

1. احمدی، م. 1378. کشت گیاه کلزا در ایران رو به توسعه است. مجله زینت 28-31.

