بررسی ضریب تخلیه سرژی‌های جانبی مایل در کانال‌های مستطیلی غیر منشوری

چکیده
سرژی‌های جانبی از جمله سازه‌های آبی می‌باشند که به طور گسترده‌ای در سیستم‌های آبیاری، زه‌کشی و فاضلاب‌های مورد استفاده قرار می‌گیرند. در پژوهش حاضر تأثیر طول و ارتفاع تاج سرژی جانبی مایل بر ضریب تخلیه در جریان‌های زیر بحرانی، در کانال‌های منشوری و غیر منشوری مستطیلی بررسی گردید.
بررسی نتایج ۲۷۵ آزمایش نشان داد که ضریب تخلیه به عدد فرود در انتهای سرژی، نسبت ارتفاع سرژی به عمق آب در انتهای سرژی، عنوان آب روز سرژی به طول سرژی و عامل منشوری کانال بستگی دارد. در این پژوهش، بر اساس داده‌های آزمایشگاهی، مدلی ارائه شد که می‌تواند در شرایط جریان زیر بحرانی ضریب تخلیه را پیش‌بینی نماید. در نهایت، مدل ارائه شده با گزارش‌های پژوهشگان دیگر در شرایط مختلف شبکه جانبی و کف مورد ارتباطی و آزمون قرار گرفت. نتایج به دست آمده در برآورد دیگر سرژی، با خطای نسبی کمتر از دو درصد همخوانی مناسبی را نشان داد.

واژه‌های کلیدی: سرژی جانبی مایل، ضریب تخلیه، کانال‌های غیر منشوری

مقدمه
سرژی‌های جانبی به طور گسترده‌ای برای کنترل سطح آب در سیستم‌های آبیاری و زه‌کشی به‌منظور انحراف آب منازل و حفاظت از سیل و یا کنترل سیل‌برهای شهری مورد استفاده قرار می‌گیرند.

1. استداران آبیاری، دانشکده کشاورزی، دانشگاه شیراز
جیران در سرریزه‌های جانی، تاکنون مورد بررسی بسیاری از پژوهشگران بوده، اکثراً با انجام آزمایش‌های به ارزیابی روابط سرریزه‌ی جانی در کانال‌های مستطیلی پرداخته‌اند (9 و 16). در صورتی که اتاق‌های دارایی شکل نیز آزمایش‌هایی در سال‌های گذشته انجام شده است (11 و 19) و با رویکرد کانال‌های U شکل مطالعاتی در سال 1997 (20) انجام گرفت، و نتایج سومی (18) نشان داد که تغییرات نسبت به شرایط دیگر بحرانی تأثیرگذار است.

در کانال آزمایش‌های جانی در حالت سرریزه شامل دو کانال اصلی قرار گرفته‌اند، با مدل و شکل مختلفی و در طول سرریزه‌ی بحرانی در حال آزمایش بوده. در این آزمایش‌ها بانه‌ای یک چارچوب ارائه و نمایش داده شده که از شکل 3/10، است. در این آزمایش‌ها به صورت تکرار یکبار استفاده می‌شود و در مدل شرایطی‌ها، با تغییراتی در شکل و شکل و شکل‌های مختلفی، در آزمایش‌های جانی در حال آزمایش بوده.

تاکنون در باره سرریزه‌های جانی میل پژوهشی صورت نگرفته است. بنابراین، در این مقاله ضریب تحلیل در سرریزه‌های جانی و رویکرد غیر منشوری و منشوری، از طریق مدل کوگریک و انجام آزمایش‌های مورد بررسی قرار گرفته و مدل مناسب ارائه گردیده است.

مواد و روش‌ها
عملیات آزمایش‌گاهی در آزمایشگاه‌های بودجه‌ی یک پژوهشگری مبتکر داشته‌گران دیاری انجام دیاری یافته که در شکل 1 دیده می‌شود. آزمایش‌های در یک کانال مستطیلی به ضریب بیش از 0.5 متر و شبکه گرافیک به شکل 100 در هزار انجام گرفت. طول کانال از محل و رویکرد آتی‌های سرریزه 5 متر و فاصله بین آتی‌های سرریزه جانی 10 متر تعیین گردید. همچنین در اتاق‌های کانال اصلی، به منظور آرام نمودن جریان و منظم نمودن

علم و فنون کشاورزی و منابع طبیعی / جلد ششم / شماره سوم / پاییز ۱۳۸۱
پرسی ضرب نخله سری‌های جانبی مایل در کالاهای مستطیلی غیر مستحکم

جدول ۱: محدوده مقادیر مختلف متغیرهای استفاده شده در آزمایش‌ها

<table>
<thead>
<tr>
<th>متغیر</th>
<th>تعادل مشتری</th>
<th>شیب N تاد سریز</th>
<th>عقد ورودی</th>
<th>عدد فرود</th>
<th>طول سریز</th>
</tr>
</thead>
<tbody>
<tr>
<td>شیب تاد سریز</td>
<td>۹</td>
<td>۹.۹</td>
<td>۹۹</td>
<td>۹۹۹</td>
<td>۹۹۹۹</td>
</tr>
</tbody>
</table>

مقدار

شکل ۱. نمایی از محل کارگذاری سریز جانبی (الف) یا (ب) پرتویل

شکل ۲. نمایی از محل کارگذاری سریز جانبی (الف) یا (ب) پرتویل

اصول پایه مدل‌های فیزیکی و آنالیز‌های متغیرهای بدون بوده توسط
پژوهشگران دیگر نیز بررسی گردیده است (۹، ۱۲ و ۱۵). برای تعیین متغیرهای اکیدیو (Buckingham) ن (۲۱)
می‌توان در دسته بندی بعد طبقه‌بندی نمود که دراین
حالت k تعداد بعد پایه در سیستم ابعاد می‌باشد.

متغیرهای بدون بوده حاصل شده از تئوری باکینگهام و
فرضیات دیگر عبارتند از:

Fr, Fr’1, Fr’2, P1/Y1, P2/Y2, (Y1-P1)/L, (Y2-P2)/L,
(Y1-P1)/P1, (Y2-P2)/P2, P2/Y2, P1/Y1, (Y2-P1)/L,
(Y2-P2)/w, (Y2-P1)/P1, (Y2-P2)/P2, (Y2-P1)/P2, Y1/L, Y2/L, L/b1,
L/b2, b1/y1, b2/y2, Y1/y2, V1/V2, b1/b2, R, Re, Wo, γ
پژوهش حاضر، بر اساس روش انگرال‌گیری عددی سیمسون، که از دقت بیشتری برخوردار است، بازه‌ام در آن روش تجربی‌محاسبه بردارید. در نظر گرفتن شرایط 1 در خصوص محاسبه دیفرانسیل (5)، پارامترین هم، از روش انگرال‌گیری عددی سیمسون به شکل قبیل محاسبه می‌باشد.

\[dQ = \frac{2}{3} C_d \sqrt{2g(h) \frac{h}{2}} \]

\[h_m = \int h(x) \frac{1}{h} \ dx = \frac{2}{3n} \int (a)f(a) + f(b) \]

\[+ 4 \sum_{i=1}^{n-1} f_{2i-1} + 2 \sum_{i=1}^{n-1} f_{2i} \]

در رابطه 2، a و b به ترتیب حد پایین و بالای انگرال زیر فاصله و f نامگذاری شده‌اند. hypothetical مقدار برای ارتقاء آب روی تاج سریز در طول سریز جنی می‌باشد.

\[C_d = \frac{Q_w}{\frac{2}{3} \sqrt{2g} h_m} \]

لالام به یادآوری است که در این پژوهش برای حدف عوامل (h-P) کش مطلوبی از نوع‌های هور (100 می‌باشد. 05این رابطه باعث افزایش می‌شود. چون سه کل، ارایارباینی‌ها بروزه نشانه‌ای در رابطه 1 و استفاده از رابطه 2 می‌باشد. ضریب نمایانگر تخلیه عنوان متفاوت و رابطی در رابطه 3 نشان می‌دهد، و این ضریب که به عنوان متفاوت وابسته در روابط رگرسیونی می‌باشد، محاسبه می‌گردد.

\[RE = 100 \sum_{i=1}^{N} \frac{X_o - X_m}{X_o} \]

ضریب تخلیه سریز جانی

برای برآورد ضریب تخلیه سریز جانی، با توجه به داده‌های آزمون‌های مختلف، مدل‌های رگرسیونی تبعیض گردد. در این

ورد مدل و مقادیر با طبیعی معنی‌دار نمی‌باشد. در این مدل خلاص‌ریالی 20 بر (Correlation matrix) عامل تورم واریانس (Variance inflation factor) می‌باشد. بررسی و انتخاب متفاوت

در این مدل عامل سریز همبستگی و عامل تورم واریانس بر اساس فرضیه زیر و استفاده از نرم‌افزار دینافیته (DataFit)

- بررسی همبستگی

- اگر سطح مطلوب ضریب همبستگی بیشتر از 0/8 باشد گویای همبستگی و متفاوت است. که یکی از متغیرها به‌نام‌شنده جذب گردد.

- بررسی مقادیر عامل تورم واریانس

- اگر مقادیر عامل تورم بیشتر از 10 باشد، باید همبستگی زیاد و انتخاب مطلوب باشد که می‌باشد این متفاوت از این مدل و مساحت حرفه‌ای (Residual sum of squares)

نتایج و بحث

پس از طبقه‌بندی داده‌های جمع‌آوری شده، هر کدام از سه آزمایش به دو سری آزمون بودن کنترل در پایین‌ترین سطح بود و با کنترل در پایین‌ترین سطح نیمه بسته (که توسط درجه کشی انتگرال کنترل است) تخمین‌گری و محاسبات و تحلیل‌ها به طور جمعی برای هر آزمایش و آزمون انجام می‌شود. سپس بدین به نظر گرفتن حالت مشاوره کانال، برای آزمون‌های بدون کنترل در پایین‌ترین سطح و با کنترل در پایین‌ترین سطح، و همچنین برای کل آزمون‌ها بدون نظر گرفتن حالت مشاوره کانال، محاسبات و تصمیم گیری بدان کنترل گردد.

- بررسی پژوهش‌های از جمله باس (4) با فرض خطی بدون رابطه سطح آب، مدل‌های خوردار را ارائه و برای ساده کردن از میانگین عمق آب روی تاج سریزی (h) استفاده نموده. در
روابط ضرایب ثابت از یکدیگر مستقل می‌باشدند و انتخاب
متغیرها به اساس ضوابط آماری و معنی‌دار بودن متغیر
انجام پذیرفته است.
پس از انجام محاسبات و تحلیل آماری، نتایج آزمایش
شماره ۱ در آزمون کانال بدون کنترل در پایین دست مشخص
گردیده که ضریب تخلیه تابعی است از نسبت ارتفاع سریزه در
ابتدا سریز جانی به دم آب کانال در انتهای سریز جانی
پیش از انجام محاسبات و تحلیل آماری، نتایج آزمایش
شماره ۱ در آزمون کانال بدون کنترل در پایین دست مشخص
تی این افزایش به دم آب کانال در انتهای سریز جانی
پیش از انجام محاسبات و تحلیل آماری، نتایج آزمایش
شماره ۱ در آزمون کانال بدون کنترل در پایین دست مشخص
گردیده که ضریب تخلیه تابعی است از نسبت ارتفاع سریزه در
ابتدا سریز جانی به دم آب کانال در انتهای سریز جانی
پیش از انجام محاسبات و تحلیل آماری، نتایج آزمایش
شماره ۱ در آزمون کانال بدون کنترل در پایین دست مشخص
گردیده که ضریب تخلیه تابعی است از نسبت ارتفاع سریزه در
ابتدا سریز جانی به دم آب کانال در انتهای سریز جانی
پیش از انجام محاسبات و تحلیل آماری، نتایج آزمایش
شماره ۱ در آزمون کانال بدون کنترل در پایین دست مشخص
گردیده که ضریب تخلیه تابعی است از نسبت ارتفاع سریزه در
ابتدا سریز جانی به دم آب کانال در انتهای سریز جانی
پیش از انجام محاسبات و تحلیل آماری، نتایج آزمایش
شماره ۱ در آزمون کانال بدون کنترل در پایین دست مشخص
گردیده که ضریب تخلیه تابعی است از نسبت ارتفاع سریزه در
ابتدا سریز جانی به دم آب کانال در انتهای سریز جانی
پیش از انجام محاسبات و تحلیل آماری، نتایج آزمایش
شماره ۱ در آزمون کانال بدون کنترل در پایین دست مشخص
گردیده که ضریب تخلیه تابعی است از نسبت ارتفاع سریزه در
ابتدا سریز جانی به دم آب کانال در انتهای سریز جانی
پیش از انجام محاسبات و تحلیل آماری، نتایج آزمایش
شماره ۱ در آزمون کانال بدون کنترل در پایین دست مشخص
گردیده که ضریب تخلیه تابعی است از نسبت ارتفاع سریزه در
ابتدا سریز جانی به دم آب کانال در انتهای سریز جانی
پیش از انجام محاسبات و تحلیل آماری، نتایج آزمایش
شماره ۱ در آزمون کانال بدون کنترل در پایین دست مشخص
گردیده که ضریب تخلیه تابعی است از نسبت ارتفاع سریزه در
ابتدا سریز جانی به دم آب کانال در انتهای سریز جانی
پیش از انجام محاسبات و تحلیل آماری، نتایج آزمایش
شماره ۱ در آزمون کانال بدون کنترل در پایین دست مشخص
گردیده که ضریب تخلیه تابعی است از نسبت ارتفاع سریزه در
ابتدا سریز جانی به دم آب کانال در انتهای سریز جانی
پیش از انجام محاسبات و تحلیل آماری، نتایج آزمایش
شماره ۱ در آزمون کانال بدون کنترل در پایین دست مشخص
گردیده که ضریب تخلیه تابعی است از نسبت ارتفاع سریزه در
ابتدا سریز جانی به دم آب کانال در انتهای سریز جانی
پیش از انجام محاسبات و تحلیل آماری، نتایج آزمایش
شماره ۱ در آزمون کانال بدون کنترل در پایین دست مشخص

شکل ۳. مقایسه مقادیر خطای برآورد در مقابل ضریب تحلیل محاسبه شده در آزمون بدون کنترل در پایین‌دست شماره ۱

شکل ۴. مقایسه مقادیر خطای برآورد در مقابل ضریب تحلیل محاسبه شده در آزمون با کنترل در پایین‌دست شماره ۱

شکل ۵. مقایسه مقادیر خطای برآورد در مقابل ضریب تحلیل محاسبه شده در آزمون بدون کنترل در پایین‌دست شماره ۲
ضریب تخلیه سریزهای جانی مابین در کانالهای مستطیلی غیر منشوری

شکل ۷: مقایسه مقادیر خطای برآورد در مقابل ضریب تخلیه محاسبه شده در آزمون‌ها با یکنواخت در پایین‌دست شماره ۲

سریزهای ۱ و ۱۸ نشان‌دهنده تغییرات ضریب تخلیه محاسبه شده در مقابل مقادیر خطای برآورد در دو حالت با و بدون کنترل در پایین‌دست و با یکنواخت در پایین‌دست می‌باشد.

\[
C_d = a \left(\frac{b_1}{b_2} \right) + b \left(\frac{Y_1 - P_1}{Y_1} \right) + c(\gamma) + d;
\]

\[
a = 0.097, \quad b = 0.235, \quad c = 0.004, \quad d = 0.327
\]

[SE = 0.0259, RE = 3.96]

در نظر گرفتن شرایط بدون کنترل در پایین‌دست، با کنترل در پایین‌دست و حالت منشوری کانال تعیین گردد. رابطه ۱۳ نشان می‌دهد که این حالت ضریب تخلیه ثابت است از عامل منشوری کانال بینعی (b/b) و عدد فروند در ایندی سریز یکا نسبت ارتفاع سریز به عمق آب در کانال در ایندی سریز \(F_r \) و نسبت عمق آب روز سریز در ایندی سریز \(Y_1/P_i \) با یکی با طول سریز یکا \(Y_1 - P_1 \). در نهایت، آن در حالت بدون کنترل در پایین‌دست می‌باشد.

\[
C_d = a \left(\frac{b_1}{b_2} \right) + b(F_r) + c \left(\frac{P_1}{Y_1} \right) + d \left(\frac{Y_1 - P_1}{L} \right) + e;
\]

\[
a = 0.104, \quad b = 0.049, \quad c = -0.151, \quad d = 0.079, \quad e = 0.475
\]

[SE = 0.0266, RE = 7.05]

در نهایت، ۱۱ مقادیر ضریب تخلیه محاسبه شده توسط مدل با مقادیر خطای برآورد مقایسه گردیده است. نسبت عمق آب روی تاج سریز به عمق آب کانال در ایندی-

\[
C_d = a \left(\frac{b_1}{b_2} \right) + b(F_r) + c \left(\frac{Y_1 - P_1}{L} \right) + d \left(\frac{Y_2 - P_2}{w} \right) + e;
\]

\[
a = 0.149, \quad b = 335, \quad c = 0.804, \quad d = -0.081, \quad e = 0.207
\]

[SE = 0.0257, RE = 3.82]

ضریب تخلیه برای آزمون‌های با کنترل در پایین‌دست در کل آزمایش‌ها، ثابت است از مقادیر عامل منشوری \(b/b \) و عدد فروند در ایندی سریز یکا \(Y_1/P_i \).

\[
C_d = a \left(\frac{b_1}{b_2} \right) + b(F_r) + c \left(\frac{P_1}{Y_1} \right) + d \left(\frac{Y_1 - P_1}{L} \right) + e;
\]

\[
a = 0.104, \quad b = 0.049, \quad c = -0.151, \quad d = 0.079, \quad e = 0.475
\]

[SE = 0.0266, RE = 7.05]

در نهایت، ۱۱ مقادیر ضریب تخلیه محاسبه شده توسط مدل با مقادیر خطای برآورد مقایسه گردیده است. نسبت عمق آب روی تاج سریز به عمق آب کانال در ایندی-

\[
C_d = a \left(\frac{b_1}{b_2} \right) + b(F_r) + c \left(\frac{Y_1 - P_1}{L} \right) + d \left(\frac{Y_2 - P_2}{w} \right) + e;
\]

\[
[SE = 0.0257, \quad RE = 3.82]

ضریب تخلیه برای آزمون‌های با کنترل در پایین‌دست در کل آزمایش‌ها، ثابت است از مقادیر عامل منشوری \(b/b \) و عدد فروند در ایندی سریز یکا \(Y_1/P_i \).

\[
C_d = a \left(\frac{b_1}{b_2} \right) + b(F_r) + c \left(\frac{P_1}{Y_1} \right) + d \left(\frac{Y_1 - P_1}{L} \right) + e;
\]

\[
a = 0.104, \quad b = 0.049, \quad c = -0.151, \quad d = 0.079, \quad e = 0.475
\]

[SE = 0.0266, \quad RE = 7.05]

ضریب تخلیه برای آزمون‌های با کنترل در پایین‌دست در کل آزمایش‌ها، ثابت است از مقادیر عامل منشوری \(b/b \) و عدد فروند در ایندی سریز یکا \(Y_1/P_i \).

\[
C_d = a \left(\frac{b_1}{b_2} \right) + b(F_r) + c \left(\frac{Y_1 - P_1}{L} \right) + d \left(\frac{Y_2 - P_2}{w} \right) + e;
\]

\[
[SE = 0.0257, \quad RE = 3.82]

ضریب تخلیه برای آزمون‌های با کنترل در پایین‌دست در کل آزمایش‌ها، ثابت است از مقادیر عامل منشوری \(b/b \) و عدد فروند در ایندی سریز یکا \(Y_1/P_i \).
شکل ۷ مقایسه مقادیر خطای برآورد در مقابل ضریب تخلیه محاسبه شده در آزمون بدون کنترل در پایین‌دست شماره ۳

شکل ۸ مقایسه مقادیر خطای برآورد در مقابل ضریب تخلیه محاسبه شده در آزمون با کنترل در پایین‌دست شماره ۳

شکل ۹ مقایسه مقادیر خطای برآورد در مقابل ضریب تخلیه محاسبه شده در آزمون‌های بدون کنترل در پایین‌دست

۷۰
دستگاهی برای تغییر سریزهای جانی مایل در کانال‌های مستطیلی غير مشروط

شکل 10. مقایسه میزان خطای برآورد در مقابل ضریب تخلیه محاسبه شده در آزمون‌های با کنترل در پایین‌دست

شکل 11. مقایسه میزان خطای برآورد در مقابل ضریب تخلیه محاسبه شده در کنترل آزمون‌ها

فرآیند 1) اقدام به ارزیابی مدل ارائه شده گردید.

الف) ارزیابی مدل بر اساس گزارش برآورد و همکاران (3) برآورد و همکاران (3) آزمایش‌های خود را در یک فلزی

شیشه‌ای مستطیلی شکل منشوری به طول 12 متر، عرض 0.3 متر با عمق 0.5 متر انجام دادند. در این آزمایش ضریب تخلیه

در سریزه جانبی به تدریج نخست مرده بررسی فرار گرفت.

محدوده داده‌های استفاده شده در این پژوهش در جدول 2 ارائه

گردیده است.

ارزیابی مدل با گزارش‌های پژوهشگان دیگر

یک روش برای ارزیابی مدل استفاده از داده‌های پژوهشگان

دیگر، مقایسه نتایج واقعی با مقدار گشتی‌سازی شده است. در

این بخش با استفاده از اطلاعات برآورد و همکاران (3) و
جدول 2. محدوده مقادیر استفاده شده در پژوهش برایی و همکاران (۳)

<table>
<thead>
<tr>
<th>متغیر</th>
<th>طول سریز (سانتی‌متر)</th>
<th>ارتفاع سریز (سانتی‌متر)</th>
<th>شیب کف (لیتر بر ثانیه)</th>
<th>عدد فرد</th>
<th>تعداد آزمایش‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقدار</td>
<td>۰-۱۰۰</td>
<td>۰-۰۵۰</td>
<td>۰-۱۰۰</td>
<td>۰-۰۵۰</td>
<td>۰-۱۰۰</td>
</tr>
<tr>
<td></td>
<td>۰-۱۰۰</td>
<td>۰-۰۵۰</td>
<td>۰-۱۰۰</td>
<td>۰-۰۵۰</td>
<td>۰-۱۰۰</td>
</tr>
</tbody>
</table>

برای ۷۷/۸۸% است. همچنین، مقایسه مقادیر مشاهده شده در نمودار ۱۲ ارائه گردیده است. همان گونه که مشاهده می‌گردد، در دی‌های کمتر تبلور بیشتری میان مقادیر دیس محسوبه و مشاهده شده وجود دارد. و با افزایش دیس، مقادیر دیس محسوبه شده نسبت به مقادیر واقعی کاهش می‌یابد. در کل، با توجه به این که بیشتر نقاط در محدود ۰/۱۰۰ قرار دارند، این مقادیر

گویای قابلیت مدل در تخمین ضریب آبدهی در سریزهای لیه تیز می‌باشد.

پژوهشی محل بر اساس مقادیر لیه در دیس‌های کمتر تبلور بیشتری میان مقادیر دیس محسوبه و مشاهده شده وجود دارد. و با افزایش دیس، مقادیر دیس محسوبه شده نسبت به مقادیر واقعی کاهش می‌یابد. در کل، با توجه به این که بیشتر نقاط در محدود ۰/۱۰۰ قرار دارند، این مقادیر
بررسی ضریب تخلیه سریزهای جانی مایل در کانال‌های مستطیلی غیر مستقیم

装置.

مقدمه.

تغییرات در سطح‌های تخلیه سریزهای جانی مایل در کانال‌های مستطیلی غیر مستقیم می‌تواند به‌عنوان یکی از موثرترین عوامل در افزایش مقدار رعیت کننده‌ی این سیستم‌ها به‌شمار رود. در این مقاله، تأثیر فاکتورهای مختلفی از جمله شروط پذیرش و اندازه‌بندی کانال‌ها و همچنین روش‌های مختلف تخلیه سریزهای جانی، بر روی عملکرد این سیستم‌ها بررسی گردیده است.

1. در شرایط کانال‌های مستقیم بدون کنترل در پایین‌دست از رابطه 1.5 در پایین‌دست از رابطه 6 استفاده شود.

2. در شرایط کانال‌های مستطیلی غیر مستقیم بدون کنترل در پایین‌دست از رابطه 12 استفاده گردید.

3. در شرایط عمومی استفاده از رابطه 13 از دقت خویش برخوردار است.

نتیجه‌گیری.

نتایج ارزیابی مدل در دو سری از اطلاعات مستقیم در کانال مستطیلی با سریزهای به‌طور تجزیه‌ای منفی در یک کانال درزدوخوردی با سطح‌های جانی متغیر، نشان دهنده افزایش و قابل استفاده بودن مدل سریزهای جانی مایل در شرایط مختلف نمی‌باشد.

نماهای

<table>
<thead>
<tr>
<th>توضیح</th>
<th>نماد</th>
</tr>
</thead>
<tbody>
<tr>
<td>عدد فرد در انتهای سریزهای جانی</td>
<td>(Q_f)</td>
</tr>
<tr>
<td>ارتفاع سریزه در انتهای سریزهای جانی</td>
<td>(Q_i)</td>
</tr>
<tr>
<td>ضریب تخلیه سریزهای جانی</td>
<td>(C_d)</td>
</tr>
<tr>
<td>عرض سریزهای جانی</td>
<td>(w)</td>
</tr>
<tr>
<td>ارتفاع آب روی سریزهای جانی</td>
<td>(h)</td>
</tr>
<tr>
<td>طول سریزهای جانی</td>
<td>(L)</td>
</tr>
<tr>
<td>عوام سریزهای جانی</td>
<td>(Q_e)</td>
</tr>
<tr>
<td>مساحت مصرف شده</td>
<td>(X_m)</td>
</tr>
<tr>
<td>شویی تنگ شدگی</td>
<td>(\gamma)</td>
</tr>
<tr>
<td>عدد فرد در انتهای سریزهای جانی</td>
<td>(Q_i)</td>
</tr>
<tr>
<td>عدد فرد در انتهای سریزهای جانی</td>
<td>(Q_i)</td>
</tr>
</tbody>
</table>

\(V_2\) سرعت متوسط کانال در پایین‌دست سریزهای جانی

\(b\) حد بالای اکتشاف در هر خط عدید سیمیسون

\(f\) ثابت انگار در روش حل عدید سیمیسون

\(a\ldots g\) ضرایب ثابت روابط برآورد ضریب تخلیه سریزهای جانی

73
منابع مورد استفاده

1. فراوری، م. 1379. بررسی هیدرولیک جریان و اصلاح ضریب تخلیه سرریز جانی تحت تأثیر شیب دیواره در بالادست. پایان‌نامه کارشناسی ارشد. دانشگاه کشاورزی، دانشگاه شیراز.

