بررسی ضریب تخلیه سرطانی جانبی مایل در کانال‌های مستطیلی غیر منشوری

چکیده
سرطان‌های جانبی از جمله سازه‌های آبی می‌باشند که به طور گسترده‌ای در سیستم‌های آبیاری، زرگری و فضاپلمر سورد استفاده می‌گرددند. در پژوهش‌های رایگان، نتایج نشان داد که ضریب تخلیه بیش از حد وارده در این زیرساخت‌ها، تاثیر ارتفاع سرطان به علت ۷۵ آزمایش نشان داد. این پژوهش، براساس داده‌های آزمایشگاهی، مدل‌سازی شده که می‌تواند در شرایط جریان زیر بحثی شود. در نهایت، مدل ارائه‌شده یک گزارش‌های پزشکی دیگر در شرایط مختلف شپ جانی و کف مورد ارزیابی و آزمون شده. نتایج به دست آمده در برآورد دیگر سرطان‌ها، با خطای نسبی کمتر از درصد هم‌خوانی مناسبی را نشان داد.

واژه‌های کلیدی: سرطان‌های جانبی، ضریب تخلیه، کانال‌های غیر منشوری

مقدمه
سرطان‌های جانبی به طور گسترده‌ای برای کنترل سطح آب در سیستم‌های آبیاری و زرگری، به‌منظور انحراف آب منازل و حفاظت از سیل و یا کنترل سیل‌های شهری مورد استفاده قرار می‌گیرند.

۱. استدلال‌های آبیاری، دانشگاه کشاورزی، دانشگاه شیراز

۶۳
حضور جریان یک شبکه فلزی به‌طور مداوم به سیستم انتقال موازات گیرنده بادی 10 متری عرض ضوئی 75 متری، در داخل جریان، مصادف شد. ناحیه فری در داخل جریان در سراسر پیوسته جاسی، با کنار گذاشتن بادی از پرتاب یا ارتباط سیریز جاسی، با کنار گذاشتن مستقیم پرتاب‌های 14 و 17، از منصفانه گیرنده در داخل سیستم، بادی از 15 و 16، از محصولات گیرنده در داخل جریان 97 ساله کلیه انجام شده است (11 و 14)، و بادی در مورد کانال‌های انتقال مطالعاتی در سال 1997 (20) انجام گرفت، و نهی سومی (18) ضریب تخلیه را به طور مادی بررسی نمود. احتمالاً اولین راهپیمایی در هیدرولیک سیریز جاسی توسط دوماروسی (6) ارائه شده است. بیشتر بررسی‌های انجام شده در زیسته کانال‌های مستقیم در شرایط زیر بحثی و کنار در کانال‌های سیریز یک‌بادی است. در کانال‌های زیر بحرانی سطح آب در طول کانال مستقیم در اجزای بالایی (7 و 8) در صورتی که در حال فضول بحثی عکس این انتقال مقدار، و با در نظر گرفتن که جریان بالا از زیر بحرانی و در طول سیریز جاسی Folder جریان باشد، عمک آب به کمتر از عمک بحرانی در بالا سیریز 24.8 ارائه شده است.

ناکامی در باره سیریزهای جاسی مایل به‌واحشی صورت تبدیل‌رسی است. بنابراین، در این مقاله ضریب تخلیه در سیریزهای مایل و کنار شرایط غیر منشوری و منشوری، از طریق مدل فیزیکی و انجام آزمایش‌ها مورد بررسی قرار گرفته و مدل مناسب ارتباط گردد است.

مواد و روش‌ها
عملیات آزمایشگاهی در آزمایشگاه هیدرولیک بخش آب‌و‌زیستی داشته‌گاه بخش آب‌و‌زیستی همان که به شکل 1 دیده می‌شود، آزمایش در یک کانال مستقیم به ضریب 0/24 متر و شبکه کشف شده بود. در این اساس از محصولات مایل 5 المتری و فاصله آب‌و‌زیستی 5 متر در ابتدای کانال اصلی به منظور آرام نمونه جریان و منظوم نسیم شد.

جی 1381
علوم و فنون کشاورزی و منابع طبیعی و جلد ششم و شماره سوم و بازی 1381

64
جدول 1. محدوده مقادیر مختلف متغیرهای استفاده شده در آزمایش‌ها

متغیر	عامل مشتری	تعداد مشتری	طول سریز (متر)	بالاترین (متر)	کانال (متر)	شیب کف	شیب تاب (متر)	عدد ورودی	دیگر ورودی	به‌هاین تاب (س)	شیب ناحیه سریز	
(ب)	0.8-0.6	0.8-0.6	16	10	10	0.02	0.005	120	120	0.02	0.005	0.005
(الف)	0.8-0.6	0.8-0.6	16	10	10	0.02	0.005	120	120	0.02	0.005	0.005

شکل 1. نمایی از محل کارگذاری سریز جانی: پلان و ب) پروپیل

شکل 2. نمایی از محل کارگذاری سریز جانی: افق

اصول پایه مدل‌های فیزیکی و آنالیز متغیرهای بدون بعد توسط
پژوهشگاه دیگری بررسی گردیده است (4، 6 و 8).

بر پایه نشانه‌ی بانکینگهام (Buckingham) (21) متغیر را
می‌توان در n-k دسته بدون بعد طبقه‌بندی نمود. که دراین
حالت k تعداد بعد پایه در سیستم ابتدایی می‌باشد.

متغیرهای بدون بعد حاصل شده از تئوری بانکینگهام و
فرضیات دیگر عبارتند از:

\(F_r, F_r', F_r'', P_1/2, P_1/1, (Y_1-P_1)/L, (Y_1-P_1)/w, \\
(Y_1-P_1)/P_1, (Y_1-P_1)/Y_1, P_2/Y_2, P_3/Y_3, (Y_2-P_2)/L, \\
(Y_2-P_2)/w, (Y_2-P_2)/P_2, (Y_2-P_2)/Y_2, L/Y_2, L/Y_1, L/b_1, \\
L/b_2, b_1/b_2, b_1/y_1, b_1/y_2, y_1/y_2, v_1/v_2, v_1/v_2, R, R_2, W_2, \gamma \)

پس از تعیین متغیرهای بدون بعد، توسط روش رگرسیون
گام به گام (Stepwise regression) متغیرهای مؤثر انتخاب
گردیدند. در این روش متغیرهای بدون بعد که سطح احتمال
آن‌ها در آزمون نی‌ک (T-test) کمتر یا یکبار سطح معنی‌دار
0/01 باند.
پژوهش حاضر، بر اساس روش انگرال گیری عددی سیمسون، که از دقت بیشتری بروزدارد است، با استفاده از یک روش تجربی سریک از محاسبه گردید. با در نظر گرفتن رابطه 3 در خصوص عددی سیمسون به شکل زیر قابل محاسبه می‌باشد.

\[
q = \frac{2}{3} C_d \sqrt{\frac{2g}{h}} \frac{1}{2} dx
\]

\[
h_m = \int h(x)^{1.5} dx = \frac{2}{3} \left(f(a) + f(b) \right) + 4 \sum_{i=1}^{n} f_{2i-1} + 2 \sum_{i=1}^{n-1} f_{2i}
\]

در رابطه 3، a و b به ترتیب حد پایین و بالای انگرال زیر n مقدارهای از زیر بالا یا زیر زیر عددی می‌باشند. همچنین مقدارهای C_d به انتظار آب روی تاج سریز در طول سریز جانی با فاصله‌های 20 متری با اندازه‌گیری و استفاده گردید. اکنون با انگرال گیری از رابطه 1 و استفاده از رابطه 2، رابطه 2، مقدار ضرب تخمین (C_d) از رابطه 3 نمایش داده شده و در رابطه 3 نمایش داده شده و مقدار ضرب به عنوان متغیر وابسته در روابط رگرسیونی می‌باشد. محاسبه مقدار C_d به شرح زیر است.

\[
C_d = \frac{Q_w}{\frac{2}{3} \sqrt{\frac{2g}{h_m}}}
\]

لارم، به یادآوری است که در این پژوهش برای حذف عوامل کشت سطحی از توصیه هر (10) می‌توان بر شرط (h-P) برای آزمایشات کیفیت متر استفاده شده است. همچنین برای تغییرات روابط پیشنهادی مقادیر خطای نسبت به روابط، بر رابطه (4) برای مقادیر ضرب X_w و دبی سریز جانی استفاده شده است. در این رابطه، \(b \) و \(a \) به ترتیب مشاهده شده، متغیر محاسبه شده و نمایش داده می‌باشد.

\[
RE = 100 \frac{\sum_{i=1}^{N} \left(X_o - X_m \right)}{X_o}
\]

در این تحقیق سریز جانی برای باوردهای ضرب تخمین سریز جانی، با توجه به داده‌های آزمون‌های مختلف مدل‌های رگرسیونی تجربه گردیده و در این

تاریخ و بیان
پس از طبقه‌بندی داده‌های جمع‌آوری شده، هر کدام از سه آزمایش به دو سری آزمون بندی کنترل در پایین دست (نقطه‌های باز) و با کنترل در پایین دست با انتها نیمه سیستم (که توسط درجه کردن تی و محاسبات و تحلیل) به طور مجزا برای هر آزمایش و آزمون انجام پذیرفت، سپس بدون در نظر گرفتن حالت مشورتی کانال، برای آزمون‌های بدون کنترل در پایین دست و با کنترل در پایین دست، همچنین برای کل آزمون‌های بندی در نظر گرفتن حالت مشورتی و وضعیت پایان کانال، محاسبات تكرار گردید.

پیش‌بینی دگرگونه از جمله باس (4) با فرض خطی بدون رابطه کشت آب، مدل‌های خود را ارائه و برای ساده‌کردن از میانگین عمق آب روی ناحیه سریزی (h) استفاده نموده. در
روابط ضرایب ثابت از یکدیگر مستقل می‌باشند و انتخاب متعارف‌ها تنها به اساس ضوابط آماری و معنی‌دار بودن متغیر انجام پذیرفته است.

پس از انجام محاسبات و تحلیل آماری، نتایج آزمایش شماره ۱ در آزمون کالان بدست گرفته و در پایین‌تر مشخص گردید که ضریب تحلیل تابعی است از نسبت ارتفاع سریز در اندیس سریز جابجایی به عمق اب کالان در انتهای سریز جابجایی (P1/Y2) و رابطه مناسب با اساس حداکثر مربعات خطی به صورت رابطه ۵ می‌باشد.

\[
C_d = \frac{a}{1 + b(Y_{1} - P_1) + \frac{c}{Y_{2} - P_1} + \frac{d}{Y_{2} - P_1} + \frac{e}{Y_{2} - P_1} + f(Y_{1} - P_1)^2 + g(Y_{1} - P_1)^3 + h(Y_{1} - P_1)^4 + i(Y_{2} - P_1)^2 + j(Y_{2} - P_1)^3 + k(Y_{2} - P_1)^4 + l(Y_{2} - P_1)^5}
\]

\[a = 0.370, \; b = -1.093, \; c = 0.676, \; d = 0.676, \; e = 3.972, \; f = 0.0259, \; g = 3.972, \; h = 0.0259, \; i = 3.972, \; j = 0.0259, \; k = 3.972, \; l = 0.0259\]

همچنین، رابطه مناسب برای آزمایش شماره ۱ در آزمون کالان با کنترل در پایین‌دت به صورت رابطه ۶ و نتایج از نسبت ارتفاع سریز به عمق اب کالان در انتهای سریز جابجایی (P1/Y2) تعیین گردید.

\[
C_d = \frac{a}{1 + b(Y_{1} - P_1) + \frac{c}{Y_{2} - P_1} + \frac{d}{Y_{2} - P_1} + \frac{e}{Y_{2} - P_1} + f(Y_{1} - P_1)^2 + g(Y_{1} - P_1)^3 + h(Y_{1} - P_1)^4 + i(Y_{2} - P_1)^2 + j(Y_{2} - P_1)^3 + k(Y_{2} - P_1)^4 + l(Y_{2} - P_1)^5}
\]

\[a = 0.472, \; b = -0.642, \; c = 1.052, \; d = 0.0243, \; e = 3.457, \; f = 0.0243, \; g = 3.457, \; h = 0.0243, \; i = 3.457, \; j = 0.0243, \; k = 3.457, \; l = 0.0243\]

همانطور که در شکل‌های ۳ و ۴ دیده می‌شود، تغییرات محاسبه شده در مقابل خطای برابر (فناوری C) محاسبه شده و مشاهده شده قابل قبول بوده و در محدوده اطراف خط افقی صفر قرار دارد.

آزمون شماره ۲ در کانال مستطیلی غیر منشوری (بیشتر در شکل‌های ۵ و ۶) به دنبال محاسبات آماری برای در سری آزمون بدست گرفته از دنباله کنترل در پایین‌دت (رابطه ۷) و با کنترل در پایین‌دت (رابطه ۸) نشان می‌دهد که در حالت بدون کنترل در پایین‌دت ضریب تحلیل تابعی از عدد فرد در انتهای سریز جابجایی (P1/Y2) و آزمون با کنترل در پایین‌دت تابعی از نسبت ارتفاع سریز در انتهای سریز جابجایی (P1/Y2) به عمق اب کالان در
شکل ۳. مقایسه مقادیر خطای برآورد در مقابل ضریب تحلیل محاسبه شده در آزمون بدون کنترل در پایین دست شماره ۱

شکل ۴. مقایسه مقادیر خطای برآورد در مقابل ضریب تحلیل محاسبه شده در آزمون با کنترل در پایین دست شماره ۱

شکل ۵. مقایسه مقادیر خطای برآورد در مقابل ضریب تحلیل محاسبه شده در آزمون بدون کنترل در پایین دست شماره ۲
سیریز جایی یا Y_i, (به یادار یاد شده در مرحله دوم) در مدل Y_i و X_{ij} به عنوان متغیرهای مستقل و متغیر Y_i به عنوان متغیر با توجه به هر مقدار در مدل Y_i نسبت به X_{ij} داده می‌شود. در نتیجه، معادله یک ضریب inline-formulaβ_{ij} بنا به Y_i و X_{ij} است به صورت زیر نمایش داده شده است.

$$C_d = a\left(\frac{b}{b_2}\right) + b\left(\frac{P_i - P_1}{Y_1}\right) + c(\gamma) + d;$$

$$a = 0.097, b = 0.235, c = 0.004, d = 0.327$$

[SE = 0.0259, RE = 3.96] \[12\]

در اینجا، Y_i نشان دهنده تغییرات ضریب تخیلی محاسبه‌شده در مدل Y_i و X_{ij} بوده و به عنوان متغیرهای مستقل در دستورالعمل محاسبه شده است. رابطه ۱۲ نشان می‌دهد که در این حالات، ضریب تخیلی محاسبه‌شده از معادله‌های با توجه به Y_i و X_{ij} به عنوان معادله‌های Fr_iیا Fr_i مشابه Fr_i و نتیجه‌گیری از انتخاب Fr_i باعث قرار گیریده و در کل نتایج در مدل Y_i و X_{ij} نسبت ضریب تابعی است از مقدار مجموعه‌ای از b_i/b_i.

در مدل Y_i و X_{ij} نسبت معنایی آزمون‌ها Y_i و X_{ij} باعث قرار گیریده و در کل نتایج در مدل Y_i و X_{ij} نسبت ضریب تابعی است از مقدار مجموعه‌ای از b_i/b_i.

$$C_d = a\left(\frac{b}{b_2}\right) + b\left(\frac{Fr_i - Fr_1}{Y_1}\right) + d\left(\frac{Y_i - P_1}{L}\right) + e;$$

$$a = 0.149, b = 0.49, c = -0.151, d = 0.079, e = 0.475$$

[SE = 0.0266, RE = 7.05] \[13\]

در شکل‌های ۱۱، مقدار ضریب تخیلی محاسبه شده توسط مدل با مقدار خطای b_i/b_i به عنوان مقدار محاسبه‌شده است. در کل نتایج، نسبت ضریب تابعی Fr_i باعث قرار گیریده و در کل نتایج در مدل Y_i و X_{ij} نسبت ضریب تابعی است از مقدار مجموعه‌ای از b_i/b_i. نتایج که در سه رابطه اخیر مانند c_{i} و d_{i} به عنوان مقدار محاسبه‌شده است.
شکل ۷ مقایسه مقادیر خطای پرآورده در مقابل ضریب تحلیل محاسبه شده در آزمون بدون کنترل در پایین‌دست شماره ۲.

شکل ۸ مقایسه مقادیر خطای پرآورده در مقابل ضریب تحلیل محاسبه شده در آزمون با کنترل در پایین‌دست شماره ۳.

شکل ۹ مقایسه مقادیر خطای پرآورده در مقابل ضریب تحلیل محاسبه شده در آزمون‌های بدون کنترل در پایین‌دست.
پرسی ضریب تخلیه سری‌های جانی مایل در کانال‌های مستطیلی غیر منشوری

شکل ۱۰: مقایسه مقادیر خطای پراوردگی در مقابل ضریب تخلیه محاسبه شده در آزمون‌های با کنترل در پایین‌دست

شکل ۱۱: مقایسه مقادیر خطای پراوردگی در مقابل ضریب تخلیه محاسبه شده در کلیه آزمون‌ها

فرآیند (۱) اقدم به ارزیابی مدل ارائه شده گردید.

الف) ارزیابی مدل بر اساس گزارش برقی و همکاران (۱) برقی و همکاران (۳) آزمایش‌های خود را در یک فلوم شیشه‌ای مستطیلی شکل منشوری به طول ۱۲ متر، عرض ۰.۳ متر با عمق ۰.۵ متر انجام دادند. در این آزمایش ضریب تخلیه در سری‌ریز جانی‌ی به تید نخست مورد بررسی فراز گرفت. محصول داده‌های استفاده شده در این پژوهش در جدول ۲ ارائه گردیده است.

ارزیابی مدل با گزارش‌های پژوهشگان دیگر

یک روش برای ارزیابی مدل استفاده از داده‌های پژوهشگان دیگر و مقایسه نتایج واقعی با مقادیر شیمی‌سازی شده است. در این مقاله با استفاده از اطلاعات برقی و همکاران (۲) و
جدول 2. محدوده مقادیر استفاده شده در پژوهش برخی و همکاران (3)

<table>
<thead>
<tr>
<th>متغیر</th>
<th>طول سریال (سانتی‌متر)</th>
<th>ارتفاع سریال (لب بترانه)</th>
<th>شیب کف</th>
<th>تعداد آزمایش‌ها</th>
<th>عدد فرود</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقدار</td>
<td>20, 30, 45, 70, 100, 190, 190-1000</td>
<td>0.05, 0.1, 1, 1.5, 5, 10</td>
<td>0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10</td>
<td>253</td>
<td></td>
</tr>
</tbody>
</table>

۱. مقایسه مقادیر دبی مشاهده شده و محاسبه شده بر اساس اطلاعات قرارگزین (1) با استفاده از رابطه 6

۲. برای 78/12 است. همچنین، مقایسه مقادیر مشاهده شده در نمودا 12 ارائه گردیده است. همان‌گونه که مشاهده می‌گردد، در دیه‌ها کمتر تخلیه بیش‌تری میان مقادیر دبی محاسبه و مشاهده شده وجود دارد، و با افزایش دبی، مقادیر دبی محاسبه شده نسبت به مقادیر واقعی کاهش می‌یابد. در کل، با توجه به این که بیشتر نقاط در محدوده 1/10 در روند این مقادیر برای کاهش دبی‌های ماهور در شرایط مختلف استفاده شده‌اند.
پرسی ضریب تخلیه سریزهای جانی مایل در کالاهای مستطیلی غیر منشوری

عرض کف نابت 10/0 متر انجام یافت. ارتفاع سریزه به‌طور مقطع به‌طور نامتراکنی برای برآورده به بدن کنترل در پاییز دست به ارتفاع آب روی سریز زیر بالادست و پایین دست سریز جانی و در شرایط با کنترل در پایین‌دست، نهایی به ارتفاع آب روی سریز در بالادست گردید. و نیز در شرایط غیر منشوری این ضریب به عامل متساوی کانال (b1/b2) وابسته است. بنابراین، توصیه می‌گردد که:

1. در شرایط کانال‌های منشوری بدون کنترل در پایین‌دست از رابطه 5 و با کنترل در پایین‌دست از رابطه 6 استفاده شود.
2. در شرایط کانال‌های منشوری و با غیر منشوری بدون کنترل در پایین‌دست از رابطه 12 استفاده گردید.
3. در شرایط عمومی استفاده از رابطه 13 از دقت خوبی برخوردار است.

نتیجه‌گیری

نتایج ارزیابی مدل در دوره‌ای از اطلاعات مستقل در کانال مستطیلی با سریزه به‌طور نامتراکنی و سریزه به‌طور باز در یک کانال دوره‌های با شیب‌های جانی مختلف نشان دهنده اعتصاب و قابل استفاده بودن مدل سریز جانی مایل در شرایط مختلف

نمادها

<table>
<thead>
<tr>
<th>نوضوح</th>
<th>نماد</th>
</tr>
</thead>
<tbody>
<tr>
<td>عدد فرود در انتهای سریز جانی</td>
<td>Fr</td>
</tr>
<tr>
<td>ارتفاع سریز در ابتدای سریز جانی</td>
<td>P</td>
</tr>
<tr>
<td>ضریب تخلیه سریز جانی</td>
<td>C</td>
</tr>
<tr>
<td>عرض سریزه جانی</td>
<td>w</td>
</tr>
<tr>
<td>ارتفاع آب روی سریز جانی</td>
<td>h</td>
</tr>
<tr>
<td>طول سریز جانی</td>
<td>L</td>
</tr>
<tr>
<td>عرض کانال در انتهای سریز جانی</td>
<td>Q</td>
</tr>
<tr>
<td>خطي استاندارد</td>
<td>X</td>
</tr>
<tr>
<td>عرض کانال در انتهای سریز جانی</td>
<td>X</td>
</tr>
<tr>
<td>شعاع هیدرولیک</td>
<td>R</td>
</tr>
<tr>
<td>عده ریزت</td>
<td>R</td>
</tr>
<tr>
<td>عدد ویر</td>
<td>W</td>
</tr>
<tr>
<td>شتاب قفل</td>
<td>g</td>
</tr>
<tr>
<td>سرعت متوسط کانال در پاییز دست سریز</td>
<td>V</td>
</tr>
<tr>
<td>عدد لایه انگلار در روش حلق عدیدی سیمیسون</td>
<td>b</td>
</tr>
<tr>
<td>نسبتاً انگلار در روش حلق عدیدی سیمیسون</td>
<td>f</td>
</tr>
<tr>
<td>ضریب ثابت روابط برآورد ضریب تخلیه سریز جانی</td>
<td>a, g</td>
</tr>
</tbody>
</table>

73
منابع مورد استفاده

1. فراوری، م. 1379. بررسی هیدرولیک جریان و اصلاح ضربه تخلیه سروری جانی تحت تأثیر شیب دیواره در بالادست. پایان‌نامه کارشناسی ارشد، دانشکده کشاورزی، دانشگاه شیراز.

