تأثیر چین و مرحله رشد بر ترکیب شیمیایی و تجزیه‌پذیری بونجه

نرسین مهیرداد، مسعود علیخانی و فغامراهی فریانی

چکیده

در این پژوهش، از جنس کیلوستون شده به سیلیکا و سازی بندگی (بندگی نیویک) و مرحله رشد (پودر گل)، ازیست که در اثر ترکیب (Medicago sativa) با روش In situ یافته شد. کیسه‌های نازه‌زین، که به ترکیب‌های اول در مرحله گل‌دهی کامل حداکثر بود، وی از جمله‌ای در مرحله‌ی شکل‌بخش و جزئیات بسیاری در اثر افزایش رشد، وی ترکیب‌های میوه و مخلوط کامل و مخلوط‌های کاملاً کامل در مرحله کامل و مرحله شکل‌بخش، ترکیب زیبایی و مخلوط کاملاً کامل در مرحله کامل کمترین ترکیب شیمیایی و تجزیه‌پذیری بونجه و تأثیرات چین و مرحله رشد روی پاتریمهای تجزیه‌پذیری منقرض بود و نتیجه‌مند مشخصی نمی‌توان گرفت.

واژه‌های کلیدی: بونجه، تجزیه‌پذیری پروتئینی، ماده خشک، مرحله رشد، ماده خشک

مقدمه

تأثیرات مختلف عنصرهای حیوانی با ترکیب چربهای متعادل، میکرو نیویک و خریداری، نزدیک تر خوب و ارائه‌ی انحرافی‌های راهبردی که به ترکیب میوه و مخلوط کاملاً کامل در مرحله کامل کمترین ترکیب شیمیایی و تجزیه‌پذیری بونجه و تأثیرات چین و مرحله رشد روی پاتریمهای تجزیه‌پذیری منقرض بود و نتیجه‌مند مشخصی نمی‌توان گرفت.

1. به ترتیب دانشجو سایه کارشناسی ارشد، استاد و استاد علوم دامی، دانشگاه کشاورزي، دانشگاه صنعتي اصفهان
شده که حدد ۸۰ تا ۸۵ درصد از مواد خشکی کپاس فیبر در اولین چین علی‌الفا هم‌افزاری و بقای قطعات دو و گنجا در اولین رشد بررسی شده و بیش از ۱۵ درصد دائمی این ماده به نسبت ۲۸ درصد در روی کاهش می‌یابد دقتی بیش از اواست تیماری نسبتاً تاکستان خواهد داشت. (۳) اگر یک تاریکی نشان دهند، ماژر مواد خشکی کپاس قیمتی در چندین چین غنی‌تر که در اوایل فصل به رهبردر ایالات شمالی آمریکا برداشت شد، گواست مواد خشکی کپاس از اول گیاهان که در اولیا آمارا گزارش کردند که با افزایش سن گیاه قسمت محلول و تجزیه یافته کاهش یافته است. موسولن (12) ظاهره‌هایی را در نظر گرفتیم ماده خشکی، تولید شیر واقعیت یافته که از آفریقا در گهای عنوان کردن که افزایش دیواره سلولی و کاهش میزان پروتئین خام با افزایش مرحله فسفرولوژی رشد، میزان مصرف ماده خشکی، تولید ظاهراً نشان داد که محلول و قابلیت هضم گیاهان علوفه‌ای شامل درجه حرارت، سن گیاه، شدت حرارت محیط باعث افزایش لیگنین و دیواره سلولی می‌شود و قابلیت هضم و تجزیه پدیده رشد دوباره نتایج را در مقایسه با رشد بهره کاشت می‌دهد (۱۹). روش گزین و مرحله برداشت نیاز در مرحله تجربی مؤثر است (۱۱ و ۱۳). نظر به اینکه محلول رشد بیولوژیکی بعضاً از گونه‌های کپاس علوفه‌ای نسبت به سایر گونه‌ها در راهبردیهای مختلف اتفاق می‌افتد، از اینرو آشفتگی است که مرحله رشد، این افزایش که به تاریخ
تأثیر چین و مرحله رشد بر ترکیب شیمیایی و تجزیه‌پذیری بیوتنه

سلولی و دیواره سلولی بدون همی سلولز نمونه‌های بیوتنه تئیمین، سپس پروتئین حاصل از این نمونه‌های آنالیز شده به روش کم‌دما مشخص شد (11). مقادیر 3/5 کرم بیوتنه (حداکثر 16 میلی‌گرم به‌ازای هر سانتی‌متر مربع) داخل کیسه‌های تایلوپنی از جنس داکرون به ابعاد 73 × 5 سانتی‌متر، و فشار منفی 50 میکرو‌بار، در طول 3 دقیقه بر روی بیونژه خواهد شد. سانتی‌گراد قرار داده شد (5 و 8). به‌منظور توقف تجزیه نمونه‌های داخل کیسه، با آب سرد به کنار آنها آبیکش شدند. زمان‌های اکونوپیکون شامل 16/24 و 48 ساعت بود (13). درصد ماده خشک و پروتئین ناییدیش شده (10) و قابلیت هضم ماده آلی (6) از طریق فرمول‌های زیر محاسبه گردیدند:

<table>
<thead>
<tr>
<th>تناز و بحث</th>
</tr>
</thead>
</table>

نتایج این آزمایش نشان داد که بین سه مرحله، مرحله بدون گل بیشترین مقدار پروتئین خام و مرحله گل کامل کمترین مقدار را دارد و دومین انتخاب بین آنها وجود داشت (0/5 پم). چنین اول کمترین و چنین بیشترین پروتئین را به خود اختصاص دادند (0/5 پم) (جدول 1).

سبک‌های فیبری گیاه افراش یافته و دیواره سلولی به طرف سلولی شدن پیش می‌رود و دارد مواد مغذی به وراث پروتئین‌های کم‌آمیز یافته دامنه پروتئین خام را تا به ترتیب تغییر می‌کند. درصد خام رشد از 14/23 درصد در صورت چهاربار این ده کمال

توسط نرم افزار NAWAY تجزیه‌پذیری بالقوه با استفاده محاسبه گردید و در این

\[P = D = a + b(1 - e^{-ct}) \]

فرمول ضرایب عبارت نیست (16):

\[T = \text{Tجزیه پذیری بالقوه} \]

\[a = \text{عرض از مبدأ در زمان و ناشده مواد محلول و کامل} \]

\[b = \text{تجزیه شده می‌باشد که به سرعت از کیسه‌ها خارج می‌گردد.} \]
جدول 1. میانگین ترکیب شیمیایی بیونجه در پنج نویت چین و سه مرحله رشد

<table>
<thead>
<tr>
<th>نویت چین و مرحله رشد</th>
<th>ماده آلی</th>
<th>NDICP ^*</th>
<th>ADICP ^*</th>
<th>NDF ^*</th>
<th>ADF ^</th>
<th>P<0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>چین اول</td>
<td>89/9^a</td>
<td>21/18</td>
<td>0/12</td>
<td>52/15</td>
<td>18/85</td>
<td>2/80</td>
</tr>
<tr>
<td>چین دوم</td>
<td>89/05^a</td>
<td>20/9</td>
<td>5/13</td>
<td>51/22</td>
<td>14/63</td>
<td>2/78</td>
</tr>
<tr>
<td>چین سوم</td>
<td>89/59</td>
<td>21/18</td>
<td>5/19</td>
<td>51/24</td>
<td>18/79</td>
<td>2/75</td>
</tr>
<tr>
<td>چین جهارم</td>
<td>90/05</td>
<td>23/18</td>
<td>8/19</td>
<td>60/23</td>
<td>24/83</td>
<td>2/84</td>
</tr>
<tr>
<td>چین نهجم</td>
<td>90/83</td>
<td>21/38</td>
<td>6/12</td>
<td>51/24</td>
<td>18/79</td>
<td>2/75</td>
</tr>
<tr>
<td>مرحله بدن گل</td>
<td>88/9^a</td>
<td>19/25</td>
<td>4/5</td>
<td>52/15</td>
<td>18/85</td>
<td>2/80</td>
</tr>
<tr>
<td>مرحله 20 - 10% گلده</td>
<td>89/55</td>
<td>21/33</td>
<td>5/14</td>
<td>51/24</td>
<td>18/79</td>
<td>2/75</td>
</tr>
<tr>
<td>مرحله 20 - 10% گلده</td>
<td>91/09</td>
<td>23/58</td>
<td>8/14</td>
<td>60/23</td>
<td>24/83</td>
<td>2/84</td>
</tr>
</tbody>
</table>

*NDICP: نیترات نیتریک، ADICP: آسیدت هیستامین، NDF: نیتروژن داری نسبی، ADF: انرژی داری نسبی

1. دیواره سلولی بدون همی سلول
2. دیواره سلولی
3. پروتئین دیواره سلولی بدون همی سلول
4. پروتئین دیواره سلولی

اعداد در هر ستون با حروف مختلف (a,b,c) اختلاف معنی دار می‌باشد.

ماده شکر در محیط تحت تأثیر ساختمان فیزیکی گیاه میزان دیواره سلولی، دیواره سلولی بدون همی سلول، اجزای فیبری و ماده معبدی است، به‌طوری که هر اجزای فیبری در میزان اجزای محلول کاهش می‌یابد. در نتایج این آزمایش نیز دیده شد در هر نویت چین بیونجه با افزایش بلعه و اجزای فیبری، میزان اجزای محلول سر نژولی پیدا کرد. مواد که دارای مواد معبدی بیشتری هستند، میزان مواد معبدی در آب به راحتی شسته می‌شوند از ماده خشک محلول بیشتری بخوردارند. (10) این موضوع نیز از نتایج آزمایش متوافق داشت، به‌طوری که چین نوبت سوم با بیشترین مقدار ماده خشک محلول با هر چه چنان نوبت بیشتر چین بیونجه اختلاف معنی‌دار داشت (جدول 1 و 2)، همچنین ماده آلی محلول نیز بین سه مرحله رشد اختلاف معنی‌دار (P<0.05) داشت (جدول 3) همچنین و همکاران (11) ماده خشک محلول را در انواع رشد رویشی ارائه کردند.

* (a) رابطه بالا رابطه بین مقدار نیترات رویشی و مقدار نیترات محلول

ماده شکر محلول (a) رابطه بالا رابطه بین مقدار نیترات رویشی و مقدار نیترات محلول (P<0.05) داشت (جدول 3). همچنین و همکاران (11) ماده خشک محلول را در انواع رشد رویشی ارائه کردند.

162
جدول ۲ همبستگی بین گیاه شیمیایی بر نیمه‌سوز و تجزیه‌ذپبری بوته‌های ندارد

<table>
<thead>
<tr>
<th>پروتئین</th>
<th>نیمه‌سوز</th>
<th>NDF</th>
<th>0.6۱</th>
</tr>
</thead>
<tbody>
<tr>
<td>AICP</td>
<td>ADICP</td>
<td>DM</td>
<td>DOM</td>
</tr>
<tr>
<td>۱</td>
<td>۰.۶۲***</td>
<td>۰.۵۸**</td>
<td>۰.۴۳***</td>
</tr>
</tbody>
</table>

۱. ۵ ماده آلی قابل تجزیه
۶. ماده خلک
۷. پروتئین دیواره سولو بلندی فیلتر
۸. پروتئین دیواره سولولی

**: به ترتیب اختلاف معنی‌دار در سطح ۰.۰۵ و ۰.۱ درصد می‌باشد.

جدول ۳ مقایسه منابعی ضرایب لوله‌ای و تجزیه‌ذپبری مؤثر ماده خلک بوته در پنج نویت چین و سه مرحله رشد

<table>
<thead>
<tr>
<th>EDDM</th>
<th>EDDM</th>
<th>NSD</th>
<th>% تجزیه ذپبری</th>
<th>C (%/ح)</th>
<th>b (%)</th>
<th>a (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۲/۶۲</td>
<td>۴۴/۷۶</td>
<td>۳۹/۶۲</td>
<td>۷۳/۵۶</td>
<td>۷۳/۵۶</td>
<td>۲۳/۲۸</td>
<td>۲۳/۲۸</td>
</tr>
<tr>
<td>۴۴/۷۶</td>
<td>۷۳/۵۶</td>
<td>۳۹/۶۲</td>
<td>۷۳/۵۶</td>
<td>۷۳/۵۶</td>
<td>۲۳/۲۸</td>
<td>۲۳/۲۸</td>
</tr>
<tr>
<td>۵۵/۵</td>
<td>۴۴/۷۶</td>
<td>۳۹/۶۲</td>
<td>۷۳/۵۶</td>
<td>۷۳/۵۶</td>
<td>۲۳/۲۸</td>
<td>۲۳/۲۸</td>
</tr>
<tr>
<td>۷۳/۵۶</td>
<td>۷۳/۵۶</td>
<td>۷۳/۵۶</td>
<td>۷۳/۵۶</td>
<td>۷۳/۵۶</td>
<td>۷۳/۵۶</td>
<td>۷۳/۵۶</td>
</tr>
<tr>
<td>۳۹/۶۲</td>
<td>۳۹/۶۲</td>
<td>۳۹/۶۲</td>
<td>۳۹/۶۲</td>
<td>۳۹/۶۲</td>
<td>۳۹/۶۲</td>
<td>۳۹/۶۲</td>
</tr>
</tbody>
</table>

۱. ماده خلک محلول که سریعاً زیست‌ها خارج شده
۲. ماده خلک یا محلول که یا نیمه‌سوز تجزیه را دارد
۳. سرعت تجزیه‌ذپبری در ساعت
۴. اثر اکثریت معنی‌دار به‌ارام‌های a, b, c, d و e تجزیه‌ذپبری (EDDM) اعداد در هر ستون با حروف مختلف (a, b, c, d و e) اختلاف معنی‌دار دارد (p<۰/۰۵)
۵. تجزیه‌ذپبری مؤثر ماده خلک در سرعت‌های گیاهی (k) در ۰/۶ درصد و ۰/۸ درصد در ۰/۶ درصد
تبعیضین میزان فاکتور B پروتون خام را داشت زیرا اجزای
فیبری کمتری را دارد بویه (جدول 5). در گزارشی (11) آمده
است که تأثیر بلعی فاکتور B پروتون خام مؤثر است. زیرا این
پخش با افزایش دیواره سلولی بیشتر تحت‌الشعاع قرار می‌گیرد.

میزان تجزیه‌پذیری در سطح

\[(C=\text{Rate of degradation of } B \text{ fraction}) \]

سرعت جهان‌سوزی دهلی کامل با کمترین نسبت تجزیه‌پذیری ماده
خشک در ساخت با دو مرحله دریگر رشد پوئنجه خلاف
معنی ماند (جدول 3). چنین نتیجه‌گیری خود می‌تواند
چهارم با ترتیب بکار می‌برند و تجربیات میزان فاکتور B
ماده خشک با کپی‌گیری به‌طور مشابه متغیر (جدول 3) در
هزارده و همکاران (9) اختلاف معنی داری بین مرحله گل
دیه کامل و اولی اولی گل دیه در سرعت تجزیه پذیری ماده خشک
مشااهده شده است.

سرعت تجزیه‌پذیری در ساخت ماده آلی و پروتون خام بین
سه مرحله رشد اختلاف معنی‌دار نداشتند (جدول 5). فاکتور B
ماده آلی در چهارم پرتوگری با بیشترین مقادیر با بقیه نویت
چنین پوئنجه اختلاف معنی‌دار (جدول 3) داشت.

میزان سرعت تجزیه‌پذیری در ساخت پروتون خام در مرحله
20-10/1 گل دهی بیشتر از مرحله بدون گل و گل دیه کامل
بویه، ویل میزان تجزیه‌پذیری (جمع حاصل از فاکتورهای a و b)
با بلعی گیاه کاهش یافت (جدول 5).

\[(E=\text{Effective Degradability}) \]

تجزیه‌پذیری مؤثر

این فرمول نشان دهنده میزان عبور مواد از کشک به است. در این
آزمایش در سرعت عبور 8 و 12 درصد در ساخت محاسبه گردید.
تجزیه‌پذیری مؤثر ماده خشک و پروتون خام با هر دو سرعت
عبوردر سه مرحله رشد اختلاف معنی‌دار (جدول 5) داشت
(جدول 3). هفتمین و همکاران (11) 10 درصد کاهش
در میزان تجزیه‌پذیری مؤثر ماده خشک با افزایش بلعی یونجه
مشاهده کرده‌اند. علت کاهش تجزیه‌پذیری مؤثر ماده خشک با
افراشیس سن سن، افزایش دیواره سلولی، دوباره سلولی بدون

داشت (جدول 4). چنین نتیجه‌گیری با بقیه نویت چنین پوئنجه اختلاف معنی‌دار
ماده آلی محلول با بقیه نویت چنین پوئنجه اختلاف معنی‌دار
(جدول 5). داشت (جدول 4). بردسی (16) نشان داد که با
افراشیس محلول که خورت محلول آن کاهش می‌یابد.

پروتون خام محلول نیز بین سه مرحله رشد اختلاف
معنی‌دار (جدول 5). چنین نتیجه‌گیری با بیشترین میزان
پروتون خام محلول با بقیه نویت چنین پوئنجه
چهارم و پنجم اختلاف معنی‌دار (جدول 5). داشت (جدول 4).
چنین نتیجه‌گیری با بقیه نویت چنین پوئنجه
دهی اولی اولی گل دیه و گل دیه کامل به ترتیب 20/24/3
(جدول 5). پرتوگری در اواست مرحله رویشی، اولی گیاه
دخی اولی اولی گل دیه و گل دیه کامل به ترتیب 20/24/3
(جدول 5). شاید بتوان از
عوامل اختلاف در میزان پروتون خام محلول در محدود
این آزمایش باید بررسی‌های احجام شده را به شرط باعث به
ویه‌ای معنی‌دار محلول عملاً ایستیファهای احجام شده و در
نیازه محلول کمتر می‌شود (16).

میزان شکاف‌ناپذیر و لی قابلیت

b (Slowly and Potentially degradable fraction)

چنین نتیجه‌گیری با بقیه نویت چنین پوئنجه اختلاف معنی‌دار
(جدول 5). داشت (جدول 3). چنین نتیجه‌گیری با بقیه
چهارم با کمترین میزان فاکتور B ماده خشک، اختلاف معنی‌دار
(جدول 5) بود (جدول 3). با توجه به بقیه نویت چنین و مرحله
چهارم با کمترین دهی کامل و بقیه نویت بدون گل به ترتیب
با کمترین و بیشترین میزان فاکتور B ماده خشک، اختلاف معنی‌دار
(جدول 5) داشت (جدول 3). ضرایب a و b ماده
خشک تحت تأثیر محلول بلعی گیاه می‌گیرد (9). فاکتور
ماده آلی بین سه مرحله رشد در هر نیاز از چنین پوئنجه
اختلاف معنی‌دار داشتند (جدول 4). فاکتور b پروتون خام در
مرحله بدون کل با میان میزان دیگر رشد اختلاف معنی‌دار
(جدول 5). داشت (جدول 4). چنین نتیجه‌گیری با بقیه نویت چنین پوئنجه

122
جدول 4 میانگین ضرابیت E, D, A و تجزیه پذیری مؤثر آلم اینیمهم در پنج نوت چین و سه مرحله رشد

<table>
<thead>
<tr>
<th>EDOM 8</th>
<th>EDOM 6</th>
<th>RSD</th>
<th>تجزیه پذیری</th>
<th>C (%/h)</th>
<th>b (%)</th>
<th>a (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۸.۳ a</td>
<td>۵۶.۷ a</td>
<td>۴.۳۱</td>
<td>۸۰.۰۸</td>
<td>۸۳.۵۷</td>
<td>۱۱۷۸ a</td>
<td></td>
</tr>
<tr>
<td>۵۱.۱ a</td>
<td>۴.۳۱</td>
<td>۸۲.۰۶</td>
<td>۸۱.۱ b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۵۷.۶ b</td>
<td>۴.۳۱</td>
<td>۸۲.۰۶</td>
<td>۸۱.۱ b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴۰.۱ c</td>
<td>۴.۳۱</td>
<td>۸۲.۰۶</td>
<td>۸۱.۱ b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۵۰.۸ c</td>
<td>۴.۳۱</td>
<td>۸۲.۰۶</td>
<td>۸۱.۱ b</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 5. مقایسه میانگین ضرابیت E, D, A و تجزیه پذیری مؤثر پروتئین خام بیوئنچ در پنج نوت چین و سه مرحله رشد

<table>
<thead>
<tr>
<th>EDCP</th>
<th>EDCP</th>
<th>RSD</th>
<th>تجزیه پذیری</th>
<th>C (%/h)</th>
<th>b (%)</th>
<th>a (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۸.۳ a</td>
<td>۵۶.۷ a</td>
<td>۴.۳۱</td>
<td>۸۰.۰۸</td>
<td>۸۳.۵۷</td>
<td>۱۱۷۸ a</td>
<td></td>
</tr>
<tr>
<td>۵۱.۱ a</td>
<td>۴.۳۱</td>
<td>۸۲.۰۶</td>
<td>۸۱.۱ b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۵۷.۶ b</td>
<td>۴.۳۱</td>
<td>۸۲.۰۶</td>
<td>۸۱.۱ b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴۰.۱ c</td>
<td>۴.۳۱</td>
<td>۸۲.۰۶</td>
<td>۸۱.۱ b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۵۰.۸ c</td>
<td>۴.۳۱</td>
<td>۸۲.۰۶</td>
<td>۸۱.۱ b</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. پروتئین خام محلول که سرعت تجزیه را افزایش می‌دهد.
2. سرعت تجزیه پذیری در سه مرحله.
3. افزایش سرعت تجزیه پذیری در سه مرحله.
4. اکثریت سرعت تجزیه پذیری در سه مرحله.
5. افزایش سرعت تجزیه پذیری در سه مرحله.
6. افزایش سرعت تجزیه پذیری در سه مرحله.
بروتکل‌های عکس‌گیری دسترس در شیمیایی و ترکیب شیمیایی و تجزیه‌پذیری پونجه به شدت تحت تأثیر مولکول رشد بود. پونجه در مرحله بدون گل سطح بروتکل و ماده آلی محلول بیشتری ایجاد کرد و سطح بروتکل محلول فاکتور مهم در متابولیسم ایجاد کرد و غیر بروتکل در حیوانات تبخیر کند. این است که برتری محلول به علت تجزیه سریع این بخش در شیمیایی باید استفاده از یک خطی مولکول غیروبری را کاهش می‌دهد و از طریق برداشت در مرحله گل دهی کامل باعث کاهش ارزش غذایی و قابلیت تجزیه می‌شود. بین سه مولکول اختلاف معنی‌دار (0.05% p) در ترکیب شیمیایی پونجه دیده شد.

تأثیر مرحله در مرحله بارا نارمالکه یکی پونجه بین هر تیول و چین نمونات بود شاید نتوان علاوه بر مرحله رشد، شرایط آب و هواپیش منطقه‌ها از این رابط دخیل دانست. با توجه به اهمیت ترورش نشکنارنگان در ایران و لزوم استفاده از مواد علوفه‌ای در تغذیه آنها ناز از اطلاعات کافی از کیفیت علوفه و میزان تجزیه‌پذیری مواد مغذی موجود در آنها بسیار به شرایط محیطی، رقم گیاه، تیول و مرحله رشد برای ایجاد مدیریت صحیح تغذیه لازم می‌باشد.

نتایج گیری

در این پژوهش بر روی نیازهای میزان تجزیه پذیری را چین نویس سوم داشت و از طرف دیده شد که مرحله 100/201% گل‌دهی بهترین زمان برداشت و نویس بود. بررسی‌های به دست آمده نشان داد با افزایش مرحله درصد مقدار فاکتور a (مواد محلول)، تجزیه‌پذیری مواد غذایی کاهش و مقدار اجزای تغییر و برتری دیواره سلولی افزایش یافت. مقدار بروتکل دیواره سلولی شناکی در میزان تجزیه‌پذیری علوفه مورد است. (11)

منابع مورد استفاده

3. فضولی، ج. 1371. تغییرات شیمیایی و انرژی خام مانیح خوراکی دام استان گیلان. پایان نامه کارشناسی ارشد علوم دامی، دانشگاه تربیت مدرس.
4. کریمی، ج. 1379. پونجه. چاپ اول. مرکز نشر دانشگاهی تهران.
5. نیروش گستر، م. 1379. تغذیه دام (ترجمه: س. دهقانی و. ج. ناصری مقدم). انتشارات جاری، مشهد.
تأثیر چین و مرحله رشد بر ترکیب نیتروژن و تجزیه‌پذیری بونه