استفاده از کتیرا در سس ماپونژ به چگونه مواد پایدار کننده و قوام‌دهنده وارداتی

غلامرضا مصباحی, جلال جمالیان و حجت الله گلکار1

چکیده

سس ماپونژ محصولی امریکایی از نوع رومی در آب است که برای پایداری بهتر امولسیون آن، گذشته از مواد امولسیپرایی که توسط زرده تخم مصرف شده ساختار آن ضعیف می‌شود، از مواد پایدار کننده و قوام‌دهنده مختلفی نیز استفاده می‌شود. کارخانه‌های تولید کننده سس در ایران هر‌شب با صرف مقدار زیادی شیر نسبت به تهیه مواد مذکور از شکرورهای خارجی اقدام می‌کنند. در حالی که ایران عمدتاً به تولید کننده کتیرا در جهان است. هدف این پژوهش جایگزین کردن مقدار مناسبی از صنف کتیرا به چگونه مواد مورد اشاره در فرمولاسیون سس ماپونژ سی باند، به طوری که عملکرد و خصوصیاتی مشابه آنها در سس‌شناسی دهه پس از تهیه و آماده‌سازی پودر کتیرا مورد بررسی قرار گرفته. نتیجه در صفحه نخست از آزمایش‌های مقادیر 0، 0.2، 0.4، 0.6 و 1 درصد کتیرا در فرمولاسیون سس ماپونژ تولیدی یکی از کارخانه‌ها، جایگزین مواد پایدارکننده و قوام‌دهنده وارداتی آن شد. سپس ویژگی‌های ظاهری سس‌ها انداره‌گیری شد. نتایج نشان می‌دهد که در حالی که نظریات از کتیرا ویژگی‌های ظاهری سس مشابه سس تجاری است، برای اطمینان بیشتر از مناسبی مورد غلظت انجام شده کتیرا، آزمون پایداری امولسیون نیز بر روی سس‌ها انجام گرفت. آنگاه سس‌های کتیرا با غلظت تعیین شده در بررسی عملکرد آنها ارزیابی و در محیط‌های مختلف قرار گرفتند. پژوهشی یک نوع سری‌های تولیدی در منابع دامی 3/5 درجه سانتی‌گراد نگه‌داری شد و در فواصل زمانی مختلف گرمایی و pH و فشارهای مختلف رطوبتی و pH، وضعیت میکرو‌بیوی و ارزیابی حسی (بیماری و طعم) روش نیز بر روی آنها صورت گرفت و نتایج مقایسه شد.

نتایج بدست‌آمده نشان داد که میزان محصول کتیرا از لحاظ خصوصیات بررسی شده از کیفیت قابل قبول برخوردار بوده و با سس تجاری مشابهی دارد. بنابراین نتایج استفاده از غلظت مناسب کتیرا در سس ماپونژ را به عنوان جایگزین مناسب برای سایر مواد پایدار کننده و قوام‌دهنده به تولید کننده‌ها توصیه کرد.

واژه‌های کلیدی: سس ماپونژ، کتیرا، مواد پایدار کننده، مواد قوام‌دهنده

1. به ترتیب مریم، دانشور و دانشجوی سابق کارشناسی ارشد علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه شیراز

191
مقده

با پراکنده شدن ذرات یک فاز فاز (فاز پراکنده) درون فاز دیگر (فاز پیوسته) بی‌پایان این این دو فاز در یکدیگر حل شود، امولسیون به وجود می‌آید. سن سی‌بی گازی در این امولسیون از نوع امولسیون روانگ در آب می‌باشد (12، 24). در محصولات امولسیونی، پایداری کامل وجود دارد (2 و 2) به عبارت دیگر یا گسترش زمان در اثر جامدین ذرات فاز پراکنده به‌هم، امکان شکستن امولسیون وجود دارد. در پایداری امولسیون عوامل مختلفی همچون دما، اندامی دراوان، جلوگیری از حضور مواد حارکه میکانیکی، هرکره، حضور یا عدم حضور مواد امولسیون کننده، پایداری کندن و قواعدنه و ... موثر هستند(12).

اکثر مواد هیدروکلورید (Hydrocolloids) (مانند ساخته‌گر) علائم‌های غیر احساسی امولسیونی با عنوان پایداری نامیده می‌شود. به علت تغییر مواد تأمین نمی‌شود. با استفاده از امولسیون‌های جدید و پیشگامی و فشار فاز امولسیون لولیکوزی (Propylene glycol alginate) (PGA) پایدار و وسایلی همچون ترکیبات مایع با شکل‌گیری می‌کند. ترکیبات مایع با شکل‌گیری به‌طور طبیعی قوی در اطراف ذرات فاز پراکنده (پرخ) به عنوان پایدار کننده عمل می‌کنند (13) (2 و 2). می‌گوید که این آدامه‌ای از خواص دکتر شده از خواص بسیار دیگری نیز برخوردارند. پایداری کاربرد وسیع در تولید محصولات غذایی دارد (8، 9، 20 و 28).

ساخته‌گر از گیاه گون ترشح می‌شود و استفاده از آن به پیش‌حرز سال قبل می‌رسد. گیاه گون در مناطق گرم و خشک بیشتر در آسیا، آنتاریو، ایالات متحده و برزیل نیز بروز کرده است. از این منظر به‌داند گرفتن روش‌های دارویی، روش‌های غذایی و چمن‌دهی دارد (1) بایان‌های معنوی مقدار زیادی از آن به سایر کشورها صادر می‌شود.

در ساخته‌گر کردن حاوی پروتئین و پیکتی دار به مقدار زیادی یافته می‌شود (1 و 2) بنا بر این‌ها، این ماده دانل دیک- گالاکتوژ (Galactose - Al - قارچات، Al - ارزابوزن، Al - زیلوزن، Al - زیلوزن، Al - روابط، Al - روابط، Al - روابط) کالکتوریکس اسید و گلوکورونیک اسید حاوی می‌شود (4 و 28). صمغ کتیرا را می‌توان به دو جزء محول و غیر محول تقسیم کرد. جز غیر محول آن در آب حالت مولتوم پیدا کرده و به سوختن زد در می‌آید. این فست فست حداکثر 70 درصد و گونترین دلیل گون وجود دارد که به گلکوتاکتوژ و زیلوز اتصال دارد. خاصیت قارچات دهگی، افزایش و یکپارچگی ایجاد زد به همراه کارا در میان ماده باسیون در ساخته‌گر آن بستگی دارد. جز حاوی محول کتیرا که حداکثر 40 درصد وزن آن را تشکیل می‌دهد تراگانکین (Tragacanth) اسید و آرائیز و وجود دارد (2 و 20).

پژوهش‌های نسبتاً زیادی در مورد صمغ کتیرا، خواص و کاربردهای آن در مواد غذای صورت گرفته که به چند مورد آن اشاره می‌شود.

در سال 1973 و 1974، ویل و هیلر در پژوهش کردند که بازالت پیکتی به محلول یک درصد کتیرا زد pH=8 حاصل می‌شود این pH=5 حاصل محکم است (28).

در سال 1975، دان تائور فیکیوری گلیکول آلزیان (Propylene glycol alginate) (PGA) که گلیکول آلزیان در پایداری امولسیون روغن در آب مورد مطالعه و مقایسه قرار دادند (11).

در پژوهش‌های انجام شده در سال 1991 استفاده از کتیرا به جای ماده پایدار کننده پروپیولیک گلیکول آنزیمات در تولید سمن سالاد مورد بررسی قرار گرفت و پیمان شد که سس سالادهایی که در تولید آنها از کتیرا استفاده داشت امولسیون پایدارتری هستند (7).

هاگوارا و شیری در سال 1992 مقاله مختلف کتیرا را در رژیم غذایی موش‌های آزمایشگاهی مورد استفاده قرار دادند و در نتایج عملن کردند که صمغ مایع خونه الأثر سرطان‌زا بود. نشان داده است (15).

در این پژوهش‌ها هدف این است که صمغ گیاهی و کاملاً طبیعی کتیرا در سس مایویت جانشینی معاد لاید پایدار کننده و قواعد به‌داند وارداتی ماند زاناتان (Xanthan) گردید. چنانچه این امر
تکمیل یابد تا حذف ویژه از خروج از برای خرید مواد مذکور از کشورهای خارجی جلوگیری می‌شود. همچنین با مشخص شدن کاربردهای تازه برای کی‌ربا استفاده از آن در داخل گسترش بیشتری پیدا می‌کند و با معرفی کی‌ربا عوامل ماده با پایداری و قوام‌دهنده مؤثر و با عملکرد مناسب و در عین حال طبیعی و بی‌ضرر که قدرت رقابت با مواد وارداتی دارد، محققین و سرمایه‌گذاران داخلی برای بهبود سازی تولید، استخراج و مصرف کی‌ربا غیربیشتری پیش‌دار می‌کنند.

مواد و روش‌ها

خلاصه مراحل پژوهش
- تهیه و آماده‌سازی کی‌ربا
 - استفاده از مقدار مختلف کی‌ربا برای تولید سس مایونز در سطح آزمایشگاهی
 - مقیاس‌های وسکوژیسی و ظاهری (Apparent viscosity)
 - سس‌های مایونز محصول کی‌ربا و سس مایونز محصول ماده با پایدار کننده
 - قوام‌دهنده خارجی (نمونه شاهد) و انتخاب غلظتی از کی‌ربا که سس مایونزی با وسکوژیسی و ظاهری بی‌بازی مشابه نمونه شاهده ایجاد کرده است.
- تولید سس مایونز به‌کارگیری کی‌ربا با غلظت معین شده و سس مایونز تجارتی (شده) در سطح صنعتی و انجام آزمایش‌های مقیاس‌های فیزیکی، شیمیایی، میکروبی و ارزیابی حسی بر روی آنها
- بررسی وضعیت فیزیکی سس‌ها در دوره‌های دوم و سوم در 25 صورتی بزرگ و بررسی خصوصیات کیفی آنها با آزمایش‌های فیزیکی، شیمیایی، میکروبی و ارزیابی حسی در زمان‌های صفر، دو و چهار هفته
- توصیه مقدار مناسب کی‌ربا برای یافته‌گری

توجه به این که سس مایونز جزء سیالات غیر تبتنی بوده و بینی شپ‌پلاستیک (Pseudoplastic) استفاده شد (National MJ-176 NR, Japan)

مقایسه وسکوژیسی و ظاهری سس‌های مایونز

(**Ribbon type** (ریبون‌ای) به مقدار یک کیلو تهیه شد. کی‌ربا به‌وسیله آسیاب برقی و

کاملاً خرد شده و به پودر تبدیل گردید. پودر کی‌ربا از پارچه صافی نازک کاتی از دانه شد با ذات درست آن جداسازی شد. سپس پودر از صافی با مش مدل 4 تزریق شد تا پودر در نرم و یکنواختی بازدهی زیاد حاصل شود. از این پودر در مراحل بعد برای تولید

ساس مایونز استفاده شد.

تولید سس مایونز با مقدار مختلف کی‌ربا در سطح آزمایشگاهی

در این مرحله از پژوهش، فورمالاسیون و سس تجارتی تولیدی در یک کارخانه به عنوان شاهد در نظر گرفته شد. مواد تشکیل دهنده سس مایونز تجاري مذکور و مقدار آنها در جدول 1 مشخص شده است.

جدول 1: سس‌های مایونز با فرمالاسیون و روش تولید کاملاً مشابه

<table>
<thead>
<tr>
<th>نوک خاک/درجه دمای</th>
<th>سس مایونز (مخصوصی کی‌ربا و سس مایونز محصول ماده با پایدار کننده)</th>
<th>سس مایونز محصول کی‌ربا و سس مایونز محصول ماده با پایدار کننده</th>
<th>سس مایونز محصول کی‌ربا و سس مایونز محصول ماده با پایدار کننده</th>
<th>سس مایونز محصول کی‌ربا و سس مایونز محصول ماده با پایدار کننده</th>
</tr>
</thead>
</table>
| مواد تولیدی | مواد پایدار کننده و قوام دهنده مصرفی کارخانه بود. مواد پایدار کننده و قوام دهنده مواد استفاده کارخانه مذکور زبان و کروبکست متعلق بودند که مقدار مختلف (02/00, 1/0, 0/01 درصد) کی‌ربا یا پودر کی‌ربا با غلظت معین شده و سس مایونز تجارتی (شده) در سطح صنعتی و انجام آزمایش‌های مقیاس‌های فیزیکی، شیمیایی، میکروبی و ارزیابی حسی بر روی آنها

سنسیتنی (Sensory evaluation)

- بررسی وضعیت مادگاری سس‌ها در دوره‌های دوم و سوم در 25 صورتی بزرگ و بررسی خصوصیات کیفی آنها با آزمایش‌های فیزیکی، شیمیایی، میکروبی و ارزیابی حسی در زمان‌های صفر، دو و چهار هفته
- توصیه مقدار مناسب کی‌ربا برای یافته‌گری

به‌کارگیری (Ribbon type) (سوسیال)
جدول 1. فرمولاسیون سس مایونز تجاری (شاهد)

<table>
<thead>
<tr>
<th>نوع مواد</th>
<th>آب</th>
<th>روغن</th>
<th>سرکه</th>
<th>تخم مرغ</th>
<th>شکر</th>
<th>نمک طعام</th>
<th>بیانوار</th>
<th>کربوهیدرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>اسیدهای تصفیه</td>
<td>دمای</td>
<td>شیرینی</td>
<td>تصفیه سویا</td>
<td>شیرینی</td>
<td>کلی</td>
<td>شیرینی</td>
<td>تصفیه شده (سنترن)</td>
<td>درصد</td>
</tr>
<tr>
<td>تجاري</td>
<td>پودر</td>
<td>تجاري</td>
<td>تجاري</td>
<td>پودر</td>
<td>تجاري</td>
<td>تجاري</td>
<td>پودر</td>
<td>تجاري</td>
</tr>
<tr>
<td>0/4</td>
<td>1/0</td>
<td>0/10</td>
<td>0/15</td>
<td>0/5</td>
<td>7/0</td>
<td>5/10</td>
<td>8/20</td>
<td>0/4</td>
</tr>
</tbody>
</table>

جدول 2. مقادیر مختلف کبیار و مواد پادارکننده و قوا و دهنه تجارت مصرفی در نمونه‌های سس مایونز

<table>
<thead>
<tr>
<th>شماره تیمار</th>
<th>درصد زانانه و کربوهیدرات تیمار</th>
<th>درصد کبیار</th>
<th>تیمار (شاهد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB1</td>
<td>0/1</td>
<td>TB1</td>
<td></td>
</tr>
<tr>
<td>TB2</td>
<td>0/1</td>
<td>TB2</td>
<td></td>
</tr>
<tr>
<td>TB3</td>
<td>0/1</td>
<td>TB3</td>
<td></td>
</tr>
<tr>
<td>TB4</td>
<td>0/1</td>
<td>TB4</td>
<td></td>
</tr>
<tr>
<td>TB5</td>
<td>0/1</td>
<td>TB5</td>
<td></td>
</tr>
<tr>
<td>TB6</td>
<td>0/1</td>
<td>TB6</td>
<td></td>
</tr>
<tr>
<td>TB7</td>
<td>0/1</td>
<td>TB7</td>
<td></td>
</tr>
</tbody>
</table>

کارگاه‌های مذکور عمل می‌شود. نمونه‌های سس مایونز تولید گردد. پس از ضرب خون‌های سطحی تخم مرغ‌ها با قرار دادن آنها به مدت 20 دقیقه در محیط 50°C تخم مرغ‌ها با آب شستشو شد و پس از شکستن آنها و جامدایی پوست، در نان کیک تی در وسایل ریخته شد. نان کیک مزکور از جنس استیل ضد زنگ و مجهز به هواپر و 280 دو در دقیقه بود و با برقراری جریان آب بین دو جداره، دماي آن حین کار در حدود 15 درجه سانتی‌گراد کنترل می‌شود. در مرحله بعد مواد پودری مربوط به سس مایونز، به‌جز مقداری از شکر و کربوهیدرات فیل تیمار، به هر مقدار نان استیل گیه شد و حروف کیک دقیق عمل احتمالی شده پایان آن‌گاه روغن و سرکه از طرف دو لوله مجاور به صورت تدريجی در مدت حدود 7 دقیقه ضمن همزین به معیاری نان اضافه شدند. در طول این مدت، شکر باقی مانده، و کربوهیدرات تیمار سس تولیدی پس از قابلیت دلالی از روغن مخلوط شده پودری کتابی، به نان کیک وارد شدند و سپس همزین به مدت یک دقیقه دیگر ادامه یافت تا یافت سس کاملاً یکنواخت شود. سس‌های تولیدی پس از

بنابراین به جای واژه وسکوزیته از واژه وسکوزیته ظاهری در مورد آن استفاده می‌شود (10). وسکوزیته ظاهری سس‌های مایونز به‌عنوان کبیار و نمونه شاهد (Brookfield Viscometer, Model RVT, Germany) اندازه‌گیری شد. کانال اندازه‌گیری‌ها در دما 2 ± 0.2 درجه سانتی‌گراد و با اسپیندل (Spindle) سرعت حکم 29 ر و سرعت حکم 10 دور در دقیقه صورت گرفت و در هر اندازه‌گیری انجام داده شد که اسپیندل 5 مرنی در نمونه دور بزند. سپس وسکوزیته ظاهری سس‌ها از نمونه شاهد مقایسه گردید. یک مخصوص شده که کدام سس مایونز با چه میزان کبیار و سس مایونز با چه میزان کبیار

توجه اینجا کرده و همان میزان برای آزمایش‌های بعدی در نظر گرفته شد.

толید سس مایونز محتوی کبیار و سس مایونز تجاری در

سطح صنعتی

پس از مشخص شدن مقدار مناسب کبیار در فرمولاسیون سس، با استفاده از امکانات و تجهیزات صنعتی و روشن که در

194
استفاده از چکی در سس مایونز به جای مواد یادگار کننده و قرائ دهنده وارداتی

آنالزه‌گیری و یکسوزیتی ظاهری

1. آزمون یادگار امیلیون

در این آزمون نمونه‌های سس مایونز به مدت 36 ساعت در دمای 35 درجه سانتی‌گراد دمایی شدند و پس از مدت مداومی از نظر بروز تغییرات زمینه و شکستگی امیلیون

به صورت مشاهده ظاهری با چشم بررسی گردد.

2. آزمون ارزیابی حسی

برای ارزیابی حسی نمونه‌های سس، نخست تعداد 20 نفر به عنوان گروه ارزیاب چشمانی انتخاب شدند. این افراد آزمون آستانه سنسیتی و حساسیت شیرینی، ترشی، شوری و تلخی را با موفقیت پشت سر گذاشته‌اند (22). از همین افراد در آزمون‌های بررسی رنگ و بافت سنسیتی استفاده شد.

ارزیابی حسی سنسیتی براساس آزمون سه تایی (Triangle test) به مثابه انجام شد. در این آزمون به هر آزمون کننده دو نمونه احساسی و محتوی چک یک نمونه شاهد داده شد و در این شرایط کننده نمونه مفترا را از نظر عطر و طعم از بین آنها مشخص سازد (18) در مورد رنگ و بافت سنسیتی نیز به‌هم‌روش عمل شد.

3. اندازه‌گیری رطوبت

در این آزمایش‌ها مقدار گرم از هر نمونه سس در ظرف‌های فلزی مخصوص توپ و سپس نمونه‌ها در اون (Gallenkamp Oven BS Model OV-160, England) در جریان 105 درجه سانتی‌گراد قرار داده شدند و پس از بررسی با هر نمونه در صورت رطوبت محسوب گردید.

4. اندازه‌گیری اسیدیت کل

گرم 15 گرم از هر نمونه سس توپ و به هر نمونه 200 میلی لیتر آب مفطر اضافه و مخلوط کردند. آنها به تیتراسیون مخلوط حاصل با سواد 0/1 نمایید و درصد اسیدیت آن بر حسب اسید استیک تغییرات در شد.

5. اندازه‌گیری pH

مقدار 5 گرم از هر نمونه سس وارد به 125 یلی باند و حجم آن با آب مفطر به 100 میلی لیتر رساندند. پس از نیم

ساعت هم‌زمان با همزمان مغناطیسی pH در هم‌نوازی با استفاده از متر pH (Metrohm 632, Swiss) تعیین گردید.

آزمون‌های میکروبی

نمونه‌های مایونز از نظر وجود سالمونللا (Salmonella) و شمارش کلی میکروب (Total count) برای آزمایش فقر گرفت. در آزمایش سالمونللا مقدار 15 نمونه از نظر دستگاهی شده که در مورد نمونه‌های اولیه بیان شد با ویسکوستر برکفیلد اندازه‌گیری شد.

شمارش کلی میکروب (Total count) در این آزمون نمونه‌های سس مایونز به مدت 6 ساعت در دمای 35 درجه سانتی‌گراد دمایی شدند و پس از مدت مداومی از نظر بروز تغییرات زمینه و شکستگی میکروب و افتادگی امیلیون به صورت مشاهده ظاهری با چشم بررسی گردید.

ارزیابی حسی

برای ارزیابی حسی نمونه‌های سس، نخست تعداد 20 نفر به عنوان گروه ارزیاب چشمانی (Taste panel) انتخاب شدند. این افراد آزمون آستانه سنسیتی و حساسیت شیرینی، ترشی، شوری و تلخی را با موفقیت پشت سر گذاشته‌اند (22). از همین افراد در آزمون‌های بررسی رنگ و بافت سنسیتی نیز استفاده شد.

ارزیابی حسی سنسیتی براساس آزمون سه تایی (Triangle test) به مثابه انجام شد. در این آزمون به هر آزمون کننده دو نمونه احساسی و محتوی پشته کننده و یک نمونه شاهد داده شد و در این شرایط کننده نمونه مفترا را از نظر عطر و طعم از بین آنها مشخص سازد (18) در مورد رنگ و بافت سنسیتی نیز به‌هم‌روش عمل شد.

بررسی وضعیت ماندگاری سس‌های مایونز

در این مرحله از پژوهش نمونه‌های سس مایونز محتوی کشی و نمونه‌های شاهد درد محدوده دامنه 5 و 6 درجه سانتی‌گراد نگهداری شدند و در فواصل صفر، 2 و 4 ماه روی آنها اندازه‌گیری شد.
روش‌های آماری مورد استفاده
نتایج آزمایش‌های چندینی، شبیه‌سازی در قالب طرح کمالا تحلیل‌های آماری از داده‌ها و نرمال‌سازی یک طرفه مورد تجزیه و کردن اختلاف بین نمونه‌ها استفاده شد. همچنین بررسی آماری مدلزنگ از افزایش COSTAT اجرا گردید. در آزمون‌های ارزیابی حسی بررسی آماری نتایج به بهره‌گیری از جدول آماری که برای آزمون‌های تاپی بهره‌گیری شده، پایتخت دانش‌های احتمال انتخاب نمونه صحیح به‌طور تصادفی کسی سوم است، تهیه شده است.

نتایج و بحث
مقاومت و ویسکوزیتی ظاهری فرمولاسیون‌های مختلف سس ماینتر
نتایج این بررسی در شکل ۱ خلاصه شده است.

از آمایش‌های شبیه‌سازی
نتایج این آزمایش‌ها در مورد سس ماینتر محضی کنترل و سس تجاری در جدول ۴ خلاصه شده است.

نتایج محدود در جدول ۴ نشان می‌دهد که در مورد هیچ کدام از خصوصیات بررسی شده بین سس ماینتر محضی کنترل و سس شاهد اختلاف معنادار در سطح ۵ درصد وجود نداشت. است.

آزمایش‌های ميكروی
در مورد آزمایش سالمونلا که ۸۸ ساعت پس از تویید سرها انجام شد، در هیچ یک از نمونه‌ها آلودگی دیده نشد. این

آزمایش‌های فیزیکی، شبیه‌سازی، میکروبی و ارزیابی حسی طبقه‌بندی
توجه به قیمت آیان شد. انجام گرفت تا وضعیت مانندگاری آنها بخصوص در مقایسه با نمونه‌های شاهد و حالت استاندارد مشخص شود.
نتایج با تحقیقات دیگری که در این زمینه صورت گرفته مطابقت دارد (17، 19 و 26).

نتایج مربوط به شمارش کلی میکروب و کیک در جدول 4 بیان شده است.

مشاهده می‌شود که از نظر شمارش کلی میکروب، در سس محتوی کیسه میکروب بیشتری نسبت به نمونه شاهد وجود داشته است، ولی با توجه به حد مجاز شمارش کلی میکروب که در هر گرم سس مایونز نیاید از 10 تجاوز کند (6) با بایرن، سس محتوی کیسه از این نظر وضعیت قابل قبول دارد. در مورد تعداد کیسه نیز در سس محتوی کیسه حضور کیسه بیشتری نسبت به نمونه تجاری ملاحظه شد. در این مورد نیز براساس استاندارد تعداد کلی کیسه نیاید از 10 تجاوز کند (6) با بایرن و ضعیت سس محتوی کیسه از این نظر نیز قابل پذیرش است.

نتایج تاکید دادن نمونه‌های سس محتوی کیسه و نمونه‌های شاهد در ذو محدوده دما بین 5 و 25 درجه سانتی‌گراد تغییرات ایجاد شده.

بررسی وضعیت مانگداری سس‌های مایونز

با توجه دادن نمونه‌های سس محتوی کیسه و نمونه‌های شاهد در ذو محدوده دما بین 5 و 25 درجه سانتی‌گراد تغییرات ایجاد شده.
جدول ۴. نتایج آزمون‌های میکروبی سس محتوی کپرا و سس شاهد

<table>
<thead>
<tr>
<th>نوع آزمون</th>
<th>شمارش کلی میکروب (cfu/gr)</th>
<th>تعداد کپرا (cfu/gr)</th>
<th>نوع سس مایوئر</th>
<th>نوع سس مایوئر</th>
<th>محیطی کپرا</th>
<th>تجاری</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰</td>
<td>۲۰۰</td>
<td>۲۰</td>
<td>۱۵</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۱۵</td>
</tr>
<tr>
<td>۳</td>
<td>۰</td>
<td></td>
<td></td>
<td></td>
<td>۲۰</td>
<td></td>
</tr>
</tbody>
</table>

رگن و یکپارچه‌ای حسی سس محتوی کپرا از نظر عطر و طعم، رنگ و بافت در مقایسه با نمونه‌های شاهد

<table>
<thead>
<tr>
<th>خصوصیت</th>
<th>تعداد</th>
<th>تعداد جواب صحیح</th>
<th>بی‌روش</th>
<th>اختلاف با نمونه تجاری</th>
</tr>
</thead>
<tbody>
<tr>
<td>عطر و طعم</td>
<td>۱۵</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۱۵</td>
</tr>
<tr>
<td>رنگ</td>
<td>۱۵</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۱۵</td>
</tr>
<tr>
<td>بافت</td>
<td>۱۵</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۱۵</td>
</tr>
</tbody>
</table>

بررسی رطوبت سس‌ها در طول زمان نگهداری

(الف) نگهداری در دمای ۵ درجه سانتی‌گراد
نتایج این بررسی در شکل ۱ آمده است. گرچه در این نمونه‌های ظاهراً درهمه نمونه‌های سس با گذشت زمان کاهش رطوبت نشان داده شده ولی این کاهش از نظر آماری معنی‌دار نیست. به عبارت دیگر تغییرات مطلوب ملاحظه‌ای در رطوبت آنها توجه نکردیم است.

(ب) نگهداری در دمای ۲۵ درجه سانتی‌گراد
نتایج این مرحله از پژوهش در مورد رطوبت سس‌ها در شکل ۵ بنی‌نمایش درآمده است. این نتایج بر روی اندکی کاهش رطوبت را در نمونه‌های سس محتوی کپرا و نمونه‌های تجاری نشان می‌دهد. این اندکی کاهش رطوبت بی‌روش از ابتدا میرحله‌های دیگری مانند دمای دم‌دار در دسترس دانش است. گرچه رطوبت اولیه در هر دو نوع سس اندکی تفاوت داشته، ولی روند کاهش رطوبت در هر دو حالت یکسان و یکپارچه‌ای را نشان می‌دهد.

در خصوصیات مختلف آنها در طول زمان نگهداری بررسی شد که نتایج در مورد هریک از خصوصیات به صورت زیر است:

بررسی و یکپارچه‌ی ظاهری سس‌ها در طول زمان نگهداری

(الف) نگهداری در دمای ۵ درجه سانتی‌گراد
نتایج این بررسی در شکل ۲ مشخص شده است. ملاحظه‌‌کننده می‌شود که هم در سس محتوی کپرا و هم در سس تجاری یاکشک‌شدن زمان تغییرات معنی‌دار در ویژگی ظاهری بروز نکرده است. قابل ذکر است که در همه موارد سس محتوی کپرا و ویکسوزن ظاهری بیشتری را نسبت به نمونه‌های تجاری نشان داده است.

(ب) نگهداری در دمای ۲۵ درجه سانتی‌گراد
نتایج مربوط به بررسی و یکپارچه‌ی ظاهری سس‌های نگهداری شده در دمای ۲۵ درجه سانتی‌گراد به صورت مشابه در دهه شده است. در این مورد نیز نتایج مشابهی که در هر دو نوع سس مورد بررسی در دمای ۲۵ درجه سانتی‌گراد با گذشت زمان تغییرات معنی‌دار در ویکسوزن ظاهری یکپارچه‌ای داشته است. در این دمای
شکل ۲. تغییرات ویسکوزیته ظاهری سس‌های نگه‌داری شده در دمای ۵ درجه سانتی‌گراد در طول زمان

شکل ۳. تغییرات ویسکوزیته ظاهری سس‌های نگه‌داری شده در دمای ۵ درجه سانتی‌گراد در طول زمان
شکل ۴: رطوبت سنسنی تولید و مصرف در دماهای ۳، ۵، ۷ و ۹ درجه سانتی‌گراد

شکل ۵: رطوبت سنسنی ضمن نگهداری در دماهای ۲۵ و ۲۷ درجه سانتی‌گراد
جدول 6

<table>
<thead>
<tr>
<th>شماره کلی میکروب (cfu/gr)</th>
<th>زمان نگهداری (گد)</th>
<th>دمای نگهداری</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5° C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25° C</td>
</tr>
</tbody>
</table>

در جدول 7 نتایج آزمون‌های سرسرها از نظر عمیق و ضخامت، رنگ و بافت در زمان نگهداری گازبر شده است. این نتایج نشان می‌دهد که آزمون‌های کنترل‌گر و توانایی مصرفی این نمونه‌ها سرسرهای کبیر و نمونه‌های تولید تشخیص ندادند. به عبارت دیگر، نمونه‌های سرسرهای کبیر و نمونه‌های تولید هیچ‌یک از نظر عمیق و ضخامت، رنگ و بافت در طول زمان نگهداری در دمایهای مورد بررسی مشاهده نشدند.

<table>
<thead>
<tr>
<th>شماره کلی میکروب (cfu/gr)</th>
<th>زمان نگهداری (گد)</th>
<th>دمای نگهداری</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5° C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25° C</td>
</tr>
</tbody>
</table>

بررسی وضعیت میکروبی سس‌ها در طول زمان نگهداری

نتایج این بررسی مربوط به دو محدوده دمایی در جدول 6 آمد است. نتایج مندرج در جدول 6 نشان می‌دهد که در هر دو محدوده دما، گرچه در ابتدا در جدول آزمایش شمارش کلی میکروب و کیفیت حضور میکروب‌ها بیشتر در محصول را نشان می‌دهد، ولی با گذشت زمان در این دوم و در هر دو محدوده شکل پذیری دارد. بنابراین، نتایج این امر می‌تواند به ارث‌ریزی‌های مشابه می‌باشد. در کل، نتایج این بررسی نشان می‌دهد که میکروب‌ها در سن مطابق با بهره‌برداری شده در طول زمان نگهداری.

کاهش pH نتایج 5 درجه سانتی‌گراد

نمونه‌های حساس هم در مورد نجات از DHCA، تغییر معنی‌داری از pH نکرده است. در سه محدودیت تکراری، ضبط pH کشور در فاصله می‌باشد. در هر دوم نیز در جدول 5 درجه سانتی‌گراد را در موارد حساسیت انجام داده و ضعیفیت از ضعیفیت از اکثریت نمونه‌ها در محصول آن‌ها. بنابراین از نظر عمیق این محصولات می‌تواند به شکستگی شکستگی pH داشته باشد.

از ارتباط با دبانگ‌های محصولات به سرسرهای مورد بررسی از طریق توجه به این که بررسی استاندارد ایران pH تولید نیامده است قابل قبول می‌باشد.

جدول 7

<table>
<thead>
<tr>
<th>شماره کلی میکروب (cfu/gr)</th>
<th>زمان نگهداری (گد)</th>
<th>دمای نگهداری</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5° C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25° C</td>
</tr>
</tbody>
</table>
شکل ۶: سپس نگهداری شده در دماهای ۵ درجه سانتی‌گراد در طول زمان pH

شکل ۷: سپس نگهداری شده در دماهای ۲۵ درجه سانتی‌گراد در طول زمان pH
جدول 7. ارزیابی حسی سنسهای نگهداری شده در دو محدوده دماهای ۵ و ۲۵ درجه سانتی‌گراد.

<table>
<thead>
<tr>
<th>دما ی نگهداری</th>
<th>حداکثر جواب صحیح برای</th>
<th>تعداد آزمون</th>
<th>تعداد جواب صحیح</th>
<th>علت هشدار</th>
<th>پیش‌بینی معنی‌دار</th>
<th>معنی‌دار نود در سطح ۵ درصد</th>
<th>معنی‌دار نود</th>
<th>رنگ بافت</th>
<th>ابتدا تولید</th>
<th>پس از دو ماه</th>
<th>پس از چهار ماه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۰°C</td>
<td>۱۵</td>
<td>۹</td>
<td>۷</td>
<td>پیش‌بینی</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۲۰</td>
</tr>
<tr>
<td>۲۵°C</td>
<td>۱۵</td>
<td>۸</td>
<td>۷</td>
<td>پیش‌بینی</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۲۰</td>
</tr>
</tbody>
</table>

نتیجه‌گیری

در مجموع، ارائه این جدول، این نتیجه‌گیری قابل اثبات است که می‌توان سنس ماپونز را با استفاده از مقراد مناسب کنترل کرد. بدور از آنکه در دسترس متولی‌ها، تغییرات عمده‌ای در پروتکل به علت دیگری نسبت به مشابهت خصوصیات اصلی سنس ماپونز محوری کنترل با سنس ماپونز که با استفاده از مقراد پایدار کننده و قوام دهنده خارجی تولید شده، می‌توان استفاده از کنترل را که صمغی کاملاً طبیعی و پی‌زیان (۱۵) است و نوع میزبان‌اند تحقیق را دارد.

مباحث مورد استفاده

1. زرین کمر. ف. ۱۳۷۵. بررسی آنتونومی ـ اکلنژزیک ۱۲ کونه از گونه‌های میوه کنترل‌کننده در ایران. انتشارات مؤسسه تحقیقات جنگل‌ها و مرتع.
2. فاطمی ج. ۱۳۷۸. تشییع مواد غذایی جنوب شرقی، انتشارات دانشگاه تهران.
3. مصباحی ع. ۱۳۸۸. کونه‌های کون گیاهان. جلد دوم. انتشارات دانشگاه تهران.
4. محمد هریساب. م. ۱۳۷۱. جدایی و تشخیص میوه‌هایی که مصرف نمی‌شود. تهران: انتشارات دانشگاه تهران.
5. مؤسسه استاندارد و تحقیقات صنعتی ایران. ۱۳۸۹. آزمون‌های شیمیایی و سنس ماپونز. استاندارد شماره ۱۸۵۴. چاپ دوم. تهران.
6. مؤسسه استاندارد و تحقیقات صنعتی ایران. ۱۳۷۳. ویژگی‌های میکروبی و روش آزمون سنس ماپونز. استاندارد شماره ۲۶۵۴. چاپ دوم.