اثر مقادیر مختلف پروتئین و چربی بر شاخص‌های رشد و ترکیب شیمیایی لاشه

به‌چه‌ماهیان انگشت قب‌قلی ماهی

عسی‌ای‌رایمی، چید، جواد وزن، سرگی و پاناماری، ابوالقاسم کمالی و عباس حسینی

چکیده

به‌منظور بررسی اثر مقادیر مختلف پروتئین و چربی بر رشد به‌چه‌ماهیان انگشت قب‌قلی ماهی، ۱۲ جیره غذایی مختلف با سه سطح ۰،۵ و ۱ درصد پروتئین و چهار سطح ۰،۵،۱،۲ درصد چربی در مکمل رژیم غذایی به‌چه‌ماهیان انگشت قب‌قلی ماهی می‌گردد. تعداد ۱۲۶۰ روش تکراری در دو دوره رشد و ۲۴ دوره حوضیش نیروی کوچک (با حجم ۱۰۰ لیتر) بود. تعداد ۳۵ ترکیب چپ‌ماهی در هر واحد آزمایشی توزیع شده و به مدت ۴۵ روز با چپ‌ماهیان آزمایشی تغذیه گردیدند.

نتیجه‌بندی

تأثیر مصرف غذا و تولید پروتئین‌ها نشان داد (p<0.05) ماهیان تغذیه شده با چپ‌ماهی شماره ۳ (حواری ۱۵ درصد پروتئین و ۱۲ درصد چربی) و چپ‌ماهی شماره ۸ (حواری ۵۰ درصد پروتئین و ۱۷ درصد چربی) بالاترینزی در نشان داده. علاوه بر این، به‌چه‌ماهیان انگشت قب‌قلی ماهی سطح در حد مربوط به چپ‌ماهی شماره ۲ (حواری ۲۵ درصد پروتئین و ۱۰۵ درصد چربی) بود. مقایسه ترکیب شیمیایی لاشه به‌چه‌ماهیان به‌سیاست نیز تفاوت آماری معنی‌داری را در میزان پروتئین و چربی به‌چه‌ماهیان داد (p<0.05). در میزان رشد و خاکستر لاشه تفاوت معنی‌داری بین میزان هر یک خشک و خشک ماهیان موجود در آزمایش مختلف مشاهده گردید. تا کنون بدست آمده نشان داد که نیاز پروتئین‌های به‌چه‌ماهیان انگشت قد میزان چسبی‌های غذایی حاصل در ۲۵ درصد پروتئین در آزمایش‌های متعددی شدید. نکاتی بیشتر برای تاکید بر این تأثیر پروتئین به‌چه‌ماهیان انگشت مانند ۱۶،۲۱ سطح در حد مربوط به چپ‌ماهی‌ها به‌سیاست.

واژه‌های کلیدی: غذای‌های خارجی، قب‌قلی ماهی، پروتئین، چربی، رشد، ترکیب شیمیایی لاشه

۱. استادیار شیلات، دانشکده مهندسی، دانشگاه صنعتی اصفهان
۲. استاد علوم ماهی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
۳. استاد تغذیه ماهی، دانشکده شیلات، دانشگاه فنی دولتی استاراخان، روستای
۴. استادیار شیلات، دانشکده شیلات، دانشگاه علوم کشاورزی و منابع طبیعی، گرگان
۵. استاد جهاد کشاورزی و مرکز شیلات استان گلستان
فصل ماهی (Huso huso L.) از گونه‌های است
که به‌دیدنی‌های شدن سریع و آسان، پذیرش زنگ‌گذار در اسارت، سازگاری با بسیار غرب خوب و گذاشته مصنوعی و رشد سریع می‌تواند از جمله گونه‌های باور پروش مصنوعی محصول شود (1 و 25). دسترسی به ذخایر طبیعی این ماهی به گذشته پرداخت خاص جغرافیایی آن، جمع‌بندی در دریا خزر، آزرو و سیاست (7) نتایج برای تکثیر و سایر کشورهای جوزه‌های فوق امکان‌پذیر است. لیکن به گذشته ویژگی این ماهی به کمترین بسترسی استرالیا (Bester) (Acipenser ruthenus L.) در سایر مصنوعی، پروش مصنوعی
فصل ماهی در سال‌های بیشتری در کشور مورد توجه و علاقه‌ناپذیری درست می‌شود. انتقال و تولید پروتئین با کیفیت ایجاد می‌شود. علاوه بر وجود محصولاتی وجود دارد و اینجا ماهیان مورد تجربه پروش بیشترنده است. مصنوعی این ماهیان، حاصل نکته مولود به حضور است. نباید از دید پروش مصنوعی امکان گزینش مولودین خاص و به‌کارگیری روش‌های سریع تولید به‌kaar ماهی در سایر بحث‌های امکان‌پذیر، نباید این بی‌پرویکت نکرده ماهیان بیشتر نیست. علاوه بر این بی‌پرویکت، نکت ماهیان خوارباری در کشور مه‌گونه است که یک مولد نیست یک بار شناس نکته شدن را دارد. نباید این پروش به ماهیان حاصل از آن دقت پیشتری را می‌طلبد. از جمله عوامل مؤثر در بروز هدرگونی آبراهی، ارغام شده و باد به‌ذخایر غذایی آن ام‌پیا به موفقیت اقتصادی یا به ترتیب تولید استیکی زیادی به آن دارد (8 و 18). اگر چه فاکتورهای دیگر از جمله کیفیت غذای مصرفی درجه حرارت، اندوزه ماهی، خصوصیات کیف می‌باشد پروش و... از اهمیت فاکتوری برخوردار هستند. در پژوهش مقدمه
پروش مصنوعی ماهیان خوارباری به‌منظور تولید گونه و استحصال خواربار در جهان از عائله گونه‌های کربناته برخوردار است. در واقع ماهیان خوارباری از ماهیان نادر و بسیار قدمی‌های ماهی‌شنگ این پروش آنها در سال‌های اخیر مورد توجه قرار گرفته است. لیکن فقیدان اطلاعات کافی در مورد شرایط بهینه پروش، تغییرات غذایی، فرمول‌های مصنوعی مناسب را و... به‌خصوص در مورد گونه‌های از ماهیان خوارباری که در حضور جنوبی دریای خزر و دریای سیاه زیست می‌کنند در مقایسه با سایر آسیای پروش کمتر مورد توجه واقع شده و نتایج از محقق‌گانی قرار دیده که ماهیان خوارباری به‌خصوص در مراحل اویل زنگ‌هنه تمرکز غذایی طبیعی و در مراحل پرورش عمداً وابسته به غذای آماده‌مانند پاک (16). در حالی که استفاده از اطلاعات سایر گونه‌های ماهیان خوارباری به دلایل مختلف این محقق‌گانی قرار دیده که ماهیان نورس از گونه‌های مختلف ماهیان خوارباری و به‌ویژه به آنها، سطح به‌همه پروتئین مورد نیاز آنها را 50 درصد تغییر داده است (3). در حالی که برخی درگیر از محققین مقدار به‌همه پروتئین 20 بر لیتر به ماهیان خوارباری را 80 درصد پیشنهاد نموده‌اند. برخی دیگر از جمله کوشک‌های مکانیکی (19) مقدار پروتئین مورد نیاز برای تاس ماهی سئفسی گرمی (16). درصد پیشنهاد نموده‌اند. در خصوص این‌چنین بررسی مورد نیاز در غذاهای ماهیان خوارباری نیز اطلاعات زیادی در مورد پیشنهاد نسخته، برخی از محققین با استفاده از روش تغذیه با جهش‌های پره‌نیز، تغییر به ماهیان خوارباری چربی بر حسب یا حدود 9 درصد پیشنهاد کرده‌اند (16) در حالی که با استفاده از تحقیقات سایر در خصوص تغذیه به ماهیان خوارباری مقدار چربی مورد نیاز در جهان غذاهای آغذایی این ماهیان را 16 تا 18 درصد پیشنهاد کرده‌اند (25).
مواد و روش‌ها
پژوهش حاضر در سال 1381 در مجمعت نکتری و پورش انجام گرفت. ماهیان خاویاری شهید مرگانی گرگان از آنها تخم‌گذاری کردند. پژوهش تعداد 1400 گرفته برحسب صورت ماهی بین آگهی و نازک‌آویزی سازگار شده به تعقیبی با غذای کنسان‌شان انجام شدند. برحسب مه‌های مذکور از تعداد 35 گرفته در حوضچه‌ها و بحر گرفت. پس از سازگار شدن برحسب مه‌های مذکور با طور تصادفی صید شده و برای آن‌الب شیمیایی لازمه‌های سازگاری و صورت استفاده قرار گرفت. پس از سازگار شدن برحسب مه‌های بحث‌می‌شود دقت محققان در شمال قطب از ابتدا موفقیت معنی‌داری شناخته شد. این نتایج در مورد بحر روندهای نکتری و پورش افتاده‌اند.

پژوهش حاضر در سال 1381 در مجمعت نکتری و پورش انجام گرفت. ماهیان خاویاری شهید مرگانی گرگان از آنها تخم‌گذاری کردند. پژوهش تعداد 1400 گرفته برحسب صورت ماهی بین آگهی و نازک‌آویزی سازگار شده به تعقیبی با غذای کنسان‌شان انجام شدند. برحسب مه‌های مذکور از تعداد 35 گرفته در حوضچه‌ها و بحر گرفت. پس از سازگار شدن برحسب مه‌های مذکور با طور تصادفی صید شده و برای آن‌الب شیمیایی لازمه‌های سازگاری و صورت استفاده قرار گرفت. پس از سازگار شدن برحسب مه‌های بحث‌می‌شود دقت محققان در شمال قطب از ابتدا موفقیت معنی‌داری شناخته شد. این نتایج در مورد بحر روندهای نکتری و پورش افتاده‌اند.
جدول ۱. ترکیب و آنالیز شیمیایی جیره‌های غذایی

<table>
<thead>
<tr>
<th>اقلام غذایی (درصد)</th>
<th>نیتراترها غذایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۲</td>
</tr>
<tr>
<td>۱/۰۰۰۰۰۰۰۰</td>
<td>۱/۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>۱/۰۰۰۰۰۰۰۰</td>
<td>۱/۰۰۰۰۰۰۰۰</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ترکیب شیمیایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>رطوبت</td>
</tr>
<tr>
<td>۱/۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>۲/۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>۳/۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>۴/۰۰۰۰۰۰۰۰</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>برخی از نتایج آزمایشاتی</th>
</tr>
</thead>
</table>

* نتایج به صورت میلی‌گرمی در نمایه‌های ۱۲ روزه

<table>
<thead>
<tr>
<th>دمای آب (C)</th>
<th>اکسیژن محلول (mg/l)</th>
<th>PH</th>
<th>آمونیاک کل (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۰</td>
<td>۱/۰</td>
<td>۱/۰</td>
<td>۱/۰</td>
</tr>
</tbody>
</table>

** ناحیه از آب چاه

<table>
<thead>
<tr>
<th>فاکتور اقلام غذایی شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>دمای آب (C)</td>
</tr>
<tr>
<td>اکسیژن محلول (mg/l)</td>
</tr>
<tr>
<td>PH</td>
</tr>
<tr>
<td>آمونیاک کل (mg/l)</td>
</tr>
</tbody>
</table>

* در هر پک از نتایج‌های چکیده اقلام غذایی شده است.

** استفاده از آب چاه

۲۲۲
از مقادیر مختلف پروتئین و چربی بر شاخص‌های رشد و ترکیب...

\[
(FCR = \frac{F}{W_f - W_i})
\]

که در آن \(F \) = مقدار غذای مصرف شده (گرم)، و \(W_f \) و \(W_i \) = وزن اولیه (گرم) و وزن نهایی (گرم) (۱۶)。

\[
(\text{PER} = \frac{B W_f - B W_i}{A P})
\]

که در آن \(B W_f \) = وزن نهایی (گرم)، \(B W_i \) = وزن اولیه (گرم)، \(A P \) = مقدار پروتئین داده شده به هر ماهی (گرم) (۸ و ۱۶)。

\[
(\text{PPV} = 100 \times \frac{B W_f \times B C P_f - B W_i \times B C P_i}{T F \times C P})
\]

که در آن \(B C P_f \) = B W_f درصد پروتئین خام، \(B C P_i \) = درصد پروتئین خام جیره‌های فاکتورهای مختلف از طریق آزمون جنگ دانکن (۱۲) و \(T F \) و \(C P \) مقدار غذای داده شده است (۸ و ۱۶).

توضیح و بحث

بنابراین بعید نیست که این وابستگی‌ها متعادل باشد. بنابراین بعید نیست که این وابستگی‌ها متعادل باشد.

\[
(\text{BWI} = \frac{B W_f - B W_i}{B W_i})
\]

که در آن \(B W_f \) = وزن نهایی پدن (گرم) و \(B W_i \) = وزن اولیه پدن (گرم) (۱۵ و ۱۶).

\[
(\text{SGR} = \frac{\ln W_f - \ln W_i}{t} \times 100)
\]

که در آن \(\ln W_f \) = لگاریتم طبیعی وزن نهایی (گرم) و \(\ln W_i \) = لگاریتم طبیعی وزن اولیه (گرم) و \(t \) = طول دوره پرورش (روز) (۱۵ و ۱۶).

ضریب مصرف غذا (FCR)
جدول 3. دفعات غذآهی و مقدار غذآهی روزانة بر حسب درصد وزن بدن در دمآهای مختلف

<table>
<thead>
<tr>
<th>وزن بدن (کیلوگرم)</th>
<th>دفعات غذآهی</th>
<th>مقدار غذآهی روزانه بر حسب درصد وزن بدن در دمآهای مختلف</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>12-17°C</td>
</tr>
<tr>
<td>10-15</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>10-15</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>15-20</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8-6</td>
</tr>
</tbody>
</table>

جدول 2. مقایسه میانگین اثر سطح مختلف پروتئین برای چهار ماهه مایه اکت گز

<table>
<thead>
<tr>
<th>سطح پروتئین</th>
<th>وزن بدن (%)</th>
<th>افزایش وزن</th>
<th>وزن نهایی</th>
<th>پروتئین تولید</th>
<th>شده (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50/64 a</td>
<td>1/86 b</td>
<td>0/06 a</td>
<td>0/28 a</td>
<td>0/00 a</td>
<td>0/06 b</td>
</tr>
<tr>
<td>56/64 a</td>
<td>1/90 b</td>
<td>0/06 a</td>
<td>0/28 a</td>
<td>0/00 a</td>
<td>0/06 b</td>
</tr>
<tr>
<td>52/64 a</td>
<td>1/95 b</td>
<td>0/06 a</td>
<td>0/28 a</td>
<td>0/00 a</td>
<td>0/06 b</td>
</tr>
<tr>
<td>58/64 a</td>
<td>1/98 a</td>
<td>0/06 a</td>
<td>0/28 a</td>
<td>0/00 a</td>
<td>0/06 b</td>
</tr>
</tbody>
</table>

حروف مشابه در هر ستون نشان دهنده عدم وجود اختلاف معنی‌دار بین میانگین‌ها است.

25 درصد پروتئین دیده شد. در حالی که داده‌های جدول 5 نشان می‌دهد که سطح مختلف مکمل روزن تفاوت معنی‌داری را در میزان افزایش وزن بدن ایجاد می‌کند (p<0.05). بر این اساس بالاترین درصد افزایش وزن در سطح 12 درصد مکمل روغن دیده شد. داده‌های جدول 6 بیشترین افزایش وزن بدن در بین تیمارهای آزمایشی را در تیمار 8 (حاوی 50/84 کیلوگرم و 3/12 مکمل روغن) نشان داد. مایه‌های تغذیه شده با این تیمار غذایی دارای 75 درصد افزایش وزن نسبت به وزن اولیه بودند. در عین حال میزان افزایش وزن در این تیمار با تیمار 13 (حاوی 8/5 پروتئین، 8/5 مکمل روغن) تفاوت معنی‌داری نداشت. نشان داد که سطح تغذیه شده آن با سایر تیمارها معنی‌دار است. تیمارهای 12 و 25 درصد پروتئین در دامنه مورد استفاده در این پژوهش نشان داد که افزایش پروتئین در دامنه مورد استفاده در این پژوهش 7/8 مکمل روغن) مشاهده شد. در حالی که تیمارهای 5 درصد پروتئین در مایه‌های تغذیه شده با تیمار غذایی 8 (دازی 12/1 مکمل روغن) و در
نتایج فوق به‌خوبی نشان داد که چربی دارای یک اثر کمکی برای کاهش پروتين بدن و افزایش آن هموژن با افزایش پروتئین اثر تناسب اند. در نتیجه پروتئین مصرف اصلي خود را در فرآیند متابولیسم مقدار نموده و با اثر رشد بهتر شده است. بنابراین میزان چربی می‌تواند هموژن با افزایش پروتئین تا حد معنی‌داری که تأثیر کند گردید.

\[
\text{مانند } \frac{\text{انرژی قابل هضم به پروتئین خام}}{\text{در سطح}} \quad \text{دندان‌های غذایی افزایش یاد. همانگونه که در بالا اشاره شد افزایش مکمل رون تدریجی از سطح پروتئین در صورتی می‌تواند باعث افزایش رشد گردد که ممکن است نیاز داشته باشد تا در احیای ماهی قرار داشته باشد. تأثیر به‌دست آمده مؤثر نظر واسیلیو و همکاران ۷۵ می‌باشد. این در اثر کاهش افزایش چربی به پروتئین را در جریه غذایی به‌صورت خارجی به ترتیب ۱۸ و ۳۰ درصد ذکر می‌کند.

\[
\text{مسان} \quad \text{بر پرورش توپیکین و چربی بر شاخص‌های رشد و ترکیب افزایش طول مدت پرورش می‌شود. جریه غذایی که در مدت پرورش افزایش ون بیشتری ایجاد نمودند، میزان رشد ویژه بهتری را نیز

(NGR)
جدول 5 مقایسه میانگین اثر سطح مختلف چربی بر شاخص‌های رشد در بچه قبل ماه‌های انگشت قد

<table>
<thead>
<tr>
<th>پروتئین تولید</th>
<th>ضربه مصرف غذا</th>
<th>میزان درصد باره‌پرتون</th>
<th>افزایش وزن ویژه</th>
<th>وزن نهایی (کم)</th>
<th>روش مکمل (٪)</th>
</tr>
</thead>
<tbody>
<tr>
<td>55/83b</td>
<td>2/23a</td>
<td>0/95c</td>
<td>280/11b</td>
<td>125b</td>
<td>0/5</td>
</tr>
<tr>
<td>63/16a</td>
<td>2/09a</td>
<td>1/11b</td>
<td>248/78b</td>
<td>127b</td>
<td>4</td>
</tr>
<tr>
<td>66/94a</td>
<td>1/25b</td>
<td>1/14a</td>
<td>634/44a</td>
<td>161/6a</td>
<td>8</td>
</tr>
<tr>
<td>63/88a</td>
<td>1/85b</td>
<td>2/44a</td>
<td>655/58a</td>
<td>102/6a</td>
<td>12</td>
</tr>
</tbody>
</table>

حرود مشاهده در هر ستون نشان‌دهنده عدم وجود اختلاف معنادار میان میانگین‌ها است (p>0.05).

جدول 6 مقایسه میانگین اثرات متفاوت سطوح مختلف پروتئین و چربی بر شاخص‌های رشد در بچه قبل ماه‌های انگشت قد

<table>
<thead>
<tr>
<th>شاخص‌های مورد بررسی</th>
<th>پروتئین تولید شده (٪)</th>
<th>ضربه مصرف غذا (کم)</th>
<th>وزن نهایی (کرم)</th>
<th>افزایش وزن ویژه (٪)</th>
</tr>
</thead>
<tbody>
<tr>
<td>62/21bcde</td>
<td>2/30c</td>
<td>0/73bc</td>
<td>3/9cd</td>
<td>477/12de</td>
</tr>
<tr>
<td>78/9a</td>
<td>1/34a</td>
<td>0/37b</td>
<td>0/47c</td>
<td>65/13c</td>
</tr>
<tr>
<td>66/61ab</td>
<td>1/35a</td>
<td>0/74a</td>
<td>0/47a</td>
<td>94/16a</td>
</tr>
<tr>
<td>60/55cd</td>
<td>0/4bc</td>
<td>0/30c</td>
<td>0/47c</td>
<td>135/16c</td>
</tr>
<tr>
<td>69/44cd</td>
<td>1/10bc</td>
<td>0/26c</td>
<td>0/47c</td>
<td>50/22cde</td>
</tr>
<tr>
<td>59/44e</td>
<td>2/31b</td>
<td>0/8d</td>
<td>0/30c</td>
<td>111/16e</td>
</tr>
<tr>
<td>61/44fg</td>
<td>1/19bc</td>
<td>0/47a</td>
<td>0/30c</td>
<td>121/16bc</td>
</tr>
<tr>
<td>68/43bce</td>
<td>1/1bc</td>
<td>0/47a</td>
<td>0/30c</td>
<td>195/16b</td>
</tr>
<tr>
<td>65/43f</td>
<td>2/47a</td>
<td>0/47a</td>
<td>0/30c</td>
<td>115/16c</td>
</tr>
<tr>
<td>53/44ef</td>
<td>2/47a</td>
<td>0/47a</td>
<td>0/30c</td>
<td>121/16def</td>
</tr>
<tr>
<td>56/22ef</td>
<td>1/47bc</td>
<td>0/47c</td>
<td>0/30c</td>
<td>151/16bc</td>
</tr>
<tr>
<td>51/44bcde</td>
<td>1/47c</td>
<td>0/47c</td>
<td>0/30c</td>
<td>151/16bc</td>
</tr>
</tbody>
</table>

حرود مشاهده در هر ستون نشان‌دهنده عدم وجود اختلاف معنادار میان میانگین‌ها است (p>0.05).

پیشینی‌ترین ضربه مصرف غذا در سطح 65 درصد پروتئین دیده شد. کمتر بودن ضربه مصرف غذا در سطح پروتئین 65 و 50 درصد نشان‌دهنده وجود تفاوت معنادار میان میزان مصرف غذا بین سطوح مختلف مکمل روغن در جیره‌های گذشته است.

ماهیان کافی بوده و نیازی به پروتئین بیشتر نیست. داده‌های جدول 5 نشان‌دهنده وجود تفاوت معنادار میان میزان مصرف غذا بین سطوح مختلف مکمل روغن در جیره‌های گذشته است.
را کامیاب می‌دهد (۲۳)، بنابراین می‌توان نتیجه گرفت که استفاده از تا ۱۲ درصد مکمل رنگ بر مطلوب‌یت غذا و کیفیت فیزیکی آن افزوده و پذیرش بهتر آن را باعث شد است.

(PPV) تولید شده (۱۰) جدول ۲ ارسطوح مختلف پروتئین‌های غذایی را از میزان پروتئین تولید شده نشان می‌دهد. داده‌های مذکور وجود تفاوت معنی‌دار در میزان پروتئین تولید شده بین مختلف پروتئین‌های گربه را نشان می‌دارد (داده ۵/۱/۰۵). بنابراین اساس پیش‌بینی میزان پروتئین تولید شده در سطح ۲۵ درصد پروتئین‌های گربه غذایی چندان محدود نیست. به این ترتیب عکس چنین تغییری در پروتئین‌های مختلف غذایی بدیلاً از میزان پروتئین تولید شده در صد درصد مکمل رنگ بر مطلوب‌یت غذا و کیفیت فیزیکی آن افزوده و پذیرش بهتر آن را باعث شد است.

در (۱۰) تفاوت معنی‌داری را در ضریب مصرف غذا بین تیمارهای مختلف غذایی نشان داده (۱۰). برسازی تابع مکمل ۹۵ یا ۸۰ درصد پروتئین و ۸۰ درصد مکمل رنگ بر مطلوبیت غذا و کیفیت فیزیکی آن افزوده و پذیرش بهتر آن را باعث شد است.

در (۱۰) تفاوت معنی‌داری را در ضریب مصرف غذا بین تیمارهای مختلف غذایی نشان داده (۱۰). برسازی تابع مکمل ۹۵ یا ۸۰ درصد پروتئین و ۸۰ درصد مکمل رنگ بر مطلوبیت غذا و کیفیت فیزیکی آن افزوده و پذیرش بهتر آن را باعث شد است.

میزان پروتئین تولید شده در سطح ۲۵ درصد پروتئین‌های چندان محدود نیست. به این ترتیب عکس چنین تغییری در پروتئین‌های مختلف غذایی بدیلاً از میزان پروتئین تولید شده در صد درصد مکمل رنگ بر مطلوب‌یت غذا و کیفیت فیزیکی آن افزوده و پذیرش بهتر آن را باعث شد است.

در (۱۰) تفاوت معنی‌داری را در ضریب مصرف غذا بین تیمارهای مختلف غذایی نشان داده (۱۰). برسازی تابع مکمل ۹۵ یا ۸۰ درصد پروتئین و ۸۰ درصد مکمل رنگ بر مطلوبیت غذا و کیفیت فیزیکی آن افزوده و پذیرش بهتر آن را باعث شد است.

میزان پروتئین تولید شده در سطح ۲۵ درصد پروتئین‌های گربه غذایی چندان محدود نیست. به این ترتیب عکس چنین تغییری در پروتئین‌های مختلف غذایی بدیلاً از میزان پروتئین تولید شده در صد درصد مکمل رنگ بر مطلوب‌یت غذا و کیفیت فیزیکی آن افزوده و پذیرش بهتر آن را باعث شد است.

میزان پروتئین تولید شده در سطح ۲۵ درصد پروتئین‌های گربه غذایی چندان محدود نیست. به این ترتیب عکس چنین تغییری در پروتئین‌های مختلف غذایی بدیلاً از میزان پروتئین تولید شده در صد درصد مکمل رنگ بر مطلوب‌یت غذا و کیفیت فیزیکی آن افزوده و پذیرش بهتر آن را باعث شد است.
لاشه ماهیان هرمان با افزایش سطح مکمل روغن نشان‌داد. در حالی که بیشترین مقدار پروتئین خام لاش آن در سطح 12 درصد مکمل روغن دیده شد، تاً نتایج کشف دارد که مکمل روغن بیشتر در ترکیب شیمیایی لاشه و افزایش آن، افزایش کربن خام لاش را باعث گردد. بیشترین میزان کربنی لاش در سطح 8 درصد مکمل روغن دیده شد که اختلاف معنی‌داری را با سطح 12 درصد مکمل روغن نشان داد.

داده‌های جدول 7 تفاوت معنی‌داری در مقدار ماهی خشک و خاکستر لاش ماهیان هرمانه تغذیه شده با تیمارهای غذایی مختلف نشان داد. اگرچه مقدار عادی ماهی خشک لاش در تیمار شماره 3 بیشتر از سایر تیمارهای است و رشد بهتر این گروه می‌باشد. در خصوص خاکستر لاش ماهیان که به سطح مورد نظر می‌رسند نشان داد و نظم خاصی در افزایش مقدار خاکستر لاش مناسب با افزایش میزان کربنی جیره‌های غذایی با افزایش میزان پروتئین آنها وجود ندارد. در مورد ترکیب شیمیایی لاش ماهیان خواربار، استیوئاد و هانگ (23) معتقدند ماهیان خوارباری دارای رشد کند، رطوبت و خاکستر زیاد و پروتئین و جیره کمی می‌باشند. به ماهیان دایر رشد بسیاری در ترکیب شیمیایی لاش ماهیان خود نشان دهد. در مقابل داده‌های جدول 7 از تفاوت معنی‌داری را در مقدار پروتئین و کربنی لاش ماهیان تغذیه شده با تیمارهای غذایی مختلف نشان داده که به سطح مورد نظر می‌رسید.

می‌توان با توجه به فاکتورهای که قبل تشریح شده است، نشان دهنده بترین تیمارهای غذایی مزبور و رشد خوب ماهیان تغذیه شده از آنها، این نتایج تأیید کننده نظریه استوارات و هانگ (33) در مورد ترکیب شیمیایی لاش ماهیان خوارباری است. علاوه بر این روند کلی تغییر در میزان کربنی لاش نشان داد که در یک مقدار پروتئین ثابت افزایش جیره‌های غذایی منجر به افزایش مقدار DE CP

جریبی در تولید پروتئین و همچنین اثر نسبت جیره به شیره نشان داده است. در اینجا نیز ما نتایج کمکی افزایش GBE/GBF/G59/G78/G9B

جریبی باعث ذخیره پروتئین بیشتر می‌شود و نظر استوارات و هانگ (33) که معتقدند افزایش کربنی ممکن است باعث بالا رفتن ناهید پروتئین و پروتئین تولید شده شود، می‌باشد.

ترکیب شیمیایی لاش

جدول 7: سطوح مختلف پروتئین جیره‌های غذایی را بر ترکیب شیمیایی لاش ماهیان هرمان نشان می‌دهد. براساس داده‌های این جدول سطوح مختلف پروتئین تفاوت معنی‌داری را در میزان ماهی خشک و خاکستر لاش ایجاد نکرد. ولی تفاوت معنی‌داری در میزان پروتئین خام و جیره خام لاش ماهیان ایجاد گردید. براساس داده‌های جدول فوق بیشترین میزان پروتئین لاش در ماهیان تغذیه شده با سطح پروتئین 55 درصد و کمترین مقدار آن در ماهیان تغذیه شده با سطح 45 درصد پروتئین دیده شد. افزایش مقدار پروتئین خام و جیره خام لاش هرمانه با افزایش سطح پروتئین در جیره‌های غذایی مورد نظر دیده شد. شرایط عارضه، میزان و بسیار بدن پروتئین در جیره‌های غذایی مزبور می‌باشد. نتایج قابل توجه با توجه به کمکی استوارات و هانگ (33) در مورد ترکیب شیمیایی لاش ماهیان خوارباری تأیید می‌شود. جدول 8 اثر سطوح مختلف مکمل روغن در جیره‌های غذایی را بر ترکیب شیمیایی لاش ماهیان هرمان نشان می‌دهد. به‌اساس داده‌های جدول مزبور سطوح مختلف مکمل روغن تفاوت معنی‌داری را بر میزان ماهی خشک و خاکستر لاش ماهیان ایجاد نکرد، ولی این اثر شرایط به پروتئین خام و جیره خام لاش معنی‌دار دارد (30).

داده‌های جدول فوق تغییر منظمی را در میزان پروتئین خام
جدول ۷. مقایسه میانگین ترکیب شیمیایی لاشه پچه ماهیان قبل ماهی انجکس قد نسبت به اثر سطح پروتئین (بر حسب درصد)

<table>
<thead>
<tr>
<th>خاکستر</th>
<th>پروتئین خام</th>
<th>پروتئین خام</th>
<th>ماده خشک</th>
<th>سطح پروتئین (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۱/۸۳a</td>
<td>۱۲/۱۱b</td>
<td>۰۶/۲۸b</td>
<td>۱۷/۰۵a</td>
<td>۴۱</td>
</tr>
<tr>
<td>۱۱/۷۵a</td>
<td>۱۲/۸۸b</td>
<td>۰۶/۲۸b</td>
<td>۱۷/۰۱a</td>
<td>۴۰</td>
</tr>
<tr>
<td>۱۱/۵۶a</td>
<td>۱۲/۷۱a</td>
<td>۰۶/۲۸b</td>
<td>۱۷/۰۱a</td>
<td>۴۰</td>
</tr>
</tbody>
</table>

(۰.۰۵<p<۰.۰۰).

جدول ۸. مقایسه میانگین ترکیب شیمیایی لاشه پچه ماهیان قبل ماهی انجکس قد نسبت به اثر سطح مکمل روغن (بر حسب درصد)

<table>
<thead>
<tr>
<th>خاکستر</th>
<th>پروتئین خام</th>
<th>پروتئین خام</th>
<th>ماده خشک</th>
<th>سطح مکمل روغن (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۱/۸۳c</td>
<td>۱۲/۴۹c</td>
<td>۰۶/۸۹b</td>
<td>۱۶/۴۱b</td>
<td>۰۵</td>
</tr>
<tr>
<td>۱۲/۳۶c</td>
<td>۱۲/۲۰b</td>
<td>۰۶/۲۴c</td>
<td>۱۶/۵۸a</td>
<td>۴</td>
</tr>
<tr>
<td>۱۱/۷۰c</td>
<td>۱۸/۴۵c</td>
<td>۰۶/۳۷c</td>
<td>۱۷/۸۱a</td>
<td>۸</td>
</tr>
<tr>
<td>۱۲/۴۸c</td>
<td>۱۷/۹۵c</td>
<td>۰۶/۹۹bc</td>
<td>۱۶/۹۸a</td>
<td>۱۲</td>
</tr>
</tbody>
</table>

(۰.۰۵<p<۰.۰۰).

جدول ۹. مقایسه میانگین ترکیب شیمیایی لاشه پچه ماهیان قبل ماهی انجکس قد

<table>
<thead>
<tr>
<th>خاکستر</th>
<th>پروتئین خام</th>
<th>پروتئین خام</th>
<th>ماده خشک</th>
<th>شماره بیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۱/۰۸</td>
<td>۱۲/۵۲b</td>
<td>۰۶/۷۸b</td>
<td>۱۷/۲۲</td>
<td>۱</td>
</tr>
<tr>
<td>۱۱/۵۲</td>
<td>۱۲/۰۷b</td>
<td>۰۶/۸۴b</td>
<td>۱۷/۵۶</td>
<td>۲</td>
</tr>
<tr>
<td>۱۱/۷۹</td>
<td>۱۲/۳۲b</td>
<td>۰۶/۸۲b</td>
<td>۱۷/۷۹</td>
<td>۳</td>
</tr>
<tr>
<td>۱۱/۹۸</td>
<td>۱۲/۳۹b</td>
<td>۰۶/۸۷b</td>
<td>۱۷/۸۶</td>
<td>۴</td>
</tr>
<tr>
<td>۱۱/۵۸</td>
<td>۱۲/۴۴b</td>
<td>۰۶/۸۸b</td>
<td>۱۷/۷۸</td>
<td>۵</td>
</tr>
<tr>
<td>۱۱/۷۶</td>
<td>۱۲/۷۶b</td>
<td>۰۶/۹۶b</td>
<td>۱۷/۸۷</td>
<td>۶</td>
</tr>
<tr>
<td>۱۱/۸۸</td>
<td>۱۲/۸۷b</td>
<td>۰۶/۸۹b</td>
<td>۱۷/۸۸</td>
<td>۷</td>
</tr>
<tr>
<td>۱۱/۸۹</td>
<td>۱۲/۸۹b</td>
<td>۰۶/۹۰b</td>
<td>۱۷/۸۹</td>
<td>۸</td>
</tr>
</tbody>
</table>

(۰.۰۵<p<۰.۰۰).
чивي ذخبره شد شها د لاس محفري ينابعه شده مي گردد. علاوه به
دست مامده به طور كلي نشان داد كه افرايش چرغي در جيروه
غذايي مورد استفاده در اين پرويزه منجزه به افزايش چرغي
لئم تغيير در تركيب شيميايي آن شده است.
نتياج سوري و پافتشته سمار زوندهثنگن در مورد ماهي
قرار گرفت كه رگن كمان نيز مطلوب دارند (13 و 21). گوتز در
سال 1993 گرايرش كرد كه تغذیه ماهی قزل آلي رگن كمان
با مدت 18 هفته يا غذاي غذايي حاول 22 ردصر رونن باعث
افزايش ميزان چرغي لئم دا د پراري مي شود (13). همچنين
مطوفن ديگر گرايرش دادن كه ارزو (زردي چرغي زه) در
جعديات غذائي كه دراي پيروتين معادل هستند باعث ذخيره
چرغي و تغيير تركيب شيميايي لئم مي شود (20 و 11).
ارتباط بين ميزان چرغي، پيروتين و چرغي لئم توسط برخي
از مطوفن ديگر گرايرش گردیده است (14 و 20 و 21).

نتيجه گيري
نتياج به دست مامده به طور كلي نشان داد كه استفاده از چرغي
غذايي حاول 50 ردصر پيروتين و 2 ردصر مكمل رون- كه
عالوه به پراري اقلام غذائي، مقدار چرغي جيروه را به

نوع مورد استفاده

1. شرکت سيماب سازه، 1380. گزارن نويکيي صيدگاهي شمال كشور براي پرورش گونه ماهي خواري و مولدين
نارس. سازمان شيلات، تهران.
2. Абросимова, Н. А. 1997. Корма и кормление молоди осетровых рыб в индустриальной АквАКультуре.
 Диссертация в виде научного доклада на соискание ученой степени Доктора биологических наук.(АЗНИИРХ). Москва.
3. Абросимова, Н. А., О. А. Рудницкая, И. А. Мирзоян, М. В. Сафиярова. Выращивание молоди осетра. (3-я изд.)
 Israel program for Scientific Translations, Jerusalem. 504:76-81.
 осетровых рыб на пример бестера и русского осетра. Аквариум и птицеводство. Вып. 2. М., 1985. С. 5-6.
(Oncorhynchus mykiss). Published by Institut of Zoology Faculty of science university of porto No,227.24 PP.
requirements and feeding of Finfish for aquaculture.CAB International.
conversion protein utilization and body composition of tropical catfish Mystus nemurus (C. & V.) cultured in
static pond water system. Aquaculture Res. 27: 823-829.
International symposium on sturgeon CEMAGREF France.
20. Papoutsoglou, S. E. and E. G. Papparaskeva-Papoutsoglou. 1978. Comparative studies on body composition of
proteins. Aquaculture 76:303-316.
24. Steffens, W. 1981. Protein utilization by Rainbow trout (S.gairdneri) and carp (C.carpio) a brief review.Aquaculture
23: 337-345.
25. Васильева, Л. М., С. В., Пономарев. И. В. Судакова, 2000.кормление Осетровых рыб В индустриальном
Аквакультуре НПЦпо осемоводству,БИОС.