بررسی تنش زنیکی گونه‌های مختلف آگروپایرون (Agropyron Gaertn.) براساس شاخه‌های ریخت شناختی و شیمیایی

محسن فرشادفر ۱ و عزت‌الله فرشادفر ۲

چکیده
آگروپایرون یکی از گیاهان مقاوم به نشش‌های حیاتی و غیر حیاتی است و نقش مهمی در تولید علفه در روزگار ایران دارد. تنش زنیکی بر اساس تشکیل‌های مختلف، نشان‌کننده در عملیات اصلاح نبات دارد و یکی از مهم‌ترین شاخه‌های برای انتخاب و نجات است. به منظور ارزیابی تنش زنیکی گونه‌های مختلف آگروپایرون بر اساس صفات ریخت شناختی و شیمیایی این پژوهش انجام گرفت. صفات مختلف جنگلی، انسداد پره، طول ساقه، انسداد سنبله، طول پره، بگجه پره، پره گویه و طول پره در دو گونه آگروپایرون گونه‌های مختلف جنگلی، انسداد پره و پره گویه به‌منظور تجزیه و تحلیلی به SPSS محاسبات آماری در این مطالعه استفاده شد. قراردادن متن کلیدی: تنش زنیکی، آگروپایرون، تجزیه خوشه‌ای، شاخه‌های ریخت شناختی و شیمیایی

مقدمه
گیاه آگروپایرون یکی از مهم‌ترین گیاهان مرتع است که گونه‌های مختلف آن در اغلب مناطق کشور می‌رویند. آگروپایرون گیاه علفی چندساله بوده و حدود ۱۹ گونه از آن در مناطق مختلف ایران گزارش شده است (۱۶). این گیاه

۱- استاد اصلاح نباتات، مرکز تحقیقات کشاورزی و منابع طبیعی، کرمانشاه
۲- استاد اصلاح نباتات، دانشکده کشاورزی، دانشگاه رازی، کرمانشاه

۲۲۳
برای اصلاح صفات مطلوب بلا بوده و اصلاح کنندگان نبت‌ها قادر خواهند ساخت که عملیات اصلاح نبات را با موافقت و اطمینان بیشتری هدایت کرده و پیش بیان می‌نماید.

همچنین عملیات اصلاحی، تعیین زننده و سطح پلیویدی کیهان مربوط به یک بخش که این مورد درباره تعدادی از گونه‌ها مختلف آموزها به فرموله است (9).

ارزیابی و تعیین میزان تنوع زننیکی به عنوان یکی از مشاهده‌های مهم برای انتخاب والدین در برنامه‌های اصلاحی است. فعالش روزانه بر اساس ترکیب جمعیت‌های بیولوژیکی می‌تواند بیشتر فراوانی زننیکی مختلف (فناصل زننیکی) و یا بر اساس آلاینات زننیکی مختلف در مکان زن منجر نظر (فناصل زننیکی) ارائه شود. فعالیت زننیکی ارتباط مهمی با بیماری‌های سرطانی دارد (18).

تعیین فعالیت، یک روش آماری جدید منجر به این است که بر اساس تعیین دقیق قابل اندازه‌گیری محاسبه می‌گردد و یک روش کارآمد برای تعیین فعالیت زننیکی و یا زننیکی در ارزیابی‌های تنوع زننیکی است. پژوهش‌های زیادی درباره محاسبه و کاربرد آن در اصلاح گیاهان مختلف ارائه شده است (13، 16، 19).

ارزیابی و تعیین تنوع زننیکی مهم‌ترین و مولکولی بر اساس سه دسته صفات فناصلی، بوشیمیایی و مولکولی انجام می‌گردد. هر یک از این دسته‌ها در جهت اجماع‌سازی و کمک‌کننده کاربردی به عمل آمد. با توجه به اینکه کیفیت آموزها به تنوع فعالیت است، آنالیز استیجی اطلاعات ترکیبات شیمیایی آن هم‌اکنون شناخته و در تهیه دامن‌های مفید به منظور بهبود ترکیبات شیمیایی زیبای آموزگاری، تعیین ترکیبات شیمیایی و ارزیابی آنها به منظور کاهش تعدادی از این ترکیبات، تعیین ارجام و خ марта از دسته‌بندی زننیکی است. از این میزان تعیین در دسته‌بندی زننیکی به‌کار رفتن مختلف آموزها با استفاده از گونه‌ها را با استفاده از T. arraticum Jakubz. و T. timopheevii Zhuk. از صفات ریخت‌شناسی و المکروکور زمینه‌های ذهنه‌ها (گل‌طلب) محاسبه کرده، نتایج نشان دهنده افزایش در دسته‌بندی زننیکی نسبت به آبگویی رونده. درجه (2) میزان تنوع زننیکی بین گونه‌های مختلف آگروپارین در رایا از گونه‌های مختلف ارزیابی و تعیین میزان دارای نسبتاً مشابه‌تر از گروه‌های کره است. در رابطه با کارایی

244
اندازه‌گیری ترکیبات شیمیایی طبق دستور العمل استاندارد موجود در آزمایشگاه تغذیه و یوپیلوزی برخی تحقیقات دام‌پروری مرکز تحقیقات منابع طبیعی و امر دام کرمانشاه و فرمولهای زیر انجام گرفت.

پروتئین‌های خام نسبت دستگاه‌های مکروکلود مدل KJELTEC AUTO 1030 ANALYZER سازی نمونه انجام گرفته شد. درصد چربی از انجام مراحل و SOXTEC SYSTEM HT 1043 فرملز محاسبه گردید.

\[\text{وزن نمونه به عدد آزمایش} = 100 \times \text{وزن نمونه قبل از آزمایش} \]

\[\text{وزن نمونه به عدد آزمایش} = \frac{M_{1} - M_{0}}{M_{1}} \times 100\]

\[\text{وزن نمونه به عدد آزمایش} = \frac{W_{1} - W_{2}}{P} \times 100\]

\[\text{وزن نمونه به عدد آزمایش} = \frac{W_{3} - W_{4}}{P} \times 100\]

\[\text{وزن نمونه به عدد آزمایش} = 100 \times \text{درصد تغییر} \]

نتایج و بحث

نتایج به‌دست آمده از تجزیه و اریب‌سازی صفات ریخت‌شناصی (جدول 1) اختلاف معنی‌داری را بین زنیتی‌ها برای صفات طول ستبنه، عرض پهن‌گرک پرچمی، چربی چرب و هندسی شده.
جدول 1. تجزیه و تحلیل صفات ریخت‌شانسی

| میانگین مربوط | طول دمکل آدنی | ارتفاع بونه | عرض پهنگ برگ پرچمی | طول پهنگ برگ پرچمی | تعداد سلبه | تعداد نپه بر اثر | تعداد نپه باور | تعداد نپه در سلبه | تعداد نپه ملایم | تعداد نپه آزادی | تعداد نپه ازدحام
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>A</td>
<td>G3</td>
<td>95/34</td>
<td>A</td>
<td>45</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
</tr>
<tr>
<td>19</td>
<td>ab</td>
<td>G4</td>
<td>79/84</td>
<td>Ab</td>
<td>22</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
</tr>
<tr>
<td>11</td>
<td>abcd</td>
<td>G5</td>
<td>21/88</td>
<td>Abcd</td>
<td>44</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
</tr>
<tr>
<td>11</td>
<td>abc</td>
<td>G7</td>
<td>16/83</td>
<td>Ab</td>
<td>22</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
</tr>
<tr>
<td>2/3</td>
<td>cde</td>
<td>G9</td>
<td>51/55</td>
<td>Cde</td>
<td>65</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>2/3</td>
<td>de</td>
<td>G9</td>
<td>51/55</td>
<td>Cde</td>
<td>65</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>2/3</td>
<td>e</td>
<td>G9</td>
<td>51/55</td>
<td>Cde</td>
<td>65</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

جدول 2. مقایسه میانگین‌ها بر اساس آزمون دانکین

| طول دمکل آدنی | ارتفاع بونه | عرض پهنگ برگ پرچمی | طول سلبه | تعداد نپه | میانگین | T
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>A</td>
<td>G3</td>
<td>95/34</td>
<td>A</td>
<td>0.74</td>
<td>10</td>
</tr>
<tr>
<td>19</td>
<td>ab</td>
<td>G4</td>
<td>79/84</td>
<td>Ab</td>
<td>0.65</td>
<td>8.65</td>
</tr>
<tr>
<td>11</td>
<td>abcd</td>
<td>G5</td>
<td>21/88</td>
<td>Abcd</td>
<td>0.46</td>
<td>21.88</td>
</tr>
<tr>
<td>2/3</td>
<td>cde</td>
<td>G9</td>
<td>51/55</td>
<td>Cde</td>
<td>0.3</td>
<td>51.55</td>
</tr>
<tr>
<td>2/3</td>
<td>de</td>
<td>G9</td>
<td>51/55</td>
<td>Cde</td>
<td>0.3</td>
<td>51.55</td>
</tr>
<tr>
<td>2/3</td>
<td>e</td>
<td>G9</td>
<td>51/55</td>
<td>Cde</td>
<td>0.3</td>
<td>51.55</td>
</tr>
</tbody>
</table>

زنویپی‌ها که دارای حروف مشترک هستند در یک دسته قرار می‌گیرند و اختلاف معنی‌داری ندارند.

جدول 3. پارامترهای مختلف زئوتیپی‌های صفات ریخت شانسی

<table>
<thead>
<tr>
<th>صفات</th>
<th>طول دمکل آدنی</th>
<th>ارتفاع بونه</th>
<th>عرض پهنگ برگ پرچمی</th>
<th>طول سلبه</th>
<th>پارامتر زئوتیپی</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/3</td>
<td>0/4</td>
<td>0/16</td>
<td>0/274</td>
<td>1/259</td>
<td>Pev</td>
</tr>
<tr>
<td>2/3</td>
<td>0/4</td>
<td>0/16</td>
<td>0/274</td>
<td>1/259</td>
<td>Gev</td>
</tr>
<tr>
<td>2/3</td>
<td>0/4</td>
<td>0/16</td>
<td>0/274</td>
<td>1/259</td>
<td>Ecv</td>
</tr>
<tr>
<td>2/3</td>
<td>0/4</td>
<td>0/16</td>
<td>0/274</td>
<td>1/259</td>
<td>Hb</td>
</tr>
<tr>
<td>2/3</td>
<td>0/4</td>
<td>0/16</td>
<td>0/274</td>
<td>1/259</td>
<td>Ga</td>
</tr>
</tbody>
</table>

فصل اول: با استفاده از الگوریتم UPGMA (عکس گذاری)، مختلف تیپ‌های بزرگی در گروه قرار گرفتند (شکل 1). استفاده شد. 11 زئوتیپ م有助 در گروه قرار گرفتند (شکل 1). G1, G2 گروه شماره 3 شامل زئوتیپ‌های G11 گروه شماره 2 شامل زئوتیپ شماره G10، G10 گروه شماره 3 شامل زئوتیپ شماره G11 گروه شماره 2 شامل G10 گروه شماره 3 شامل Z. خلاصه و نتایج

245
نتایج حاصل از آزمایشات تبعین درصد مواد غذایی برای 11 زنوتیپ در جدول ۱ نشان داده شده است.

در این آزمایش تجربی سببناهای بر اساس صفات شیمایی اندازه گرفته شده صورت یافته و بر اساس آن 11 زنوتیپ در پنج گروه رنگ گرفته. (شكل ۱). گروه اول شامل ۳ محققین بر این باورند که بین میزان تنویز زنوتیپ بر اساس صفات مختلف ظاهری، بوشیمایی و مولکولی شایع‌تر زبانی وجود دارد. صاحی و همکاران (۸) در مورد تابعیت تنویز زنوتیپ از تنویز عملکردی برخی از ارقام سیب‌زمینی با

<table>
<thead>
<tr>
<th>CASE Label</th>
<th>CASE Num</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>889,825</td>
</tr>
<tr>
<td>G2</td>
<td>899,786</td>
</tr>
<tr>
<td>G3</td>
<td>895,624</td>
</tr>
<tr>
<td>G4</td>
<td>892,457</td>
</tr>
<tr>
<td>G5</td>
<td>891,326</td>
</tr>
<tr>
<td>G6</td>
<td>890,259</td>
</tr>
<tr>
<td>G7</td>
<td>889,123</td>
</tr>
<tr>
<td>G8</td>
<td>888,052</td>
</tr>
<tr>
<td>G9</td>
<td>887,984</td>
</tr>
<tr>
<td>G10</td>
<td>886,917</td>
</tr>
<tr>
<td>G11</td>
<td>885,849</td>
</tr>
</tbody>
</table>

منابع: (۹)
جدول 5. جدول واریانس مؤلفه‌های اصلی حاصل از تجزیه مؤلفه‌های اصلی برای صفات ریخت شناختی

<table>
<thead>
<tr>
<th>واریانس تجمعی</th>
<th>درصد واریانس</th>
<th>ریشه مشخصه</th>
<th>فاکتور</th>
</tr>
</thead>
<tbody>
<tr>
<td>64.9%</td>
<td>67.9%</td>
<td>5.1%</td>
<td>1</td>
</tr>
<tr>
<td>84.9%</td>
<td>75.4%</td>
<td>10.6%</td>
<td>2</td>
</tr>
<tr>
<td>91.9%</td>
<td>93.7%</td>
<td>6.3%</td>
<td>3</td>
</tr>
</tbody>
</table>

جدول 6. سه صفت ریخت شناختی حاصل از تجزیه مؤلفه‌های اصلی

<table>
<thead>
<tr>
<th>صفات مورفولوژی</th>
<th>فاکتور دوم</th>
<th>فاکتور سوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول پهنگ برگ پرچمی</td>
<td>0.922</td>
<td>0.240</td>
</tr>
<tr>
<td>طول سبله</td>
<td>0.861</td>
<td>0.240</td>
</tr>
<tr>
<td>ارتفاع بوته (با محور سبله)</td>
<td>0.829</td>
<td>0.240</td>
</tr>
<tr>
<td>عرض پهنگ برگ پرچمی</td>
<td>0.717</td>
<td>0.240</td>
</tr>
<tr>
<td>طول دمک ذهین</td>
<td>0.687</td>
<td>0.240</td>
</tr>
<tr>
<td>تعداد دنجه در سبله</td>
<td>0.617</td>
<td>0.240</td>
</tr>
<tr>
<td>تعداد دنجه بارور</td>
<td>0.599</td>
<td>0.240</td>
</tr>
</tbody>
</table>

جدول 7. نتایج تجزیه ترکیبات شیمیایی مواد گیاهی

<table>
<thead>
<tr>
<th>درصد مواد الکتریکا</th>
<th>درصد ماده خام</th>
<th>درصد پروتئین خام</th>
<th>درصد بایدن خام</th>
<th>زوتتریپ</th>
<th>خلوک</th>
<th>خاکستر</th>
<th>درصد فيبرنگ خام</th>
</tr>
</thead>
<tbody>
<tr>
<td>85/3</td>
<td>13/57</td>
<td>2/78</td>
<td>32/83</td>
<td>11/89</td>
<td>93/5</td>
<td>G1</td>
<td></td>
</tr>
<tr>
<td>90/6</td>
<td>9/21</td>
<td>2/78</td>
<td>32/83</td>
<td>8/69</td>
<td>91/9</td>
<td>G2</td>
<td></td>
</tr>
<tr>
<td>88/3</td>
<td>11/53</td>
<td>2/78</td>
<td>32/83</td>
<td>11/85</td>
<td>93/8</td>
<td>G3</td>
<td></td>
</tr>
<tr>
<td>85/9</td>
<td>14/91</td>
<td>2/78</td>
<td>32/83</td>
<td>10/94</td>
<td>93/8</td>
<td>G4</td>
<td></td>
</tr>
<tr>
<td>88/5</td>
<td>12/10</td>
<td>2/78</td>
<td>32/83</td>
<td>11/94</td>
<td>95/9</td>
<td>G5</td>
<td></td>
</tr>
<tr>
<td>88/12</td>
<td>11/59</td>
<td>2/78</td>
<td>32/83</td>
<td>11/99</td>
<td>95/9</td>
<td>G6</td>
<td></td>
</tr>
<tr>
<td>88/33</td>
<td>11/77</td>
<td>2/78</td>
<td>32/83</td>
<td>12/71</td>
<td>93/5</td>
<td>G7</td>
<td></td>
</tr>
<tr>
<td>88/53</td>
<td>11/77</td>
<td>2/78</td>
<td>32/83</td>
<td>12/71</td>
<td>93/5</td>
<td>G8</td>
<td></td>
</tr>
<tr>
<td>88/71</td>
<td>11/39</td>
<td>2/78</td>
<td>32/83</td>
<td>13/72</td>
<td>97/9</td>
<td>G9</td>
<td></td>
</tr>
<tr>
<td>88/16</td>
<td>13/46</td>
<td>2/78</td>
<td>32/83</td>
<td>12/46</td>
<td>95/9</td>
<td>G10</td>
<td></td>
</tr>
<tr>
<td>89/85</td>
<td>10/55</td>
<td>2/78</td>
<td>32/83</td>
<td>11/46</td>
<td>91/9</td>
<td>G11</td>
<td></td>
</tr>
</tbody>
</table>

شکل 2. دندروگرام حاصل از بررسی صفات شیمیایی زوتتریپ های آگروپلاسون

248
جدول 8. جدول واریانس مولفه‌های اصلی برای صفات ریختشانی

<table>
<thead>
<tr>
<th>واریانس تجمعی</th>
<th>ریشه مشخصه</th>
<th>فاکتور</th>
</tr>
</thead>
<tbody>
<tr>
<td>247</td>
<td>6/8316</td>
<td>1</td>
</tr>
<tr>
<td>7/15</td>
<td>1/2594</td>
<td>2</td>
</tr>
<tr>
<td>8/77</td>
<td>9/7903</td>
<td>3</td>
</tr>
</tbody>
</table>

جدول 9. سه ترکیبات شیمیایی حاصل از تجزیه مولفه‌های اصلی

<table>
<thead>
<tr>
<th>فاکتور سوم</th>
<th>فاکتور دوم</th>
<th>فاکتور اول</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/29/1945</td>
<td>0/9675</td>
<td>-</td>
</tr>
<tr>
<td>1/29/1925</td>
<td>0/9675</td>
<td>0/0364</td>
</tr>
<tr>
<td>1/29/2382</td>
<td>0/0248</td>
<td>0/0248</td>
</tr>
<tr>
<td>1/29/2003</td>
<td>0/3248</td>
<td>0/3248</td>
</tr>
<tr>
<td>1/29/1948</td>
<td>0/0248</td>
<td>0/0248</td>
</tr>
<tr>
<td>1/29/2008</td>
<td>0/3248</td>
<td>0/3248</td>
</tr>
</tbody>
</table>

منابع مورد استفاده

1. آقازاده فلوکی، ر. ب. قره باضی، ن. بابانیان جلوداد و ق. نعمت‌زاده، ۱۳۷۹، طبقه‌بندی زمزم پلاسم برنج ایرانی با استفاده از نشانگر RAPD-PCR. نشر شرکت گروه زراعت و اصلاح بیولوژی و محیط زیست ایران.
2. ربد، ش. س. شریعتی، ف. لیعه‌کن و. نیابتی و. ارثی، ۱۳۸۲. چهارگوش نمایه‌ای آگروپلاستی با استفاده از روش‌های زئوتیک، سینوژنتیکی و تجزیه ترکیبات شیمیایی. نشر شرکت گروه زراعت و اصلاح بیولوژی و محیط زیست ایران.
3. شاهین نیائی، ح. ۱۳۸۵. بررسی توده‌سانی در تعداد از آزمایش‌های مختلف با استفاده از روش‌های سینوژنتیکی و الکتروفورزیک. نشر شرکت گروه زراعت و اصلاح بیولوژی و محیط زیست ایران.

6. شیران، ب. ام. رابطه گونه‌های کمیکلت و اصلاح نباتات ایران. بابلسر، دانشگاه مازندران.

7. صالحی جوئلی، غ. س. علی میثمی، غ. حسین زاده و ب. طباطبایی. 1379. بررسی نژاد زنگی برخی از ارقام تجاری سیب زمینی ایران با استفاده از تکنیک‌های RAPD-PCR. شمشین کنگره زراعت و اصلاح نباتات ایران. بابلسر، دانشگاه مازندران.

8. علی قاضی جهانی، غ. س. رزیان حقیقی، غ. طریقی، غ. طالب پور و غ. برگر قاضی. 1379. بررسی نژاد زنگی در گونه Agropyron tauri شمشین کنگره زراعت و اصلاح نباتات ایران. بابلسر، دانشگاه مازندران.

10. گرجی، غ. 1379. بررسی نژاد زنگی گونه‌های آگروپیرین از نظر سیستم‌شناسی و پاتولوژی گونه‌های دانه. پایان نامه کارشناسی ارشد اصلاح نباتات، دانشکده کشاورزی، دانشگاه تهران.

11. معصومی، غ. غ. اکرمی، غ. 1373. تکامل کروموزوم گیاهان عالی، پیلولوژی معاصر، اصول بینیان سیستماتیک مدرن. انتشارات مؤسسه تحقیقات جنگل‌ها و مرتع کشور، تهران.
