کنترل و کاهش آب‌شستگی موضعی در پایه‌های پل با مقاطع مستطیلی گرد گشته
با استفاده از شکاف

موج‌های حیدرولیک، حسین افضلی‌مهر و محسن نادری‌بنی

چکیده

استفاده از شکاف در پایه‌های پلی‌کریستال نرم در کنترل آب‌شستگی موضعی است. برای پروانه‌ی با راه‌کاری به‌هیچ‌یک ۲۰ مدل آزمایشگاهی، کنترل آب‌شستگی موضعی در پیک پایه پل در شرایط آب زلال بررسی شد. مدل‌های شامل یک پایه استوانه‌ای بیرون شکاف و چهار پایه استوانه‌ای شکاف دار سه پایه مستطیلی پیشانی گرد بند شکاف و ۱۲ پایه مستطیلی شکاف‌دار مستند. طول شکاف‌ها برای عرض (قطر) پایه و در برای آن انتخاب شده و در دو موقعیت نزدیک پنجره و نزدیک سطح آب قرار دارند.

نتایج آزمایش‌ها نشان می‌دهد که برای پایه استوانه‌ای، شکاف‌هایی با طول معمول قطر پایه و در برای آن، در حالتی که نزدیک‌ترین سطح آب قرار گرفته باشد، تأثیری بر آب‌شستگی نهایی ندارند. همچنین، نتایج نشان می‌دهد که برای کلیه مدل‌هایی که در این پروانه‌ها تحت شرایط معمول آب زلال از آب‌شستگی حداکثر کاهش آب‌شستگی، به وسیله شکاف‌های با افتاده در در برای عرض (قطر) پایه و موقعیت نزدیک پنجره اتفاق می‌افتد. کارایی شکاف در کنترل آب‌شستگی موضعی نیز برای یک پایه مستطیلی پیشانی گرد پنجره از پایه استوانه‌ای برای حالتی که قطر پایه استوانه‌ای برای عرض آب‌شستگی، پیشانی گرد است، می‌باشد.

واژه‌های کلیدی: آب‌شستگی موضعی، پایه پل، شکاف در پایه پل

مقیده

علی‌الله معلم‌نژاد، رضا سلیمانی، علی‌اصفهانی

عنوان مطالعه، طبیعی سال گذشته، یک هزار از مجموعه‌های هزار بل ساخته شده را رودخانه‌های آمریکا تخریب شده، که نشان دارد آنها در اثر آب‌شستگی موضعی بوده است. در حالی که مهم‌ترین سازه‌های ارتباطی بوده و تخریب آنها بیشتر از آب‌شستگی موضعی صورت می‌گیرد، که به وسیله میان‌رودخانه‌های چریان موضعی در اطراف پایه‌های پل ایجاد می‌شود (۱۰%). به

۱. استادیار آیلاری، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

۲. دانشجوی سابق کارشناسی ارشد آیلاری، دانشکده عمران، دانشگاه صنعتی اصفهان
آب‌شستگی معادل به عمقی که فرآیند‌های آب‌شستگی را تحت تأثیر قرار می‌دهد.

از نظر زمانی، بسته به مقاومت مواد بستر در مقابله این فرآیندها، عمیقاً تأخیر می‌شود. سال‌ها در حدود پنجاه میلیون دالر است.

(8) در کشور ما به دلیل عدم درک صحیح از آب‌شستگی به جریان اطراف یا رعایت نکردن ملاحظاتی فنی در طراحی و اجرای پل‌ها، در سال‌های گذشته تعداد زیادی از پل‌ها به مفرزد و مهار از همه با کاربرد معمولی است.

آب‌شستگی موضعی است. این امر، علاوه بر تحقیق خصوصیات فرآوران باعث ایجاد در سیستم حمل و نقل و عدم استفاده مناسبی در پل‌سازی و شبکه‌بندی پل‌های بزرگ، به سرعت نزول میزان آن و لحاظ کردن آن در طراحی پل‌های مهمتر از همه با کاربرد معمولی است.

برای کنترل کاهش آب‌شستگی موضعی بین سیستم‌های استخراج و دیگر روش‌های نجات آن، ابتدا باید از این واقعیت شناخته شود.

آب‌شستگی پیش‌بینی شدید (Shields) است. بسته به مقاومت مواد بستر، در این سطح آب‌شستگی پیش‌بینی شده.

آب‌شستگی در اطراف پایه به دو صورت آب‌شستگی بستر زنده (Live-bed scour) و آب‌شستگی آب‌زاس (Clear-water scour) زنده، سرعت مانگ‌های جریان (U) در بازه بالادست یل پل بسته است. سرعت استاندارد حركت ذرات (threshold) بسته (Ul) است. که در آن، علائم بیش از آب‌شستگی موضعی اطراف پایه به دو صورت آب‌شستگی بستر زنده (Live-bed scour) و آب‌شستگی آب‌زاس (Clear-water scour) زنده است.
کنترل و کاهش آب‌شستگی موضعی در پایه‌ها پل با مقاطع مستطیلی گرد و غش با...

آب‌شستگی \(d_s \) بر حسب زمان به صورت تابع نمایی پیشنهاد شده است:

\[
\frac{d_s}{d_{se}} = \exp \left\{ -0.03 \frac{U_c}{U} \ln \left(\frac{t}{t_e} \right)^{1.6} \right\}
\]

(3)

برابر این رابطه، با دائستان زمان تخلیه \(t_e \) (زمانی که در آن عمق آب‌شستگی به مقدار متحمل خود می‌رسد) و بیشنی عمق آب‌شستگی، عمق آب‌شستگی در هر زمان \(t \) محاسبه می‌شود.

برای محاسبه زمان تخلیه روابط زیر ارائه شده است:

\[
t_e (\text{days}) = \begin{cases}
30.89 \frac{b}{U} \left(\frac{U}{U_c} \right)^{0.25} \frac{y}{b} & \text{اگر} \ y \leq 6 \\
48.26 \frac{b}{U} \left(\frac{U}{U_c} - 0.4 \right) \frac{y}{b} & \text{اگر} \ y > 6
\end{cases}
\]

(4)

و برای محاسبه بیشینه عمق آب‌شستگی در شرایط آب زلال از رابطه زیر استفاده می‌شود:

\[
d_{se} = k_3 \left(\frac{y}{b} \right)^{-0.65} U^{0.43} \]

(5)

که در آن \(k_3 \) نظیری \(1.3 \) برخی روابط تجریبی ارائه شده می‌باشد.

تغییرات زمانی آب‌شستگی موضعی در اطراف پایه‌ها را در شرایط آب زلال و برای تک‌پایه‌های استوانه‌ای بررسی کرد. نتایج این بررسی نشان داد که رابطه نظرالسامان و همانکان (به ین) نقل از (3) با دقت بهتری می‌تواند تغییرات زمانی آب‌شستگی را در پایه‌ها تخمین بزند. این رابطه به شکل زیر است:

\[
d_\Delta = \left(\sin \left(\frac{\pi}{2T} \right) \right)^m \]

(7)

که در آن \(T \) مدت زمان انجام آزمایش است و \(m \) و \(T \) دست می‌آید:

\[
m = 0.38 \left(\frac{b}{d_{50}} \right) \left(\frac{y}{b} \right)^{0.87} \left(\frac{t}{t_e} \right)^{0.25}
\]

(7)

تغییرات عمق آب‌شستگی موضعی در پایه‌ها به وسیله پژوهشگاه انجام پذیرفته می‌باشد.

ولی و سالانه (17) روابطی را برای محاسبه سرعت بررسی آستانه حرکت (\(U_0 \)) و به یکه اندازه‌گیری \(d_s \) (acompañaی آب‌زیستگی که در آن \(t_e \) زمان تخلیه را از نظر وزنی از آن کمتر باشد) ارائه کرده‌اند.

متغیرهای اصلی سرعت، قطر پایه، عمق جریان و اندازه‌گیری در رسوپ داده‌اند. میزان (به ین) نقل از (3) با انجام بررسی‌های آزمایشگاهی و تحلیل‌های پیدا کرده و ابعاد گرداب عمل است در رابطه این کرده. دانش‌ها یا کلیک، رابطه‌هایی برای محاسبه بیشینه عمق آب‌شستگی در شرایط آب زلال و بستر زندای ارائه کرده‌اند. (20) رابطه کاملاً از پیشتر در زمانی عمق آب‌شستگی برای پایه‌های استوانه‌ای ارائه شده‌اند. برآورد این رابطه می‌تواند مقداری با تابع پژوهش حاضر انتظار می‌شود. این جا به طور کاملاً بالای می‌گردد.

برای روش برای تغییر زمان تعادل و بیشینه عمق آب‌شستگی از روابط زیر استفاده شد:

\[
d_{se} = k_y b k_i d
\]

(6)

که با تغییر بیشینه عمق آب‌شستگی \(k_d \) و \(k_y b \) به ترتیب بیشینه عمق آب‌شستگی، ضریب عمق جریان و قطر پایه می‌باشد. ضریب انتدازه‌گیری با تغییر زیر هستند:

\[
\begin{align*}
2.4b & \leq y \\
0.7 \leq \frac{b}{y} & \leq 5 \\
4.5y & \leq \frac{b}{y} \\
0.27 \log(2.24 \frac{b}{d_{50}}) & \leq \frac{b}{d_{50}} < 25 \\
\frac{U}{U_c} & \leq 1 \\
\frac{U}{U_c} & > 1
\end{align*}
\]

(8)

در رابطه فوق، \(b \) قطر پایه، \(y \) عمق جریان، \(\frac{b}{d_{50}} \) قطر مانگیکین و \(d_{50} \) ضریب مانگیکین جریان. در آستانه حرکت ذرات رسوپ و \(U_0 \) سرعت مانگیکین جریان در آستانه حرکت ذرات رسوپ به مقداری است. تغییرات عمق
مطالعه‌ای در مورد ناشی شکاف در پایه مستطیلی پیش‌ناب (Round-nosed pier) اثر شکاف در کنترل کرمل آب‌رسانا مورد استحکام کردن انجام شد. در این مطالعه، از تحقیقات جامعه‌ای و مشابهی استفاده گردید. این موضوع باعث شد که این پژوهش حاضر به انجام شکاف‌های مستطیلی تجربه‌به‌شکل خاصی، یک پمپ به نام پیش‌ناب (Round-nosed pier) با شکاف‌های مغذی در حال راه‌اندازی نیز باشد. در این مطالعه، از تحقیقات جامعه‌ای و مشابهی استفاده گردید. این موضوع باعث شد که این پژوهش حاضر به انجام شکاف‌های مستطیلی تجربه‌به‌شکل خاصی، یک پمپ به نام پیش‌ناب (Round-nosed pier) با شکاف‌های مغذی در حال راه‌اندازی نیز باشد.
کنترل و کاهش آب‌مانگی موسمي در پایه‌های بل با مقاومت منطقی گرد و غوره‌با

آب پس از عبور از کنانال به یک مخزن انداره‌گیری دیگ وارد می‌شود که در ارتفاع آب به اکتیور متر نصب شده مشخص و دری به روش حجم، سطح اندازه‌گیری می‌گردد. برای انداره‌گیری عمق آب‌مانگی و عمق جریان از نظر عمق‌سنج بافت 5 میلی‌متر استفاده شد. عمق سنج روزی ریلی در جهت عرضی و طولی کنانال حرکت می‌کرد. شکل 1 نمایی از کنانال استفاده شده در آزمایشگاه هیدرولیک را نشان می‌دهد.

ورزش‌های مدل‌های آزمایشگاهی

مدلهای استفاده شده شامل یک مدل پایه استوانه‌ای بندون شکاف، سه مدل مستطیلی پیشنهاد گرد و بدون شکاف (اگر اباد مختلط) چهار مدل استوانه‌ای شکاف‌دار می‌باشد و 12 مدل مستطیلی پیشنهاد گرد کردن شکاف (با موقت و اباد مختلط شکاف) بود. مدل استوانه‌ای بندون شکاف از لوله فولادی به قطر 30 سانتی‌متر ارتفاع 80 سانتی‌متر و ضخامت 30 سانتی‌متر ساختم شده. مدل‌های مستطیلی پیشنهاد گرد دارای طول (در جهت جریان) 24 بار 6 سانتی‌متر و 32 سانتی‌متر بودند و عرض پایه ها (عومد بر جریان) برای قطع پایه استوانه‌ای 23 سانتی‌متر اختیار شد. شکل 2 مدل‌های پایه بندون شکاف را نشان می‌دهد.

با توجه به این که بررسی انداره‌گیری و نیز موقعیت شکاف در پایه‌های استوانه‌ای و مستطیلی پیشنهاد گرد مورد نظر بوده، دو نوع شکاف مستطیلی شکاف با ارتفاع‌های پایه 64/7 سانتی‌متر و ضخامت پایه 64/7 سانتی‌متر و عرض پایه 64/7 سانتی‌متر و عرض پایه 64/7 سانتی‌متر در نظر گرفته شد. این دو نوع شکاف در هر پایه در دو موقعیت نیز بست و نزدیک سطح آب بردی شد. شکاف‌ها به گونه‌ای قرار گرفته بودند که هیچ نوع انحراف در راستای جهت جریان و نیز از ارتفاع طولی پایه‌ها نداشتند. این امر توسط جریان شکاف چهار مدل شکاف‌دار ساختمان که به همراه موقعیت شکاف به کار رفته در آنها واقع بر کنار شکاف‌بندی (ارتفاع شکاف و برای عرض پایه) نیز بست شکاف کوچک (ارتفاع شکاف و برای عرض پایه) نیز بست شکاف کوچک (ارتفاع شکاف و برای عرض پایه)
شکل 1. نمایی از کانال مورد استفاده در آزمایشگاه

شکل 2. مدل‌های بدون شکاف

بررسی‌های رودکیوی (19) شرایط آب‌نشستگی آب زلال در برقرار شود:

\[\text{ظرفیت می‌شود که شرایط} \ U = 0.95 U_c \]

\[\text{برقرار می‌شود و به بیش‌ترین عمق آب‌نشستگی در} \ U \leq 0.95 U_c \]

\[d_{50} = 0.61 \text{ mm} \Rightarrow U_{sc} = 0.0115 + 0.0125(d_{50})^{1.4} \]

\[= 0.017 \text{ m/s} , \quad y_c = 12 \text{ cm} \Rightarrow U = 0.286 \text{ m/s} \]

برای زمایی برقرار می‌شود که U = 0.95 Uc باشد. بنابراین، با توجه به دبی 11 لیتر بر ثانیه و با استفاده از معادلات ملولی (15) و مدل‌لند (17) عمق چریان به گونه‌ای در
چکل و کاهش آب‌شستگی موضوعی در پایه‌های بلبا مقاطع مستطیلی گرد و غوره با...

شکل 3. موقعیت و ابعاد شکاف‌ها در مدل‌های شکاف‌دار (ابعاد به سانتی‌متر)

مدت زمان انجام آزمایش: مدت زمان انجام آزمایش‌ها برای معیار کووار و همکاران (14) انتخاب شد، که عبارت است از مدت زمانی از آغاز آزمایش که پس از آن تغییرات عمق آب‌شستگی در یک دوره ساخته نیست از یک میلی‌متر ناشناخت. این زمان به عنوان زمان عادل، و عمق آب‌شستگی اتفاق افتاده در آن به عنوان عمق آب‌شستگی عادل فرض شده است. زمانان عادل، و عمق آب‌شستگی عادل، در هر یک از مدل‌های شکاف‌دار و بدون شکاف در جدول 1 آمده است.

تیم‌های مدل‌های آزمایش شده در شرایط یکسان جریان، پررسی شدند. عمق‌های آب‌شستگی در اطراف پایه‌ها در قسمتی که پیشترین عمق آب‌شستگی اتفاق افتاده، اندوزه‌گیری شده است. این محل در دفاعی از این افتادگی، قبل از آن در جلوی پایه‌ها و با فاصله چند میلی‌متری از پایه‌ها پوشیده است.

\[
\begin{align*}
U_c &= 5.75 U_s \log(5.53 \frac{y}{d}^{0.399} m/s) \\
\frac{U}{U_c} &= 0.93
\end{align*}
\]

این ظرف‌مرکزی به معیار 95% است. تخمین عمق جریان در شرایط بحرانی با کاهش نرمال جریان به واسطه دریچه انجام شد، در عمق حدود 1/8 سانتی‌متر آب‌شستگی پیشتر زنده مشاهده شد. بنابراین، حداکثر سرعت مناسب با حداکثر عمق 12 سانتی‌متر انتحاب شد.

بنا بر نظریه دیتر (به نقل از 6)، میزان عمق آب‌شستگی با تابع \(y/b \) افزایش می‌یابد، ویل برای (3-1) تابع \(y/b \) است. پیش‌تری ویژه‌گانی دیگر نیز به این نتیجه رسیده‌اند که وقتی (3-1) باشد، عمق جریان بر عمق آب‌شستگی پیش‌تر است (20). با توجه به اینکه در پژوهش حاضر این تابع 3/85 است، عمق جریان هنچ تاثیری بر عمق آب‌شستگی نداشته است.
جدول 1. زمان تعادل و عمق آبشستگی معادل در انواع مدل‌های شکاف‌دار و بدون شکاف

<table>
<thead>
<tr>
<th>انواع مدل پایه</th>
<th>استوایی</th>
<th>مستطیلی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d (cm)</td>
<td>t (s)</td>
<td>d (cm)</td>
</tr>
<tr>
<td>شکاف بزرگ بالا</td>
<td>5/8</td>
<td>760</td>
<td>0/55</td>
<td>420</td>
<td>5/9</td>
<td>480</td>
<td>7</td>
<td>1000</td>
<td>7</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>شکاف کوچک بالا</td>
<td>5/7</td>
<td>760</td>
<td>0/55</td>
<td>420</td>
<td>5/9</td>
<td>480</td>
<td>7</td>
<td>1000</td>
<td>7</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>شکاف بزرگ بالا</td>
<td>7/3</td>
<td>760</td>
<td>0/55</td>
<td>420</td>
<td>5/9</td>
<td>480</td>
<td>7</td>
<td>1000</td>
<td>7</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>بدون شکاف</td>
<td>7/3</td>
<td>760</td>
<td>0/55</td>
<td>420</td>
<td>5/9</td>
<td>480</td>
<td>7</td>
<td>1000</td>
<td>7</td>
<td>1000</td>
<td></td>
</tr>
</tbody>
</table>

نتایج و بحث

تغییرات زمانی آبشستگی

1. با استوایی

شکل 4 تغییرات زمانی عمق آبشستگی موضعی را در پایه استوایی نشان می‌دهد. همان‌گونه که در این شکل مشخص است، منحنی شکاف بزرگ بستر با فاصله تساوی زیادی از منحنی‌های دیگر قرار دارد. در این شکل، نتایج به دست آمده از بررسی‌های مولیو و چیو (16) به منظور مقایسه آن‌ها شده است. بررسی نتایج نشان می‌دهد که منحنی مولیو و چیو با منحنی پایه بدون شکاف تقیی‌بر هم منطبق‌اند. در این حالت شکاف‌های کوچک، کوچک بالایی بستر و بزرگ بالایی بستر تأثیر سبیل کمی در عمق آبشستگی داشته و منحنی‌های این شکاف‌ها با منحنی پایه بدون شکاف سیار نزدیک هم هستند. همان‌گونه که شکل نشان می‌دهد، بیشترین عمق آبشستگی در پایه بدون شکاف و پرای 50/5 است.

2. با مستطیلی

شکل 4 تغییرات زمانی عمق آبشستگی موضعی را در اطراف پایه مستطیلی نشان می‌دهد. پایه مستطیلی با حداکثر عمق آبشستگی مثبت از نظر دیده شده، شکاف بزرگ بستر، عملکرد خوبی در کاهش عمق آبشستگی دارد و روند این کاهش با گذشت زمان به صورت دارند. شکاف‌های کوچک نزدیک بستر، بزرگ بالا و کوچک بالا نیز در رده‌های بعدی کاهش قرار دارند. مشابه در زمان یا به 50/50 است.

3. با مستطیلی

شکل 4 تغییرات زمانی عمق آبشستگی موضعی را در پایه مستطیلی نشان می‌دهد. شکاف‌های با حداکثر عمق آبشستگی مثبت از نظر دیده شده، شکاف بزرگ بستر، عملکرد خوبی در کاهش عمق آبشستگی دارد و روند این کاهش با گذشت زمان به صورت دارند. شکاف‌های کوچک نزدیک بستر، بزرگ بالا و کوچک بالا نیز در رده‌های بعدی کاهش قرار دارند. مشابه در زمان یا به 50/50 است.

4. با مستطیلی

شکل 4 تغییرات زمانی عمق آبشستگی موضعی را در پایه مستطیلی نشان می‌دهد. شکاف‌های با حداکثر عمق آبشستگی مثبت از نظر دیده شده، شکاف بزرگ بستر، عملکرد خوبی در کاهش عمق آبشستگی دارد و روند این کاهش با گذشت زمان به صورت دارند. شکاف‌های کوچک نزدیک بستر، بزرگ بالا و کوچک بالا نیز در رده‌های بعدی کاهش قرار دارند. مشابه در زمان یا به 50/50 است.

5. با مستطیلی

شکل 4 تغییرات زمانی عمق آبشستگی موضعی را در پایه مستطیلی نشان می‌دهد. شکاف‌های با حداکثر عمق آبشستگی مثبت از نظر دیده شده، شکاف بزرگ بستر، عملکرد خوبی در کاهش عمق آبشستگی دارد و روند این کاهش با گذشت زمان به صورت دارند. شکاف‌های کوچک نزدیک بستر، بزرگ بالا و کوچک بالا نیز در رده‌های بعدی کاهش قرار دارند. مشابه در زمان یا به 50/50 است.

6. با مستطیلی

شکل 4 تغییرات زمانی عمق آبشستگی موضعی را در پایه مستطیلی نشان می‌دهد. شکاف‌های با حداکثر عمق آبشستگی مثبت از نظر دیده شده، شکاف بزرگ بستر، عملکرد خوبی در کاهش عمق آبشستگی دارد و روند این کاهش با گذشت زمان به صورت دارند. شکاف‌های کوچک نزدیک بستر، بزرگ بالا و کوچک بالا نیز در رده‌های بعدی کاهش قرار دارند. مشابه در زمان یا به 50/50 است.
شکل ۵. تغییرات عمق آب‌نشتگی نسبت به زمان در پایه مستطیلی

شکل ۶. تغییرات عمق آب‌نشتگی نسبت به زمان در یک پایه مستطیلی
شکل 7: تغییرات عمق آب‌شنگین نسبت به زمان در بازه‌ی مستطیلی 3×9

شکل 6: تغییرات عمق آب‌شنگین نسبت به زمان در بازه‌ی مستطیلی 3×9

بدون شکاف
شکاف بزرگ بی‌پشت
شکاف کوچک بی‌پشت
شکاف بزرگ بالا
شکاف کوچک بالا
شکاف بزرگ بی‌پشت
شکاف کوچک بی‌پشت
شکاف بزرگ بالا
شکاف کوچک بالا
شکاف بزرگ بی‌پشت
شکاف کوچک بی‌پشت
کنترل کاهش آب‌شستگی موضوعی در پایه‌های بل با مقاطع مستطیلی گرد گوش وا...
شکل 8 درصد کاهش عمل آب‌شستگی بالاتر است. به ترتیب از چپ به راست در زمان‌های 10 دقیقه، 30 دقیقه، 1 ساعت، 2 ساعت و زمان نهایی (تعادل) در پایه استوانه‌ای.

شکل 9 درصد کاهش عمل آب‌شستگی بالاتر است. به ترتیب از چپ به راست در زمان‌های 10 دقیقه، 30 دقیقه، 1 ساعت، 2 ساعت و زمان نهایی (تعادل) در پایه مستطیلی.
شکل 10. درصد کاهش عمق آب‌شستگی بالا‌دست به ترتیب از چپ به راست در زمان‌های 10 دقیقه، 30 دقیقه، 1 ساعت و زمان نهایی (تعدادی) در پایه مستطیلی /3/89.

شکل 11. درصد کاهش عمق آب‌شستگی بالا‌دست به ترتیب از چپ به راست در زمان‌های 10 دقیقه، 30 دقیقه، 1 ساعت و زمان نهایی (تعدادی) در پایه مستطیلی /3/12.
نتایج بررسی آنها نشان داد که با افزایش ارتفاع شکاف، عملکرد آن در کاهش آب‌شکستگی بهتر بوده است.

2. پایه مستطیلی

شکل 9 نتایج مربوط به درصد کاهش عمق آب‌شکستگی موضعی به وسیله شکاف را در پایه مستطیلی 3 في در زمان‌های مختلف نشان می‌دهد. چنین که در شکاف‌های گذشته زمان افزایش یافته است. در این پایه، شکاف‌های نزدیک بستر بهتر از شکاف‌های نزدیک سطح آب عمل کرده‌اند. به ترتیب شکاف بزرگ بستر، شکاف کوچک بستر، شکاف بزرگ بالا، شکاف کوچک بالا تأثیر بیشتری در کاهش آب‌شکستگی داشته‌اند. به طوری که این شکاف‌ها به ترتیب کاهشی در حدود 10، 12، 18 و 7 درصد در عمق آب‌شکستگی پایه به وجود آورده‌اند. برای نتایج، تمام شکاف‌ها در پایه مستطیلی 6 بی ره از پایه استوانهای عمل کرده‌اند.

3. پایه مستطیلی

شکل 10 نتایج مربوط به درصد کاهش عمق آب‌شکستگی موضعی در پایه مستطیلی 3 في در زمان‌های مختلف نشان می‌دهد. در این پایه، شکاف‌های نزدیک بستر بهتر از شکاف‌های نزدیک سطح آب عمل کرده‌اند. به ترتیب شکاف بزرگ بستر، شکاف کوچک بستر، شکاف بزرگ بالا، شکاف کوچک بالا به ترتیب کاهشی در حدود 13، 15، 11 و 5 درصد در عمق شکاف‌ها در این پایه به وجود آورده‌اند. برای نتایج، تمام شکاف‌ها در پایه مستطیلی 3 و پایه استوانهای عمل کرده‌اند.
مراجع مورد استفاده

1. زرآتی، و. م. غربی. 1376. روشهای محافظت یا پای در برابر آبشستگی. مجموعه مقالات نخستین کنفرانس هیدرولیک ایران. انتشارات دانشگاه خواجه نصیر طوسی تهران.

2. شفاعی پیستون، و. م. 1378. هیدرولیک رسوب. انتشارات دانشگاه شهید چمران اهواز.

3. تنظیری، و. م. 1380. تغییرات زمانی آبشستگی موسمی اطراف پایه‌های بل. سومین کنفرانس هیدرولیک ایران، دانشگاه فنی دانشگاه تهران.

