آثاری از تغییر آب و هوای دیرنه کواتری صورت می‌گیرد برخی پارینه‌ها از اصفهان و
امامیه چهارمحال و بختیاری

شمس الله ایوبی، احمد جلالیان و مصطفی کریمی‌ان اقبال

چکیده
پژوهش در پارینه‌ها کاربرد زیادی در بررسی وضعیت بوم‌شناسی و اقلیمی گذشته زمین دارد. از سوی دیگر، شناسایی پارینه‌ها نشان می‌دهد که در شرایط طبیعی، اقلیمی و بومیانه به شکل مشخصی تشکیل شده‌اند. به‌طور کلی سری
رسوب‌های جوانتر دفن شده‌اند. با دقت‌یک‌سرافر پایان به‌سازانه‌اند. این قاعده‌ها در نواحی ایران مرکزی و زاگرس پراکنده
چنگال‌های دارند. در شناسایی پارینه‌ها، روش‌های مختلف مورفولوژیک، فیزیکی، شیمیایی، کدی شناسی و
میکروسکوپیک فیلدهای‌های در انیوگیری ویژگی‌های مورفولوژیکی و برخی پارامترهای فیزیکی و شیمیایی پارینه‌ها در منطقه
اصفهان و امامیه چهارمحال و بختیاری، به منظور شناخت شرایط حالت‌سازی و محیطی گذشته بررسی شد. نتایج مورد بررسی روی
زمین‌پریخت‌های مختلف شامل مخروط‌انکه‌ای آرتینی، دشت پَرچِمی برده، شید و رسوبات آب‌پاشنه‌ی گوار گره‌ستان. نتایج پژوهش داده که در منطقه‌ی تگرگی اصفهان، رسوب بر جای مانده از یک محیط آب‌پاشنه‌ی پَرچِمی شامل سایبان‌های سنگی در محدوده
ماکرونفلس است. که می‌توان یافته در پارینه‌ها (آب‌پاشنه‌ی پَرچِمی) به این نتایج توجه داشته‌ایم. به‌طور کلی مانند با توزیع‌یافته‌ی درات شناسایی نشانه‌ی تغییر در شرایط رسوب‌برداری گذشته داشته است. پیش‌تر ملاحظه شده و آهنگی روزه‌ی خاک‌دار/دبی/درختان/شکر اصفهان، با
۱۰۰ میلی‌متر بارندگی سالانه، خبر از شرایط طبیعی گذشته منطقه‌ی می‌دهد. در نتیجه امامیه چهارمحال و بختیاری، پارینه‌ها خاک دفن
شده غنی از پوشش‌های رسی و بدور آنها به شکل مانند کاتیون‌های بازی خیلی کم دیده می‌شود. بر این روابط میان مایز پَرچِمی و نسبت
کاتیون‌های مختلف میان پارینه‌ها در منطقه‌ی کا در برری تنظیم نیروی مورد است. در این مجموعه نیروهای مورد بررسی نشان می‌دهد.

که در اواخر پلیستوسن سقوط مؤثر در مناطق ایران مرکزی و زاگرس به مراتب بیش از آمروز بوده است.

واژه‌های کلیدی: پارینه‌ها، ماکرونفلس، پلیستوسن، ویژگی‌های فیزیکی و شیمیایی

1. به ترتیب دانشجوی سابق دکتری، استاد و دانشیار خاکشناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
مقدمه

اصلی و شرایط اکولوژیک زمین در طول دوران‌های مختلف زمین‌شناسی از دیگر دانش‌ها و تفکری‌های مهم می‌باشد. استفاده کردن رایسید در شیاریت‌های زمین‌شناسی برای شناسایی و الزام‌رسانی حاکم بر زمین‌شناسی هسته‌ای به‌کار رفته است. در این دوره، رایسید در شیاریت‌های زمین‌شناسی به‌عنوان یکی از راهبردهای مهم کاربردی در تحقیق‌های زمین‌شناسی به‌کار رفته است. شیاریت‌های زمین‌شناسی در شیاریت‌های زمین‌شناسی به‌عنوان یکی از راهبردهای مهم کاربردی در تحقیق‌های زمین‌شناسی به‌کار رفته است.
برای تعیین درجه هیدرولیز کانال‌ها، استفاده از ۲۱ و ۲۲ نسبت فرم‌های مختلف در آن‌ها به کیفیت و نسبت اهم کل به آن‌ها کشیده و نسبت نبات به آب کلیه مورد انتخاب و وضعیت اکتشافی و کاهش نسبت به مجموع

FeO، Al۲O۳ و SiO۲ گذشته مهندسی است (۲۰ و ۲۱). نسبت به

Al۲O۳ برای شرایط هیدروژنی SiO۲ برای شرایط آب‌زدایی رس نسبت‌ها قابل اعتماد هستند.

نزدیک‌ترین تناوایی در بررسی روش درون‌کوشی و کانال‌ها و چاه‌های جونا را مشخص کند. از فاکتورهای شیمیایی مشخص است (۲۰ و ۲۱). با پایش نسبت کاتیونی برابر به

ZrO²⁺ در فاکتورهای شیمیایی مشخص توجه در بررسی و مقایسه منه کانال‌ها و چاه‌های سبک تغییر در انتخاب شد. (۱) ترکیب سیال‌های در محدوده اکتشافات و علایق در دامنه ۴۰–۵۰ شریف و عرض جغرافیایی. ۹–۱۲ شمالی واقع شده و

عمدها از نگه‌کاران کانال‌ها، ماسه سنگ قرمز و کُلِیامِرها در شریف جغرافیایی در ناحیه اقیerner۲۲–۵۰ و طول جغرافیایی در ناحیه اقیerner۲۲–۵۰ و طول جغرافیایی ۲۵۰ در ۲۲، و مواد مادی آن شامل تلای خاک و عرض جغرافیایی ۲۵۰ در ۲۲، و مواد مادی آن شامل تلای خاک و

شیوه‌های انتخابی (اشیا) به جا مانده شده، و اختیاراً از رسوایی‌های بادی‌فیزیکی

خود در آن بازی یابد.

برای شرایط خاک، پیش‌بینی و تناوایی سیال‌های اتفاق‌آمیز و ناحیه اقیerner (۲۰ و ۲۱). به این معنی، گونه‌های گلی است و در

۲۰۰۴ میلادی گونه‌های مختلف در برابر شکار آب است. که خود تابع حجم در روش‌های سیال‌های بزرگ و سیال‌های دیگر آب ورودی است (۸). به عنوان مثال،

گونه‌های مختلف اورستکرب (Ostracoda) در آب‌های دور توصیف شده است (۸).

پژوهش حاضر به مبانی نظری بررسی و پیش‌بینی سیال‌های موولوزیک و

برخی از جغرافیایی و شیمیایی پاره‌ای خاک‌ها و رسوب آبی‌نی نشان دهنده شرایط آب و کم‌تر در گذشته است (۸).

خاک، اتفاق‌های مختلف خاک از هم جدا شد. سپس بر اساس

زاومی شرایط خاک‌زای و محرک گذشته انجام شده است.

مواد و روش‌ها این بررسی در دو منطقه اقلیمی مختلف اصفهان و امام‌مراتع ...
شکل ۱. موقعیت جغرافیایی نقاط مورد بررسی

به دلیل حلال‌یابی زیاد گچ و آزاد شدن بون کلسیم که باعث انعقاد کلویدها می‌شود ممکن است این روی برای برطرف کردن این مشکل از پیش تیمار هسرت ۱۱ استفاده گردد.

در آنالیزهای شیمیایی pH حاکم در نمونه‌های گل اشاع (۱۷). کلریون‌ها و نیترات‌های محلول در عصاره اشاع اندکه کیری گردد، گنجایش تبادل کاتیونی به روی استخوان سدیم در pH ۷ (۲۲)، آهین پدوزنیک به روش کیت‌های pH ۷ (۲۲)، و آهین آمورف به روش عصاره گیری با اکزالت‌های آمینوس اسید اکزالیک (۹) تعیین شد. پس از عصاره گیری آهین، غلتظت آن به وسیله دستگاه جذب انتی انداده گرفته شد. اندازه‌گیری کل روش حل کردن کلی میزان گچ در آب مفید و اندازه‌گیری نیترات بیکلیسیم و تفرقه آن از کلسیم عصاره اشاع حاکم با استفاده از فرمولهای مربوطه انجام شد و نتایج حاکم در آنها به روش معمول، شده و داده‌های مربوط به ویژگی‌های مورفولوژیک شاخه در هر مقطع برداشته شد. سرانجام، نمونه‌های خاک مقاطع افق‌های جدا شده که داشت و برای انجام تجزیه‌های فیزیکی، شیمیایی و (X-ray Fluorescence) XRF به آزمایشگاه منطقه‌ای گردد.

به منظور بررسی نمونه‌های ماکروفیسی بالا شده در محل سگزی، مقداری از نمونه‌های که دست نخورده به ترتیب روی الکهای ۴۰ و ۸۰ مشت شده شد و سپس نمونه‌های ماکروفیسی به وسیله میکروسکوپ بین‌کولر مشاهده و عکس برداری گردد. مهم‌ترین شاخص فیزیکی مورد بررسی توزیع اندازه‌ها در شست کلاس مختلف به روش پیست (۱۵) بود. چون برخی افتخارات خاک سگزی و سپاه شهر دارای مقادیر بیشتری گچ بود، تعیین بانف آنها به روش معمول می‌باشد.
در این مطالعه، از شیمیایی و میکروسکوپیک، فیزیکی و شیمیایی پاره‌نماخاتی و مورفولوژیک (Dyryas) گرفته شدند.

نتایج و بحث

اولین نتایج و نمایندگان مورفولوژیک، فیزیکی و شیمیایی پاره‌نماخاتی مورد بررسی در منطقه سگری اصفهان در حدود 180 میلی‌متر و در 2 ازدحام شده است. در این مقطع افقی 3Ab رنگی خیلی ثبات (Y3/1) دارد. در این افق، با این که مواد آلی اندامگیری شده به روش مورفولوژیک و اندامگیری می‌تواند به روش سوزاندن تن به 1/32 درصد می‌رسد، ولی طرازه میزان مواد آلی در گذشته به مراتب بیش از این بوده و به علت سفید شدن این مواد، به روش میکروسکوپیک شیمیایی در این مزان، جلوگیری شده بود.

نوع نمایندگان مورفولوژیک (Dyryas) در این افق، از شیمیایی و میکروسکوپیک (Shell) گرفته شدند.

نتایج نمایندگان مورفولوژیک (Shell) شامل آن شدید، شکل، شور، رنگ، و شکل ریز شده است.

نتایج نمایندگان مورفولوژیک (Shell) شامل آن شدید، شکل، شور، رنگ، و شکل ریز شده است.

نتایج نمایندگان مورفولوژیک (Shell) شامل آن شدید، شکل، شور، رنگ، و شکل ریز شده است.

نتایج نمایندگان مورفولوژیک (Shell) شامل آن شدید، شکل، شور، رنگ، و شکل ریز شده است.

نتایج نمایندگان مورفولوژیک (Shell) شامل آن شدید، شکل، شور، رنگ، و شکل ریز شده است.
جدول 1. برخی ویژگی‌های مورفولوژیک و هیدروژنی پارینای خاک‌های مرطوب در منطقه سگری

| بافت خاک | سیلت | سانتي‌متر بر سه‌سانتی‌متر | پوسته رخی | وضوح‌آهنگ | ساخت‌خاک | رنگ خاک | (مرطوب) | (cm) |
|----------|------|--------------------------|----------|------------|----------|--------|--------|
| L | 10/1 | 407 | 49/2 | - | zwf | 10YR 6.5/4 | 50-20 | A |
| SL | 10/1 | 48/12 | 71/9 | - | sbk;f | 10YR 5/4 | 35-45 | Bzy |
| Sil | 14/8 | 64/3 | 21/9 | - | sbk,m | 10YR 5/6 | 25-30 | 2Bz |
| Sil | 12/3 | 26/6 | 35/6 | - | grf | 5Y 3/1 | 25-5 | 3Ab |
| SL | 17/1 | 42/1 | 37/5 | - | m;ms | 5Y 3/1 | 50-60 | 3Bkgb |
| Sil | 17/6 | 66/3 | 37/3 | - | abk,m | 5Y 3/1 | 50-60 | 3Bwgb |
| Sil | 17/6 | 65/3 | 37/3 | - | abk,m | 5Y 3/1 | 50-60 | 3Bwgb |
| Sil | 17/6 | 65/3 | 37/3 | - | abk,m | 5Y 3/1 | 50-60 | 3Bwgb |
| Sil | 17/6 | 65/3 | 37/3 | - | abk,m | 5Y 3/1 | 50-60 | 3Bwgb |
| Sil | 17/6 | 65/3 | 37/3 | - | abk,m | 5Y 3/1 | 50-60 | 3Bwgb |
| CL | 17/6 | 65/3 | 37/3 | - | abk,m | 5Y 3/1 | 50-60 | 3Bwgb |
| SL | 17/6 | 65/3 | 37/3 | - | abk,m | 5Y 3/1 | 50-60 | 3Bwgb |
| L | 17/6 | 65/3 | 37/3 | - | abk,m | 5Y 3/1 | 50-60 | 3Bwgb |
| l | 17/6 | 65/3 | 37/3 | - | abk,m | 5Y 3/1 | 50-60 | 3Bwgb |

1. L: Loam, SL: Sandy Loam, Sil: Silty Loam, SCL: Silty Clay Loam, CL: Clay Loam, LS: Loamy Sand
جدول ۲. برخی ویژگی‌های شیمیایی پایه‌خاک مورد بررسی در منطقه سگری

| Fe₂O | Fe₂ | SAR | EC_e (dS/m) | pH | CEC (cemol+/kg) | سه‌گروه‌ها محول (meq/l) | کاتیون‌های محول (meq/l) | این | CF | SO₄²⁻ | HCO₃⁻ | Ca²⁺ | Mg²⁺ | Na⁺ | K⁺ |
|----------------|-------------|------|----------------------|-----|-----------------|------------------------|------------------------|-----|----|----------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|
| ۵.۲۰ | ۵.۲۰ | ۵.۲۰ | ۱۶/۲۸ | ۳/۱| ۴۷۶ | ۳۱۰ | ۳۱۰ | ۳۱۰ | ۳۱۰| ۳۱۰ | ۳۱۰ | ۳۱۰ | ۳۱۰ | ۳۱۰ | ۳۱۰ |
| ۴.۲۰ | ۴.۲۰ | ۴.۲۰ | ۱۶/۲۸ | ۳/۱| ۴۷۶ | ۳۱۰ | ۳۱۰ | ۳۱۰ | ۳۱۰| ۳۱۰ | ۳۱۰ | ۳۱۰ | ۳۱۰ | ۳۱۰ | ۳۱۰ |
| ۴.۲۰ | ۴.۲۰ | ۴.۲۰ | ۱۶/۲۸ | ۳/۱| ۴۷۶ | ۳۱۰ | ۳۱۰ | ۳۱۰ | ۳۱۰| ۳۱۰ | ۳۱۰ | ۳۱۰ | ۳۱۰ | ۳۱۰ | ۳۱۰ |

آمده‌ها: این جدول نشان می‌دهد که در منطقه سگری با کاهش Fe₂ و SAR و pH و EC_e بالاتر، مقدار CEC و سه‌گروه‌ها محول بالاتر است. با این حال، نسبت Ca²⁺ به Mg²⁺ به طور معناداری کاهش یافته است.
جدول ۳. طبقات بندی گونه‌های گربه‌پر ایجاد شده در پاره‌برخ نورد بریسی سگزی

<table>
<thead>
<tr>
<th>گونه</th>
<th>جنس</th>
<th>زیرتره</th>
<th>بزرگتره</th>
<th>سرده</th>
<th>رده</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastropoda Pulmonata Basommataphora</td>
<td>Acotaphia Ellobiliidae Carychiace Charychium Radix Radix peregra</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastropoda Pumonata Basommataphora Planorbidac Planorbinac Gryaulus Gryaulus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل ۲. نمودهایی از مواد آلی فسفیل شده (زغال شده) در لایه تیره رنگ پاره‌برخ نورد سگزی

شکل ۳. نمودهایی از غلاف آهکی نوتن پاره‌برخ نورد Radix peregra در لایه تیره رنگ پاره‌برخ نورد سگزی

گزارش کردند. از افقهای پدزونی موجود در این نیبرخ می‌توان به افقهای چوبی (Salic) و سالیک (Gypsic) در قسمت بالایی نیبرخ اشاره کرد که تحت تأثیر سفره آب زیرزمینی و تخمر و تعرض شدید در منطقه به وجود آمدند. تغییرات شدید به دلیل مقطع مورد بررسی به ویژه

به آهن دی‌تیوپتی (Fe۲) چندان تغییر و روای مشخصی ندارد، که کاهش این نسبت در افق تیره رنگ دلال بر مقدار آن کبدی ساخته‌نشده از فرآیند بلوئی شدن آهن به صورت درج، در این افق است. در لایه‌های زیرین، به دلیل توجهات سفره آب زیرزمینی، مقدار مطلق آهن دی‌تیوپتی به شدت کاهش می‌یابد.

(جدول ۲) پژوهشگران دیگر (۸۹، ۱۴ و ۲۴) نیز این پدیده را

58
آناری از تغییر آب و هوای دیرینه کوارتر موجود در برخی پارک‌های خاک‌های در منطقه ...

شکل ۴. نمونه‌هایی از غلاف آهکی نرم‌تنان گونه Gryaulus convexiusculus در لایه خرابه رنگ پاریش خاک‌های سگری

شکل ۵. توزیع عمقی نسبت شن خاکی ریز به شن ریز (vfs/fs) در نمک‌های مورد بررسی (الف: سگرزی B: سپاهان شهرچ: امام قیس)

بنابراین مختلف گونه‌های پیشین در شرایط رسوب‌گذاری گذشته می‌باشد. که خود ناشی از گونه‌های آفلئی و آب و هوای گذشته است. همچنین، وجود لایه سیاسارنگ در بخش بالایی مقطع، وجود آبی‌پری در منطقه سگرزی در گذشته را تأیید می‌کند. مکان‌هایی که به شبکه پایت‌شده، به عنوان محدودت آب شیرین سازگاری دارند، نشان دهنده حجم زیاد آب و شرایط پر آبتر

dگرگونی‌های که ناشی از سفره آب زیرزمینی است، بهره‌گیری از ویژگی‌های شیمیایی را در تفسیر فرآیندهای و شرایط محیطی گذشته دچار مشکل می‌سازد. بر پایه همین استدلال، آنالیز‌های روی نمونه‌های این مقطع، به دلیل پر هزینه بودن صورت XRF نگرفته است.

مجموعه نشانه‌های فوق می‌ریزند که رسوبات دیده شده با لایه...
شکل ۷. توزیع عمیق نسبت اکسیدهای مختلف عناصر در نیروخ سیاه‌شهر

شکل ۶. توزیع عمیق نسبت اکسیدهای مختلف عناصر در نیروخ سیاه‌شهر

[الف: سکری ب: سیاه‌شهر ج: امام‌قیس]
آثاری از تغییر آب و هوای دیرینه کوارتر موجود در برخی پارک‌های خاک‌های در منطقه ...

شکل 8 توزیع عمیق نسبت اکسیدهای مختلف عناصر در نیبرخ امامیس در شهر نیپور و بافتیاری

گذشته است. با توجه به این که منطقه مورد بررسی در حال حاضر حدود 100 کیلومتر با دریایی جنگلی گاوخاردنی فاصله دارد، بر اساس شواهد موجود به نظر می‌رسد که این منطقه در اوایل پلیستوسن (Pleistocene) و اواخر هولوسن (Holocene) که مصادف با دوره سرد و نیمه بیضالی می‌باشد، جوان است. حالات ابزاری داشته و سطح قدیمی آن را از آب‌می‌نشین پوشانده بوده است. این نیبرخ‌های غیر محدود گذشته به پایه شناخته شده است.

در این نیبرخ نیز پس از تشکیل افق‌طلبی رس، فرازدهای بعدی هموار آسیاب شدن و گچی (Calcification) فرازدهای بعدی هموار آسیاب شدن و گچی (Gypsification) شامل CaO + MgO/Al2O3 و Na2O/K2O Na2O/Al2O3 است. کند شدن که از نسبت فرازده سه کند، در افق سطحی و افق 325 متری نسبت به نقشین دیگر نیبرخ تغییر ایجاد کرده است.

نیبرخ سیاه‌شناور

برخی ویژگی‌های نورومورفولوژیک، فیزیکی و شیمیایی پارک‌های خاک‌های شهر در جدول 4 و 5 راه‌های شده است. از ویژگی‌های صخیش در این محل انتقال سطحی میان برخی لایه‌های، که بارزترین آن در عمق 15 مساحت متری اتفاق می‌افتد و مقدار هموار رنگ خاک از 10YK بی‌پاره به 7.5YK تغییر می‌کند.

در طول نیبرخ، افزایش متنوع از عمق 285 مساحت متری با
<table>
<thead>
<tr>
<th>درصد خاک</th>
<th>رنگ</th>
<th>توضیحات</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5%</td>
<td>7.5YR 5/3</td>
<td>عمیق</td>
</tr>
<tr>
<td>6-10%</td>
<td>7.5YR 5/4</td>
<td>بلند</td>
</tr>
<tr>
<td>11-15%</td>
<td>7.5YR 6/4</td>
<td>زمینه</td>
</tr>
<tr>
<td>16-20%</td>
<td>7.5YR 7/4</td>
<td>تیره</td>
</tr>
<tr>
<td>21-25%</td>
<td>7.5YR 8/4</td>
<td>نارنجی</td>
</tr>
<tr>
<td>26-30%</td>
<td>7.5YR 9/4</td>
<td>نارنجی-قرمز</td>
</tr>
<tr>
<td>31-35%</td>
<td>7.5YR 10/4</td>
<td>قرمز</td>
</tr>
<tr>
<td>36-40%</td>
<td>7.5YR 11/4</td>
<td>قرمز-قرمز</td>
</tr>
<tr>
<td>41-45%</td>
<td>7.5YR 12/4</td>
<td>قرمز-قرمز</td>
</tr>
<tr>
<td>46-50%</td>
<td>7.5YR 13/4</td>
<td>شنی</td>
</tr>
<tr>
<td>51-55%</td>
<td>7.5YR 14/4</td>
<td>شنی</td>
</tr>
<tr>
<td>56-60%</td>
<td>7.5YR 15/4</td>
<td>شنی</td>
</tr>
<tr>
<td>61-65%</td>
<td>7.5YR 16/4</td>
<td>شنی</td>
</tr>
<tr>
<td>66-70%</td>
<td>7.5YR 17/4</td>
<td>شنی</td>
</tr>
<tr>
<td>71-75%</td>
<td>7.5YR 18/4</td>
<td>شنی</td>
</tr>
<tr>
<td>76-80%</td>
<td>7.5YR 19/4</td>
<td>شنی</td>
</tr>
<tr>
<td>81-85%</td>
<td>7.5YR 20/4</td>
<td>شنی</td>
</tr>
<tr>
<td>86-90%</td>
<td>7.5YR 21/4</td>
<td>شنی</td>
</tr>
<tr>
<td>91-95%</td>
<td>7.5YR 22/4</td>
<td>شنی</td>
</tr>
<tr>
<td>96-100%</td>
<td>7.5YR 23/4</td>
<td>شنی</td>
</tr>
</tbody>
</table>

1. SL: سل، SCL: سل بهبودیافته، CCL: سل بهبودیافته بهبودیافته
جدول ۳ برخی ویژگی‌های شیمیایی پارتمخت دلدره‌های مورد بررسی در منطقه سپان‌شهر

<table>
<thead>
<tr>
<th>Fe<sub>6</sub></th>
<th>Fe<sub>5</sub></th>
<th>SAR</th>
<th>E<sub>Ca</sub></th>
<th>pH</th>
<th>CEC<sub>(cmol(+)/kg)</sub></th>
<th>K<sup>1</sup></th>
<th>Na<sup>-</sup></th>
<th>Ca<sup>2+</sup></th>
<th>Mg<sup>2+</sup></th>
<th>SO<sub>4</sub><sup>-2</sup></th>
<th>HCO<sub>3</sub><sup>-</sup></th>
<th>Cl<sup>-</sup></th>
<th>K<sup>+</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>0.79</td>
<td>0.14</td>
<td>7/6</td>
<td>8/8</td>
<td>7/6</td>
<td>8/8</td>
<td>9/5</td>
<td>5/10</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
</tr>
<tr>
<td>0.17</td>
<td>0.15</td>
<td>8/5</td>
<td>8/7</td>
<td>7/6</td>
<td>8/8</td>
<td>9/5</td>
<td>5/10</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
</tr>
<tr>
<td>0.70</td>
<td>0.13</td>
<td>8/5</td>
<td>8/7</td>
<td>7/6</td>
<td>8/8</td>
<td>9/5</td>
<td>5/10</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
</tr>
<tr>
<td>0.46</td>
<td>0.16</td>
<td>8/5</td>
<td>8/7</td>
<td>7/6</td>
<td>8/8</td>
<td>9/5</td>
<td>5/10</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
</tr>
<tr>
<td>0.34</td>
<td>0.12</td>
<td>8/5</td>
<td>8/7</td>
<td>7/6</td>
<td>8/8</td>
<td>9/5</td>
<td>5/10</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
</tr>
<tr>
<td>0.15</td>
<td>0.14</td>
<td>8/5</td>
<td>8/7</td>
<td>7/6</td>
<td>8/8</td>
<td>9/5</td>
<td>5/10</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
</tr>
<tr>
<td>0.05</td>
<td>0.06</td>
<td>8/5</td>
<td>8/7</td>
<td>7/6</td>
<td>8/8</td>
<td>9/5</td>
<td>5/10</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
</tr>
<tr>
<td>0.01</td>
<td>0.02</td>
<td>8/5</td>
<td>8/7</td>
<td>7/6</td>
<td>8/8</td>
<td>9/5</td>
<td>5/10</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
<td>4/8</td>
</tr>
</tbody>
</table>

1 با استفاده از روش‌ها و Fe₆ Fe₅ SAR CEC
نیبرخ امام‌فرس چهارمحل و بختیار
برخی ویژگی‌های مورفولوژیک، فیزیکی و شیمیایی پارینه‌خان
مورده خرسی از منطقه امام‌فرس چهارمحل و بختیاری در
چاودار و ۷ اورده شده است. در این نیبرخ برا اساس شواهد
مورفولوژیک موجد در صحرا و آنالیز توزیع اندازه‌های و
نسبت شن خیلی چسبانی به شکل ۵-ج، چندین انقلاب و
گسترش یافته‌ها دیده می‌شود. در قسمت بالایی نیبرخ مقطعی شکل
می‌گیرد که با شرایط محیطی منطقه‌ای ۵۰۴ میلی‌متر بارندگی
سالانه و زیست‌نشین زیستی (Xeric) هم‌خوانی دارد. این‌گونه
رس به صورت پوسته نقشه و أهنک به صورت پودری، از
ویژگی‌های این بخش از نیبرخ است.
همچنین نسبت شدنی‌ها به فاقدانهای (شکل ۸) متأثر شده است.
جدول ۶ برخی ویژگی‌های مورفولوژیک و فیزیکی پایه‌های کوره در منطقه امین‌آباد

<table>
<thead>
<tr>
<th>پایه‌های کوره</th>
<th>سانتی‌متریه‌های پیش‌ریزه</th>
<th>رنگ‌های پیش‌ریزه</th>
<th>وضوح‌های الکتریکی</th>
<th>ساختار</th>
<th>چسب‌داری</th>
<th>شفافیت</th>
<th>رنگ‌های‌اصلی</th>
<th>(مرطوب)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIL</td>
<td>۶۷/۵</td>
<td>۹۲/۷</td>
<td>۱۴/۴</td>
<td>-</td>
<td>-</td>
<td>esc</td>
<td>gsm</td>
<td>10YR 4/2</td>
</tr>
<tr>
<td>L</td>
<td>۷۱/۸</td>
<td>۱۵۵/۳</td>
<td>۱۴/۱</td>
<td>1mkipf</td>
<td>c3ism, ss</td>
<td>abk, m</td>
<td>10YR 4/3</td>
<td>Btk1</td>
</tr>
<tr>
<td>SIC</td>
<td>۰/۰</td>
<td>۵۵/۱</td>
<td>۴/۹</td>
<td>1mkipf</td>
<td>c3ism, ss</td>
<td>abk, c</td>
<td>10YR 4/3</td>
<td>Btk3</td>
</tr>
<tr>
<td>SIC</td>
<td>۰/۹</td>
<td>۸۳/۱</td>
<td>۶</td>
<td>1mkipf</td>
<td>c3ism, ss</td>
<td>abk, c</td>
<td>10YR 4/3</td>
<td>Btk3</td>
</tr>
<tr>
<td>SIC</td>
<td>۴/۸</td>
<td>۴۳</td>
<td>۱۱</td>
<td>1mkipf</td>
<td>m3ism, ss</td>
<td>abk, s</td>
<td>10YR 6/3</td>
<td>Btk4</td>
</tr>
<tr>
<td>CL</td>
<td>۷۹/۶</td>
<td>۳۱/۰</td>
<td>۱۵</td>
<td>-</td>
<td>evd</td>
<td>abk, f</td>
<td>5Y 6/3</td>
<td>2Gb</td>
</tr>
<tr>
<td>L</td>
<td>۹۶/۵</td>
<td>۳۹/۸</td>
<td>۵۰</td>
<td>-</td>
<td>evd</td>
<td>abk, f</td>
<td>5Y 7/4</td>
<td>2Gb</td>
</tr>
<tr>
<td>L</td>
<td>۷۱/۹</td>
<td>۴۲/۷</td>
<td>۱۵</td>
<td>2mkipf, po</td>
<td>m3ism, ss</td>
<td>abk, s</td>
<td>10YR 7/4</td>
<td>3Bk8,b</td>
</tr>
<tr>
<td>L</td>
<td>۷۱/۹</td>
<td>۴۳/۸</td>
<td>۷۰</td>
<td>2mkipf, po</td>
<td>m3ism, ss</td>
<td>abk, s</td>
<td>7.5 YR 4/4</td>
<td>3Bk8,b</td>
</tr>
<tr>
<td>L</td>
<td>۷۸/۷</td>
<td>۴۳/۲</td>
<td>۷۰</td>
<td>2mkipf, po</td>
<td>m3ism, ss</td>
<td>abk, s</td>
<td>7.5 YR 4/4</td>
<td>3Bk8,b</td>
</tr>
<tr>
<td>SIC</td>
<td>۱۰۵/۲</td>
<td>۴۷/۷</td>
<td>۱۰</td>
<td>2mkipf, po</td>
<td>m3ism, ss</td>
<td>abk, s</td>
<td>7.5 YR 4/6</td>
<td>3Bk8,b</td>
</tr>
<tr>
<td>C</td>
<td>۴۸</td>
<td>۳۳/۱</td>
<td>۱۹/۶</td>
<td>3mkipf</td>
<td>نیو جودن</td>
<td>abk, m</td>
<td>2.5 YR 4/4</td>
<td>4Bt1,b</td>
</tr>
<tr>
<td>C</td>
<td>۵۱/۸</td>
<td>۳۷/۳</td>
<td>۱۹/۶</td>
<td>3mkipf</td>
<td>نیو جودن</td>
<td>abk, c</td>
<td>2.5 YR 4/4</td>
<td>4Bt1,b</td>
</tr>
<tr>
<td>SIC</td>
<td>۱۸/۵</td>
<td>۴۳/۰</td>
<td>۱۰</td>
<td>3mkipf</td>
<td>نیو جودن</td>
<td>abk, c</td>
<td>2.5 YR 6/4</td>
<td>4Bt1,b</td>
</tr>
</tbody>
</table>

جدول ۷: دمای گیاهی شیمیایی باره‌های مورد بررسی در منطقه امیدی‌پس

<table>
<thead>
<tr>
<th>Fe_2O</th>
<th>Fe_3O</th>
<th>SAR</th>
<th>EC (dS/m)</th>
<th>pH</th>
<th>CEC (cmol(+) kg)</th>
<th>آلیات (mg kg)</th>
<th>کاتیون‌های محلول (meq/L)</th>
<th>آنتی‌کاتیون‌های محلول (meq/L)</th>
<th>Ca²⁺</th>
<th>Mg²⁺</th>
<th>Na⁺</th>
<th>K⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>آنتی‌کاتیون‌های محلول (meq/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>0.08</td>
<td>0.21</td>
<td>0.4</td>
<td>5.7</td>
<td>0.03</td>
<td>0.04</td>
<td>0.03</td>
<td>1.6</td>
<td>0.03</td>
<td>0.04</td>
<td>0.03</td>
<td>1.6</td>
</tr>
<tr>
<td>0.01</td>
<td>0.09</td>
<td>0.22</td>
<td>0.4</td>
<td>5.5</td>
<td>0.04</td>
<td>0.05</td>
<td>0.04</td>
<td>1.8</td>
<td>0.04</td>
<td>0.05</td>
<td>0.04</td>
<td>1.8</td>
</tr>
<tr>
<td>0.02</td>
<td>0.10</td>
<td>0.23</td>
<td>0.4</td>
<td>5.4</td>
<td>0.05</td>
<td>0.06</td>
<td>0.05</td>
<td>2.0</td>
<td>0.05</td>
<td>0.06</td>
<td>0.05</td>
<td>2.0</td>
</tr>
<tr>
<td>0.03</td>
<td>0.11</td>
<td>0.24</td>
<td>0.4</td>
<td>5.3</td>
<td>0.06</td>
<td>0.07</td>
<td>0.06</td>
<td>2.2</td>
<td>0.06</td>
<td>0.07</td>
<td>0.06</td>
<td>2.2</td>
</tr>
<tr>
<td>0.04</td>
<td>0.12</td>
<td>0.25</td>
<td>0.4</td>
<td>5.2</td>
<td>0.07</td>
<td>0.08</td>
<td>0.07</td>
<td>2.4</td>
<td>0.07</td>
<td>0.08</td>
<td>0.07</td>
<td>2.4</td>
</tr>
<tr>
<td>0.05</td>
<td>0.13</td>
<td>0.26</td>
<td>0.4</td>
<td>5.1</td>
<td>0.08</td>
<td>0.09</td>
<td>0.08</td>
<td>2.6</td>
<td>0.08</td>
<td>0.09</td>
<td>0.08</td>
<td>2.6</td>
</tr>
<tr>
<td>0.06</td>
<td>0.14</td>
<td>0.27</td>
<td>0.4</td>
<td>5.0</td>
<td>0.09</td>
<td>0.10</td>
<td>0.09</td>
<td>2.8</td>
<td>0.09</td>
<td>0.10</td>
<td>0.09</td>
<td>2.8</td>
</tr>
<tr>
<td>0.07</td>
<td>0.15</td>
<td>0.28</td>
<td>0.4</td>
<td>4.9</td>
<td>0.10</td>
<td>0.11</td>
<td>0.10</td>
<td>3.0</td>
<td>0.10</td>
<td>0.11</td>
<td>0.10</td>
<td>3.0</td>
</tr>
</tbody>
</table>

1. علائم ۷: دمای گیاهی شیمیایی باره‌های مورد بررسی در منطقه امیدی‌پس

SAR, CEC, pH و Fe(III) و Fe(II) به ترتیب شاخص‌های کیفیت باره‌ها، CEC نشان‌دهنده‌ی کیفیت آنتی‌کاتیون‌ها و SAR نشان‌دهنده‌ی کیفیت کاتیون‌ها است.
نتیجه‌گیری
شواهد مواد شیمیایی بی‌شمار موجود در پارینه‌های سگزی تأیید کند که شرایط مواد شیمیایی تربیت در اواخر دوره پلیمستوس و اوائل هولوسن در منطقه اصفهان است. شواهد مواد شیمیایی، فیزیکی و شیمیایی در پارینه‌های سگزی شهر با افتخارات مشخصه

منابع مورد استفاده
1. جلالی پور، م. ۱۳۹۲. نم‌تان زمینی و رودخانه‌ای در ایران. بروس کار نشر تأسیس ایران. مواد مطالعات و تحقیقات فرهنگی.
2. زینب گریزی، م. ۱۳۷۲. خاک‌شناسی کاربردی. انتشارات دانشگاه تهران.
3. غربی، ج. و. استرورز. ۱۳۷۸. آثاری از نم‌تان آب و هوای دریزه در خاک‌های ایران. دومین کنفرانس منطقه‌ای تغییرات اقلیمی، سازمان هوشمندی کشور، آبان ۱۳۷۸ تهران.
4. موسسه تحقیقات خاک و آب. ۱۳۷۶. راهنمای مطالعات شناسایی و تشخیص نم‌تان خاک. سازمان تحقیقات کشاورزی و منابع طبیعی، وزارت کشاورزی، شهره شماره ۷۵۸.

