آثاری از تغییر آب و هوای دیرینه کواترین موجود در برخی پارینه‌خارها دو منطقه اصفهان و امامیه چهارمحال و بختیاری

چکیده
پژوهش در پارینه‌خارها کاربرد زیادی در بررسی وضعیت بوم‌شناسی و اقلیمی گذشته تهیه دارد. از سوی دیگر، شناسایی پارینه‌خارها نقش مهمی در انجام پهپاد بررسی‌های تفسیری در کشف و توصیف گیمپردهای مدلی دارد. زیرا ویژگی‌های این خاک‌ها با خاک‌های جوان‌تر متفاوت است. پارینه‌خارها، شامل خاک‌های مهیأتی که در شرایط مختلف با شرایط محیطی کنونی تشکیل شده، به‌زیر که سری روستایی جوان‌تر دفن شده‌اند و در این چکیده مطالعات پژوهشی توسط ساختاری این خاک‌ها در نواحی ایران مرکزی و زاگرس پراکنده‌شده و چگونگی‌های متفاوتی در شناسایی پارینه‌خارها، ویژگی‌های کاملاً مختلف خاک‌زایی مختلف مورفولوژیک، شیمیایی، کی Delete this text.
خاک‌ها به وضوح می‌آورند (۱۰)، بر اساس نتایج کسب‌وکاری (Kobayashi) و کوبیاواشی (Bulter) در ترجمه و دریافت کرده‌اند. (Raeside) استفاده کرده‌اند. رایکورد، نمونه‌برداری و نشست زمین‌شناسی‌گویان و نویسندگان استفاده ساده‌تر و آسان‌تر و پوشش رسمی در توصیف پارینه‌خاک‌ها توجه کرده‌اند. پژوهشگران به چهار زمین‌شناسی‌گویان توجه به آن و نشان دهنده‌گرا بی‌سابقه را جلبر ده زمین‌شناسی‌گویان (Rubification) به دسترسی. نوشتار و نظیری تغییرات اساسه در ساختار زمین. شاخص تغییرات اصلی در این دوران به خوبی در حفظ شاخص‌های است. بیشتر پارینه‌خاک‌ها شاخص‌های نظامی هستند که در شرایط متفاوت

با شرایط نرمی تشکیل شده، به زیر که سری رسوب عامل

dفن شده. و با پرداز کویرگویان سطحی و شرایط

خارجی استفاده کرده‌اند (۲۰). خاک‌های فن شده، بر حسب

(Ecosystem) این که همه تحت تأثیر چه نوع بوم‌پیکری

قرار گرفته‌اند. درجات تکامل متفاوتی دارند. استفاده از شاخص‌های

مورفولوژیک، خردکننده، کمپرسیو و کاتیون شاملی، به علاوه

ویژگی‌های میکرومورفولوژیک، پارینه‌خاک‌ها را به بهترین وجه

به عنوان ازار مفید در پیشرفت شرایط گشتی یک متنگه می‌کنند.

معمولاً می‌کنند. شاخص پارینه‌خاک‌ها و نحوه پیاده‌ریزی آن‌ها مربوط

(Paleopedology) به نام شاخص‌ناهایی پارینه‌خاک‌ها است. که کمتر در ایران به آن توجه شده است. نوعی

پارینه‌خاک‌های عشقم‌پان‌شده (Exhumed) شیب‌دار باغچه‌ای

(Landscapes) مشخص در نشان‌دارند. شناخته‌پذیری پارینه‌خاک‌ها،

جدید روی زمین‌مان‌های مشابه در نشان‌دارند. آزاد مودرای

(۱۰). از آن‌ها دیگر، پارینه‌خاک‌های عشقم‌پان‌شده، به عنوان بانف

رژیم و نشسته‌شدن مشکلات را در زمین‌مان‌های مدیریت
برای تعيين درجه هيديروليز كاتیاها قبل استفاده است (20) و
نشب فرم‌های مختلف آهن به بکیکر و نسبت آهن کل
به آهن می‌باشد و اینگونه وضعیت اکسیاس و کاهش نسبت
برای تینی شرایط هیدروسیون سیلوآ است (21). نسبت
به Al₂O₃ برای تینی شرایط گرد و نسبت به Al₂O₃
برای شدت انباشتگی رس، نسبت‌هایی قبل قابل استفاده می‌باشد.

در منطقه اصفهان در توانش شاهد روی در زمین‌ریخت
Old alluvial

مناوت شال رسوب معرض اکتنه قدیمی (fanی)
در ناحیه سیاه سه و رسوبات گامفی‌گی قدیمی ناحیه
سرگی و روی رسوبات بریده شده Old disected plain

(1). توانش سیاه‌سیر ناحیه معرض اکتنه‌ای واقع در دامنه
جنوب‌غربی کوه صهبان در طول خاک‌فرایند 10.3/4

شیر و عرض جغرافیایی 5° 37 ' شمالی، واقع شده و
عمدها از سنگ‌های کرتاسه ماسه سنگ فرم و کلیومراز
گرن‌سی و شیل زوراسیک مشخص گرفته است. رسوبات گامفی‌گی
cدیمی در منطقه سکندر در کنار
کلیومتری شمال شرق اصفهان، در عرض جغرافیایی 5° 03 ' و
طول جغرافیایی 36° 50 ' قرار گرفته و مواد مادی آن
شامل رسوبات طبقی است که از حوضه آب‌یابی رودخانه
رازیدرود به جا مانده و از رسوبات پادراه ی
پوشیده شده است.

تراشانه امکان‌های رسوبات دشت قدیمی به شدت بردیده
شد روستای امکان‌های، در طول جغرافیایی 33° 18 ' و
عرض جغرافیایی 10° 55 ' در 45 کلومتری جنوب غربی
شهر سمنج و استان چهارمحال و بختیاری قرار گرفته
است. دور شاهد روی بخش شرایط بردیده شده را از درون‌های
مدوف، سرک و درختان در دامنه امکان‌های

بررسی صحرایی ضمن شناسایی و حفر ترانش‌های
مورد نظر و نسبت کردن مقطع بر اساس عوارض مورفولوژیک
خاک اقیانوسی مختلف خاک از هم جدا شد. سپس بر اساس
راه‌نما تشریح نام‌های خاک (4)، مقاطع مورد بررسی تشریح

مواد و روش‌ها

این بررسی در دو منطقه اقلیمی متفاوت اصفهان و امکان‌های
شکل 1. موقعیت جغرافیایی نقاط مورد بررسی

به دلیل جابجایی زیاد گچ و آزاد شدن بیون گلسم که باعث انعقاد کلوئیدها می‌شود، ممکن است این روند برای برطرف کردن این مشکل از پیش‌بیماری‌های (11) استفاده گردد.

در آنانی‌های شیمی‌ای، pH خاک در نمونه‌های گل اشباع (17) کاتیون‌ها و آنیون‌های محلول در عصاره اشباع اندامه گیاه شده. کنکاش تبادل کاتیونی به روش استات-سیدم در pH = 7 (22) این پدیده‌ای به روش سیترات-بی کربنات دی‌تئیوانات (25) و آهن گیاه‌های به روش عصاره کربنات آمونیوم و اسید آکرالیک (7) تعیین شد. پس از عصاره گیاه آهن، غلظت آن به وسیله دستگاه جذب اتمی اندازه‌گیری شد. اندازه‌گیری کل سوخت در آب مغذی و اندازه‌گیری میزان گلسم به تغذیه آن از گلسم و عصاره‌های اشباع خاک با استفاده از فرمول‌های مربوط به انجام شد.

در شیمی‌ای، استفاده از X-ray Fluorescence (XRF) و شیمی‌ای برای شناسایی منشأ متفاوت (GCF) مورد بررسی توزیع اندازه‌گیری در شیمی‌ای مختلف به روش پیوست (15) به دلیل متغیری افزایش گیاه سگزی و سیاه‌تیره بود. به تعبیر آنها به روش معمول، شده و داده‌های مربوط به ویژگی‌های هزار مورفولوژیک شاخه در هر مقعیت برداشت شد. نسخه‌های، نمونه‌های خاک مقاطع از افق‌های جدید شدند برداشت و برای انجام تجزیه‌های فیزیکی، به آزمایشگاه منقل گردد.

به منظور بررسی نمونه‌های ماکروفیل بالاتر شده در محل سگزی، مقداری از نمونه‌های دست‌نخورده به تریپس روی الكهیه 40 و 80 مدل نشسته شده شد و سپس نمونه‌های ماکروفیل به وسیله میکروسکوپ بی‌نک‌دار مشاهده و اطلاع‌برداری گردید. مهم‌ترین شاخه فیزیکی مورد بررسی توزیع اندازه‌گیری در شیمی‌ای مختلف به روش پیوست (15) به دلیل متغیری افزایش گیاه سگزی و سیاه‌تیره بود.
نتایج و بحث
نیم‌نرخ سگی
نتایج برخی ویژگی‌های مورفولوژیک، فیزیکی و شیمیایی
پاره‌نماهای مورد بررسی در منطقه سکوی اسفناه در جدایی 1 و 2 آورده شده است. در این فضای افقی 3Ab رنگی خیلی ثروت (1Y3/1) دارد. در این افق، با این‌که مواد آلی انداره‌گری شده به روش سوزاندن تن به 1/23 درصد می‌رسد، ولی ظاهر میزان مواد آلی در گذشته به مراتب بیش از این بوده و به علت فسیل شدن این مواد به روش مزبور قابل اندیشه‌گری نیست. شدت فسیل شدن به اندازه‌های دسته‌بندی که حتی تک‌های بزرگ ساقه و ریشه گیاهان قدمتی به صورت زغال شکل (2) در بین ذرت‌های کهی تا سیاه و خاکی، محل غیر این در دو عمق 60 و 125 سانتی‌متری پوشانده که این نمونه‌ها در مسی برای سیار ویژگی‌های شکلی به‌طور میانگین، شدت انسدادی 1/23 درصد می‌رسد. در این‌جا، توجه به این‌که به‌طور میانگین و در این عمق، تا این‌جا بازار نیم‌نرخ سگی (Dryas) در این افق، افزون بر عوارض فلور و وجود مقدار زیادی نیم‌نرخ سگی (Dryas) (Gleyzation) نسبت تغییرات نسبت درشت‌تر شیب خیلی زیر به شیب ریز (شکل 5-الف) بوده. نسبت این تغییرات درشت‌تر از تأیید می‌کند. چنان‌که از جدول 2 می‌آید، نسبت آهن‌آموزن درصد آهک به روش تیراندازی بر‌گشتی (19) و درصد مواد آلی به روش سوزاندن برای یافته‌های احتمالی در مجاورت اسید سولفوریک غلیظ (19) انداره‌گری کرد. تجزیه عصری و تبیین درصد عصری اصلی بی‌سیب‌های مدل قطعات نسبت دارد (Philips-2400 XRF
سنگ‌پایی به‌طور میانگین 14 روی نمونه‌های مواد آلی فسیل شده، در دو عمق مختلف نیم‌نرخ سگی به روش اسپکترومتری (Accelerator mass spectrometry) تشکیل گردید. نمودار چاپی هر این‌جا گردید.
جدول 1. برخی ویژگی‌های مورفولوژیک و میکروپیکی پارنی‌خاک مورد بررسی در منطقه سگری

<table>
<thead>
<tr>
<th>شرکت</th>
<th>درصد</th>
<th>ساورینش</th>
<th>پوسته‌ریسی</th>
<th>سنگ‌پوش‌‌شدن</th>
<th>مشخصات سایه</th>
<th>رنگ باریک‌سایه</th>
<th>رنگ خاک</th>
<th>قطر (مترم)</th>
<th>قطر (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>10/1</td>
<td>49/2</td>
<td>-</td>
<td>-</td>
<td>بدون جوشش</td>
<td>grf</td>
<td>10YR 6.5/4</td>
<td>10-20</td>
<td>A</td>
</tr>
<tr>
<td>SL</td>
<td>10/3</td>
<td>36/5</td>
<td>-</td>
<td>-</td>
<td>بدون جوشش</td>
<td>sbk,m</td>
<td>10YR 5/4</td>
<td>50-60</td>
<td>Bzy</td>
</tr>
<tr>
<td>Sil</td>
<td>14/8</td>
<td>48/3</td>
<td>-</td>
<td>esd</td>
<td>sbk,m</td>
<td>10YR 5/4</td>
<td>50-70</td>
<td>2Bz</td>
<td></td>
</tr>
<tr>
<td>Sf</td>
<td>12/1</td>
<td>27/6</td>
<td>-</td>
<td>esd</td>
<td>sbk,m</td>
<td>5Y 3/1</td>
<td>30-80</td>
<td>3Ab</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>17/4</td>
<td>87/1</td>
<td>3/2</td>
<td>myrsm</td>
<td>abk,m</td>
<td>10YR 3/1</td>
<td>50-100</td>
<td>3Bkgb</td>
<td></td>
</tr>
<tr>
<td>SiCL</td>
<td>17/5</td>
<td>87/1</td>
<td>-</td>
<td>esd</td>
<td>abk,m</td>
<td>5Y 3/1</td>
<td>50-100</td>
<td>3Bwg,lb</td>
<td></td>
</tr>
<tr>
<td>SiL</td>
<td>26/9</td>
<td>87/1</td>
<td>-</td>
<td>esd</td>
<td>abk,m</td>
<td>5Y 3/1</td>
<td>50-100</td>
<td>3Bwg,lb</td>
<td></td>
</tr>
<tr>
<td>SiL</td>
<td>24/3</td>
<td>87/1</td>
<td>-</td>
<td>esd</td>
<td>abk,m</td>
<td>5Y 3/1</td>
<td>50-100</td>
<td>3Bwg,lb</td>
<td></td>
</tr>
<tr>
<td>SiL</td>
<td>10/3</td>
<td>87/1</td>
<td>-</td>
<td>fisc, myrsm</td>
<td>abk,m</td>
<td>5G 5/1</td>
<td>50-100</td>
<td>4Bkg,5</td>
<td></td>
</tr>
<tr>
<td>SiL</td>
<td>10/3</td>
<td>87/1</td>
<td>-</td>
<td>fisc, myrsm</td>
<td>abk,m</td>
<td>5G 5/1</td>
<td>50-100</td>
<td>4Bkg,5</td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>37/0</td>
<td>47/7</td>
<td>-</td>
<td>fisc, myrsm</td>
<td>abk,m</td>
<td>5G 5/1</td>
<td>50-100</td>
<td>4Bkg,5</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>18/1</td>
<td>47/5</td>
<td>-</td>
<td>esd</td>
<td>بدون ساختن</td>
<td>5GY 3/1</td>
<td>30-50</td>
<td>5Bwg,lb</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>18/1</td>
<td>47/5</td>
<td>-</td>
<td>esd</td>
<td>بدون ساختن</td>
<td>10GY 3/1</td>
<td>30-50</td>
<td>6Bwg,lb</td>
<td></td>
</tr>
<tr>
<td>1S</td>
<td>5/7</td>
<td>83/1</td>
<td>-</td>
<td>esd</td>
<td>بدون ساختن</td>
<td>5GY 1/3</td>
<td>30-50</td>
<td>7Bwg,lb</td>
<td></td>
</tr>
</tbody>
</table>

1: L: Loam, SL: Sandy Loam, Sil: Silty Loam, SiCL: Silty Clay Loam, CL: Clay Loam, 1S: Loamy Sand
<table>
<thead>
<tr>
<th>Fe₄</th>
<th>Fe₂₀</th>
<th>SAR</th>
<th>ECE (dS/m)</th>
<th>pH</th>
<th>CEC (cmol(+)/kg)</th>
<th>H₂O</th>
<th>آنیون‌های محلول (meq/l)</th>
<th>الکل</th>
<th>کالیوم‌های محلول (meq/l)</th>
<th>Ca²⁺</th>
<th>Mg²⁺</th>
<th>Na⁺</th>
<th>K⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>170</td>
<td>40</td>
<td>10.9</td>
<td>7.9</td>
<td>15.843</td>
<td>7.9</td>
<td>0.71</td>
<td>0.5</td>
<td>100</td>
<td>0.68</td>
<td>0.67</td>
<td>0.63</td>
<td>0.7</td>
</tr>
<tr>
<td>140</td>
<td>130</td>
<td>30</td>
<td>11.1</td>
<td>7.7</td>
<td>13.561</td>
<td>7.5</td>
<td>0.89</td>
<td>0.5</td>
<td>190</td>
<td>0.53</td>
<td>0.51</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>160</td>
<td>150</td>
<td>20</td>
<td>12.3</td>
<td>7.7</td>
<td>14.732</td>
<td>7.3</td>
<td>0.96</td>
<td>0.5</td>
<td>160</td>
<td>0.51</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>180</td>
<td>170</td>
<td>10</td>
<td>13.5</td>
<td>7.7</td>
<td>15.863</td>
<td>7.3</td>
<td>1.13</td>
<td>0.5</td>
<td>210</td>
<td>0.48</td>
<td>0.47</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>200</td>
<td>190</td>
<td>0</td>
<td>14.7</td>
<td>7.7</td>
<td>16.984</td>
<td>7.3</td>
<td>1.30</td>
<td>0.5</td>
<td>260</td>
<td>0.45</td>
<td>0.44</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>220</td>
<td>210</td>
<td>10</td>
<td>15.9</td>
<td>7.7</td>
<td>18.015</td>
<td>7.3</td>
<td>1.47</td>
<td>0.5</td>
<td>310</td>
<td>0.42</td>
<td>0.42</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

۶ به ترتیب شکل‌دادن کانال‌های کامل، ضریب ذوب سنگ و آهش مراقب‌کردن به کار رفته آگلانه امکان و دی‌توپنی است
جدول ۳. طبقه‌بندی گونه‌های نرم‌تن پافت شده در پارینه‌هاک مواد پروسه‌سازی

<table>
<thead>
<tr>
<th>گونه مورد بررسی</th>
<th>زیرتره</th>
<th>سرده</th>
<th>جنس</th>
<th>رده</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radix peregra</td>
<td>Z. Radix</td>
<td>Radix</td>
<td>Gryaulus</td>
<td>Gryaulus convexiusculus</td>
</tr>
<tr>
<td>Radix</td>
<td>Z. Radix</td>
<td>Radix</td>
<td>Gryaulus</td>
<td>Gryaulus convexiusculus</td>
</tr>
<tr>
<td>Gryaulus</td>
<td>Z. Radix</td>
<td>Radix</td>
<td>Gryaulus</td>
<td>Gryaulus convexiusculus</td>
</tr>
<tr>
<td>Gryaulus convexiusculus</td>
<td>Z. Radix</td>
<td>Radix</td>
<td>Gryaulus</td>
<td>Gryaulus convexiusculus</td>
</tr>
</tbody>
</table>

شکل ۲. نمونه‌هایی از مواد آلی فسیل شده (زغال شده) در لایه تیره رنگ پارینه‌هاک سگزی

شکل ۳. نمونه‌هایی از غلاف آهنی نرم‌تن گونه Radix peregra در لایه تیره رنگ پارینه‌هاک سگزی

گزارش کردند. از افق‌های پیدا شده موجود در این نیبرس می‌توان به افق‌های جیسیک (Salic) و سالیک (Gypseum) در قسمت بالای نیبرس اشاره کرد که تحت تأثیر سفره آب زیرزمینی و تبخیر و تعرق شدید در منطقه به وجود آمدند. تغییرات شدید بعدی در مقطع مورد بررسی، به ویژه

سپند نکنید

به آهن دی تونیتی (Fe₂) چندان تغییر و روال مشخصی ندارد و کاهش این نسبت در افق تیره رنگ دال بر مقادیر آهن کربناتی که با فرآیند بلوری شدن آهن به صورت مخصوصاً مرکزی و این افق است. در لایه‌های زیرین، به دلیل نوسانات سفره آب زیرزمینی، مقادیر مطلوب آهن دی تونیتی به شدت کاهش می‌یابد (جدول ۲). پژوهشگران دیگر (9، 14 و ۲۴) نیز این پدیده را

۵۸
شکل 4: نمونه‌هایی از غلاف آهکی نرم‌تان گونه Gryaulus convexiusculus در لاشهٔ برهنه رنگ پاره‌خانیک سگزی

شکل 5: توزیع عمقی نسبت شن غیلی ریز به شن ریز (vfs/fs) در نمودرهای ورود بررسی [الف: سگزی B: سه‌همان، شرکت: امام قیس]

بنیاد مختلف گونی‌های تغییر در شرایط رسوب‌گذاری گذشته می‌باشد. که خود ناشی از دکترگوئی‌های اقلیمی و آب و هوای گذشته است. همچنین، وجود لاشه سیاسارنگ در بخش بالایی مقفل، وجود آب شیرین در منطقه سگزی در گذشته را تأیید می‌کند. مکروفیسیولوژی‌ها بیان شده، که به‌طور معمولی آب شیرین سازگاری دارند. نشان دهنده حجم زیاد آب و شرایط بر آب‌تر

دکترگوئی‌هایی که ناشی از سفره آب زیرزمینی است، به‌طور کلی از ویژگی‌های شیمیایی را در تفسیر فرایندها و شرایط محیطی گذشته دچار مشکل می‌سازند. بر پایه همین استدلال، آنالیز‌های روی نمونه‌های این مقفل، به دلیل پر هری به وسیله صورت XRF نگرفته است.

مجموعه نشان‌های فوق می‌رساند که رسوبات دیده شده با لایه...
شکل ۷. توزیع عمیق نسبت اکسیدهای مختلف عناصر در نیروخ سپاهان شهر

شکل ۸. توزیع عمیق نسبت آهن اکسیداتی (Fe(III)) به آهن فینیکسی (Fe(II)) در نیروخ‌های مورد بررسی [الف: سگری ب: سپاهانشهر ج: امامقلی]
آثاری از تغییر آب و هوای دیرینه کوانتر موجود در برخی پارک‌های خاک‌های دو منطقه ...
جدول ۱: برخی ویژگی‌های مورفولوژیک و فیزیکی پاره‌خاک مورد بررسی در منطقه میان‌شهر

<table>
<thead>
<tr>
<th>شماره سلکی</th>
<th>پوسته رُس</th>
<th>مکانیسم مسدودی</th>
<th>مکانیسم سیلاب</th>
<th>ارتفاع</th>
<th>عمق</th>
<th>رنگ</th>
<th>(cm)</th>
<th>علت</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL</td>
<td>1/10</td>
<td>2/10</td>
<td>7/8</td>
<td>8/29</td>
<td>esc</td>
<td>grt</td>
<td>10YR 5/4</td>
<td>0-15</td>
</tr>
<tr>
<td>SCL</td>
<td>3/11</td>
<td>1/10</td>
<td>7/5</td>
<td>2/25</td>
<td>cysm</td>
<td>abs</td>
<td>7.5YR 4/4</td>
<td>0-15</td>
</tr>
<tr>
<td>C</td>
<td>2/10</td>
<td>2/10</td>
<td>7/10</td>
<td>2/25</td>
<td>mrs</td>
<td>abs</td>
<td>7.5YR 5/4</td>
<td>0-15</td>
</tr>
<tr>
<td>SC</td>
<td>4/10</td>
<td>3/10</td>
<td>7/10</td>
<td>2/25</td>
<td>mrs</td>
<td>abs</td>
<td>10YR 5/4</td>
<td>0-15</td>
</tr>
<tr>
<td>SC</td>
<td>1/10</td>
<td>2/10</td>
<td>7/10</td>
<td>2/25</td>
<td>mrs</td>
<td>abs</td>
<td>7.5YR 6/4</td>
<td>0-15</td>
</tr>
<tr>
<td>SC</td>
<td>4/10</td>
<td>3/10</td>
<td>7/10</td>
<td>2/25</td>
<td>mrs</td>
<td>abs</td>
<td>7.5YR 5/4</td>
<td>0-15</td>
</tr>
<tr>
<td>C</td>
<td>5/10</td>
<td>4/10</td>
<td>7/10</td>
<td>2/25</td>
<td>mrs</td>
<td>abs</td>
<td>7.5YR 4/4</td>
<td>0-15</td>
</tr>
<tr>
<td>C</td>
<td>4/10</td>
<td>5/10</td>
<td>7/10</td>
<td>2/25</td>
<td>mrs</td>
<td>abs</td>
<td>10YR 5/4</td>
<td>0-15</td>
</tr>
<tr>
<td>SCL</td>
<td>3/10</td>
<td>4/10</td>
<td>7/10</td>
<td>2/25</td>
<td>mrs</td>
<td>abs</td>
<td>10YR 4/6</td>
<td>0-15</td>
</tr>
<tr>
<td>SCL</td>
<td>2/10</td>
<td>3/10</td>
<td>7/10</td>
<td>2/25</td>
<td>mrs</td>
<td>abs</td>
<td>10YR 5/4</td>
<td>0-15</td>
</tr>
<tr>
<td>SCL</td>
<td>4/10</td>
<td>5/10</td>
<td>7/10</td>
<td>2/25</td>
<td>mrs</td>
<td>abs</td>
<td>7.5YR 4/4</td>
<td>0-15</td>
</tr>
</tbody>
</table>

1. SL: Sandy Loam, SCL: Sandy Clay Loam, C: Clay, SC: Sandy Clay, CL: Clay Loam
جدول ۲: برخی ویژگی‌های شیمیایی پاره‌خاک‌های مورد بررسی در منطقه سیامانشه

Fe6	Fe5	SAR	E.Ce	pH	CEC (cmol(+)/kg)	انواع‌های محلول	کاتیون‌های محلول	Ca2⁺	Mg2⁺	Na⁺	K⁺	
						مورد آَمِن						

*علائم Fe6 و Fe5 به ترتیب نشان‌دهنده گذشته‌های تیول کاتیونی، نسبت جذب سدیم و اهمیت عصاره‌گری شده به روش‌های آزمایش‌های آزمایشگاهی در دیپیونت سخت.
نتیجه آماری در توزیع چگالی نسبت قابل گردیت به ویژه از نوع پرتابلی به صورت کامل مشخص در این نیم‌برخ دیده می‌شود. به طوری که در ۲۰ سانتی‌متر ارتفاع چگالی نسبت قابل گردیت وجود ندارد، ولی در عمق ۸۰ تا ۳۵۰ سانتی‌متر چگالی نسبت قابل گردیت تغییر مشاهده می‌شود.

بر پربرخ ویژه‌هایی که در منطقه امکان صورت جهانی و بخشی از جاده ۲ و ۳ جاده شده است. در این نیم‌برخ انسان شواهد مورفولوژیک وجود در صحرا و آلاپالی توزیع اندازه نباتات و نسبت شن خیلی ریز به شن رز (شکل ۵-ج.) تعداد انفست و گسترشیده می‌شود. در قسمت بالایی نیم‌برخ مقطعی بافت می‌شود که با صورت علفی منطقه‌بندی ۵۰۶ متر شاخصی (Xeric) به گسترشیده ساندان و بزرگی طویل‌تر. ایجادگی رادیکال (Xeric) به صورت پوسته رسی و آهک به صورت پودری، از ویژگی‌های این بخش از نیم‌برخ است.

به هر دو یک متری از نیم‌برخ مشترک است. این نیم‌برخ از آهک و گچ در نیم‌برخ یک‌یک به دست‌آمده در منطقه​

ویژگی‌هایی که در منطقه امکان صورت جهانی و بخشی از جاده ۲ و ۳ جاده شده است. در این نیم‌برخ انسان شواهد مورفولوژیک وجود در صحرا و آلاپالی توزیع اندازه نباتات و نسبت شن خیلی ریز به شن رز (شکل ۵-ج.) تعداد انفست و گسترشیده می‌شود. در قسمت بالایی نیم‌برخ مقطعی بافت می‌شود که با صورت علفی منطقه‌بندی ۵۰۶ متر شاخصی (Xeric) به گسترشیده ساندان و بزرگی طویل‌تر. ایجادگی رادیکال (Xeric) به صورت پوسته رسی و آهک به صورت پودری، از ویژگی‌های این بخش از نیم‌برخ است.
جدول ۶ برخی ویژگی‌های مورفولوژیک و فیزیکی پاره‌خاک مورد بررسی در منطقه امامیفس

| پایتخت حاکم | رس | سیل | شن | پوسته رسی | وضعیت آهک | عمق | بلور (مرطوب) | شاخه | انگور | عمق | برخی |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| SIL | ۲۰/۵ | ۳۸/۰ | ۱۴/۳ | - | exc | gsm | ۱۰ YR ۴/۲ | A | ۱-۱۵ | |
| L | ۲۰/۵ | ۳۸/۰ | ۱۴/۳ | ۱mkpf | cjsm, ss | abk, m | ۱۰ YR ۴/۵ | Btk | ۱۵-۴۵ | |
| SIC | ۲۰/۵ | ۳۸/۰ | ۱۴/۳ | ۱mkpf | cjsm, ss | abk, c | ۱۰ YR ۴/۶ | Btk | ۱۵-۴۵ | |
| Sic | ۲۰/۵ | ۳۸/۰ | ۱۴/۳ | ۱mkpf | cjsm, ss | abk, c | ۱۰ YR ۴/۴ | Btk | ۱۵-۴۵ | |
| SIC | ۲۰/۵ | ۳۸/۰ | ۱۴/۳ | ۱mkpf | cjsm, ss | abk, c | ۱۰ YR ۴/۴ | Btk | ۱۵-۴۵ | |
| CL | ۲۰/۵ | ۳۸/۰ | ۱۴/۳ | ۱mkpf | cjsm, ss | abk, c | ۱۰ YR ۴/۴ | Btk | ۱۵-۴۵ | |
| L | ۲۰/۵ | ۳۸/۰ | ۱۴/۳ | ۱mkpf | cjsm, ss | abk, c | ۱۰ YR ۴/۴ | Btk | ۱۵-۴۵ | |
| L | ۲۰/۵ | ۳۸/۰ | ۱۴/۳ | ۱mkpf | cjsm, ss | abk, c | ۱۰ YR ۴/۴ | Btk | ۱۵-۴۵ | |
| L | ۲۰/۵ | ۳۸/۰ | ۱۴/۳ | ۱mkpf | cjsm, ss | abk, c | ۱۰ YR ۴/۴ | Btk | ۱۵-۴۵ | |
| L | ۲۰/۵ | ۳۸/۰ | ۱۴/۳ | ۱mkpf | cjsm, ss | abk, c | ۱۰ YR ۴/۴ | Btk | ۱۵-۴۵ | |
| SIC | ۲۰/۵ | ۳۸/۰ | ۱۴/۳ | ۱mkpf | cjsm, ss | abk, c | ۱۰ YR ۴/۴ | Btk | ۱۵-۴۵ | |
| C | ۲۰/۵ | ۳۸/۰ | ۱۴/۳ | ۱mkpf | cjsm, ss | abk, c | ۱۰ YR ۴/۴ | Btk | ۱۵-۴۵ | |
| C | ۲۰/۵ | ۳۸/۰ | ۱۴/۳ | ۱mkpf | cjsm, ss | abk, c | ۱۰ YR ۴/۴ | Btk | ۱۵-۴۵ | |
| SIC | ۲۰/۵ | ۳۸/۰ | ۱۴/۳ | ۱mkpf | cjsm, ss | abk, c | ۱۰ YR ۴/۴ | Btk | ۱۵-۴۵ | |

SIL: Silty Loam, L: Loam, SIC: Silty Clay, CL: Clay Loam, C: Clay
جدول ۷ برخی ویژگی‌های شیمیایی پاره‌های خاک مورد بررسی در منطقه امین‌شهر

<table>
<thead>
<tr>
<th>Fe۰۰</th>
<th>Fe۰۰</th>
<th>SAR</th>
<th>ECe (dS/m)</th>
<th>pH</th>
<th>CEC (cmol(+)kg⁻¹)</th>
<th>آهن کگ</th>
<th>مواد آلی</th>
<th>آلی کاتیون‌های محلول (meq/l)</th>
<th>اسید کاتیون‌های محلول (meq/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cl⁻</td>
<td>SO₄²⁻</td>
</tr>
<tr>
<td>0/85</td>
<td>0/88</td>
<td>0/22</td>
<td>0/2</td>
<td>V/V</td>
<td>15/7</td>
<td>18/3</td>
<td>-</td>
<td>2/5</td>
<td>2/6</td>
</tr>
<tr>
<td>7/87</td>
<td>7/84</td>
<td>0/39</td>
<td>0/2</td>
<td>V/V</td>
<td>22/6</td>
<td>22/6</td>
<td>-</td>
<td>5/0</td>
<td>4/0</td>
</tr>
<tr>
<td>7/86</td>
<td>7/80</td>
<td>0/68</td>
<td>0/2</td>
<td>V/V</td>
<td>4/8</td>
<td>4/8</td>
<td>-</td>
<td>4/6</td>
<td>4/6</td>
</tr>
<tr>
<td>7/71</td>
<td>7/70</td>
<td>0/40</td>
<td>0/2</td>
<td>V/V</td>
<td>3/4</td>
<td>3/4</td>
<td>1/2</td>
<td>2/6</td>
<td>2/6</td>
</tr>
<tr>
<td>L/31</td>
<td>L/37</td>
<td>0/39</td>
<td>0/2</td>
<td>V/V</td>
<td>2/0</td>
<td>2/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>7/70</td>
<td>7/69</td>
<td>0/27</td>
<td>0/2</td>
<td>V/V</td>
<td>17/8</td>
<td>17/8</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>7/68</td>
<td>7/65</td>
<td>0/26</td>
<td>0/2</td>
<td>V/V</td>
<td>18/4</td>
<td>18/4</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>7/48</td>
<td>7/47</td>
<td>0/21</td>
<td>0/2</td>
<td>V/V</td>
<td>3/7</td>
<td>3/8</td>
<td>-</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>7/53</td>
<td>7/50</td>
<td>0/17</td>
<td>0/2</td>
<td>V/V</td>
<td>1/7</td>
<td>1/7</td>
<td>-</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>7/60</td>
<td>7/57</td>
<td>0/13</td>
<td>0/2</td>
<td>V/V</td>
<td>8/4</td>
<td>8/5</td>
<td>-</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>7/37</td>
<td>7/30</td>
<td>0/37</td>
<td>0/2</td>
<td>V/V</td>
<td>8/5</td>
<td>8/5</td>
<td>-</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>7/34</td>
<td>7/27</td>
<td>0/50</td>
<td>0/2</td>
<td>V/V</td>
<td>8/4</td>
<td>8/5</td>
<td>-</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>7/10</td>
<td>7/07</td>
<td>0/42</td>
<td>0/2</td>
<td>V/V</td>
<td>5/2</td>
<td>5/2</td>
<td>-</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>
شکل ۸۷: توزیع نسبت‌های شاخص شوری نیز نشان دهنده تأثیر ناپیوستگی در عضویت و کندی در این نیم‌خور است. نسبت Ni/Fe در این نیم‌خور کم است. این نسبت Fe به عنوان ضریب رسمی (Clayness) شناخته می‌شود.

سپاسگزاری

بدين و سلیحا از جنبه آقای دکتر حسین خامیه به خاطر راهنمایی و مشاوره‌های ارزشمند، جنبه آقای دکتر جعفریان عضو هیئت علمی گروه زمین‌شناسی دانشگاه اصفهان به خاطر همکاری در شناسایی نمونه‌های آزمایشی، به همراه آقای دکتر قادر به، به همراه آقای دکتر ماریین کهل از آلمان و به واسطه سایه‌پایی کربن-۱۴ نمونه‌های آل کمال تحقیق و امتنان‌ها را داریم.

نتیجه‌گیری

شواهد مورفولوژیکی بی‌شمار موجود در پارینه‌های سگری تأیید کننده شرایط مرطوب‌تر در اواخر دوره پلیستوسن و اولین هولوسن در منطقه اصفهان است. شواهد مورفولوژیکی، فیزیکی و شیمیایی در پارینه‌های سیاه‌بنا، افق‌های مشخصه مراکز مورد استفاده

۱. طالبی، غریبی، ایران، ۱۴۹۰، نم‌تن، قم، و روستاهای ایران، بررسی کار نم‌تن شناسان ایرانی در ایران، مؤسسه مطالعات و تحقیقات فرهنگی.
۲. زرین کشک، م، ۱۳۶۹، خاکشناسی کاربردی، انتشارات دانشگاه تهران.
۳. گروه، ح. ج، استنیسلي، ۱۳۶۷، آثاری از تغییر آب و هوای دریبره در خاک‌های ایران. دومین کنفرانس منطقه‌ای تغییرات قلبی، سازمان هواشناسی کشور، آبان، ۱۳۶۷، تهران.
۴. مؤسسه تحقیقات خاک و آب، ۱۳۶۷، راهنمای مطالعه شناسایی و تشخیص نیم‌خور خاک. سازمان تحقیقات گوناگونی و مراکز طبیعی، وزارت کشاورزی، شهره شماره ۷۵۸.