آثاری از تغییر آب و هوای دیرینه کوواترن موجود در برخی پارینه‌های خاک‌های دو منطقه اصفهان و امام‌قلی‌چهارمحل و بختياری

چکیده
پزوهش در پارینه‌های خاک‌ها کاربرد زیادی در بررسی وضعیت بوم‌شناختی و اقلیمی کاذب‌نشان دارد. از سوی دیگر، شناسایی پارینه‌خاک‌ها نقش مهمی در انجام پژوهش‌های پیشنهادی خاک و تفسیری گرای‌های مدیریتی دارد. زیرا ویژگی‌های این خاک‌ها با خاک‌های جوان‌تر متفاوت است. پارینه‌خاک‌ها شامل خاک‌های مبتنی در شرایط محیطی کنونی تشکیل شده، با زیر یک سری رسوبات جوان‌تر دفن شده‌اند و با روی یک سطح پاهای ریاف سانده‌اند. این خاک‌ها در نواحی ایران مرکزی و زاگرس پراکنده‌ی چنین‌گونه‌ی دارند. در شناسایی پارینه‌خاک‌ها، ویژگی‌ها و عامل‌های مختلف مورفولوژیک، شیمیایی، شیمیایی نشان و متغیر‌های مهم در پارینه‌خاک‌ها و گسترش‌های پارینه‌خاک‌ها در ایران مرکزی و زاگرس به‌عنوان پارینه‌خاک‌ها و شناسایی پارینه‌خاک‌ها در منطقه اصفهان و امام‌قلی‌چهارمحل و بختياری، به منظور شناسایی شرایط خاک‌سازی و محیطی گذشته مشکی بررسی شد. نتایج نشان داد که ممکن است این پارینه‌خاک‌ها به شکل مختلف در مناطق شمالی باشند. پژوهش با توجه به این نتایج، برای شناسایی و بررسی پارینه‌خاک‌های مختلف ایرانی، به‌عنوان یکی از بهترین مدل‌های تفسیر بوم‌شناختی می‌باشد.

شمس الله ایوبی، احمد جلالیان و مصطفی کرمی‌مقدم اقبال

واژه‌های کلیدی: پارینه‌خاک، مکروفلسیل، پنیئوسیل، ویژگی‌های شیمیایی و شیمیایی

1. به ترتیب: دانشجوی سابق دکتری، استاد و دانشیار خاک‌شناسی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان
مقدمه

اقلیم و شرایط اکولوژیک زمین در طول دوران‌های مختلف زمین‌شناسی، سیاره دگرگونی‌ها و تغییرات شرایط آب و هوایی می‌باشد. در این زمینه، شناسایی و توصیف این اتفاقات و تغییرات با استفاده از نمونه‌گیری و تحلیل سیاره‌شناسی از اکثر دانش‌های جغرافیایی بهره‌برداری می‌شود.

در سال‌های اخیر، شناخت درک‌گره‌ها در گذشته، به ویژه در شاخه خاصی از کشاورزی و زیست‌محیطی این دوران با به‌روزرسانی‌های دسترسی به تحقیقات جدید، می‌تواند به عنوان یکی از شاخه‌های اصلی در زمین‌شناسی تلقی شود.

یکی از شاخه‌های مرتبط با سیاره‌شناسی، ماسکولوژی (Paleoecology) است. این شاخه به تحقیق درباره‌ی تغییرات زیست محیطی در طول دورین‌های مختلف زمین‌شناسی می‌پردازد.

در این نوشتار، تلاش می‌گردد تا به نوشتارهای قبلی اشاره کنید و با توجه به این، این نوشتار با کمک تحقیقات جدید، به تغییرات زیست محیطی در طول دوره‌های مختلف زمین‌شناسی اشاره کند. به‌طور کلی، این نوشتار به تلاش می‌گردد تا به تغییرات زیست محیطی در طول دوره‌های مختلف زمین‌شناسی اشاره کند.
برای تعیین درجه هیدرولیز کانی‌هاقابل استفاده است (20 و 21). نسبت فرمای مختلف این به کبدی و نسبت آهن کل به آلومنیم کل برای انکاس و وضعیت اکسیشی و کاهش نسبت برای نیتری شرایط هیدراسیون FeO, Al₂O₃ و SiO₂ گذشته سومه است (20 و 21). نسبت به Al₂O₃ برای نیتری نمکی شدن خاک‌ها و نسبت به Al₂O₃ برای شدت انباشتگی رس و نسبت به قابل اعتماد هستند SiO₂.

برای رسوب دریاچه‌ای، شناسایی مارکوفسیل‌های (Macrofossils) به ارث رسیده می‌تواند به عنوان شاخصی از اقلیم و شرایط اکولوژیک گذشته‌ها کار رود. فعالیت زیستی در دریاچه‌های قاره‌ای و استیل است. بنابراین، گونه‌های فاصل شده در رسوب آن نشانه‌شیب اقلیم گذشته است (8). بکار گرفتن شاخص‌های مورد استفاده در این زمینه میزان سازش گونه‌های مختلف در برابر شرایط آب است. که به تاخیر یافتن حجم دریاچه و سران دیس آب ورودی است (8). به عنوان مثال، گونه‌های مختلف اوسکاتورک (Ostracoda) در آب‌های شور زیست می‌کنند. سپس وجود گونه‌های در دریاچه‌ای نشان دهنده شرایط شوری و کم آب در گذشته است (8).

پژوهش حاضر با منظور بررسی ویژگی‌های مورفولوژیک و بخیه ویژگی‌های، شیمیایی پارینی‌های خاک و رسوب آگیر قادیمی در منطقه اصلی اکسیشان و اکستراکس چهارمحال و بختیاری، برای بررسی شرایط خاک‌سازی و محیطی گذشته انجام شده است.

مواد و روش‌ها
این بررسی در منطقه اقلیمی متفاوت اکسیشان و اکستراکس...
شکل 1. موقعیت جغرافیایی نقاط مورد بررسی به دلیل حلالیت زیاد گچ و آزاد شدن پون کلسیم که باعث انعقاد کلویدی شدن، که ممکن نیست. این رو، برای برطرف کردن این مشکل از پیش تیمار هس (11) استفاده گردید.
در آنانهای شیمیایی pH خاک در نمونه‌های مختلف اعشاع (17). کاتیون‌ها و آنیون‌های محلول در عصاره‌اش عصاره‌گیری گردید. کنواش‌بندی کاتیونی به روش استاندارد سدیم در 7 (pH = 7)، آهن پدوسیستیک به روش سیترات-KB در 24، و آهن آمروز به روش عصاره‌گیری با اکزالات آمونیوم و اسید اکزالیک (9) تعیین شد. پس از عصاره‌گیری آهن، غلظت آن به وسیله دستگاه جذب اتمی اندازه‌گیری شد. اندازه‌گیری چگالی بین خاک حاصل کردن کلیم عصاره اشعاع خاک با استفاده از فرمول‌های مربوط به انجام شد.
به منظور بررسی نمونه‌های ماکروفئسیل یافت شده در محل سگزی، مقداری از نمونه دیگر دست هم‌خورده به ترتیب روی الكهیه 40 و 80 مس سیستم داده شد و سپس نمونه‌های ماکروفئسیل به سیستم میکروسکوپ تیتوکول مشاهده و عکس‌برداری گردید. مهار تیتان شاخص فیزیکی مورد بررسی توزیع اندازه‌ذرات در هفت کلاس مختلف به روش بیست و هفتم (15) بود. چون برخی افتخارات خاک سگزی و سیاه‌نگر هستی، دارای مقداری زیادی گچ بود، تعیین بافت آنها به روش معمول.
(1) میزان درصد آهن به روش تیراژاسون برگشته (19) و درصد مواد آلی به روش سوزاندن ترا پی گرومات نتایج در مجاورت اسید سولفوریک غلیظ (19) اندوادگری گردید. بنابراین عصری و تعیین درصد عصری اصلی می‌تواند نشان‌دهنده استفاده از گونه Gyralus convexicusculus مدل فیلیپس 2400 (Philips) XRF سنگی. این بسته از گونه‌های 14 روي نمونه‌های مواد آلی فسیل شده در دوم عمق مختلف نمایش سگر به روش اسکپترومتری (Accelerator mass spectrometry) تشخیص کننده مشاهده شد.

(2) Gyralus convexicusculus گونه‌ای سپری و نیم‌سنگی است. در مانند طبقاتی از مس مس فاصله 10-95 cm (3Ab) رنگی خیلی تنها (1/3Y3/1) دارد. در این مس، عضوی از گونه ماده مسی از منطقه، با استفاده از روش مجدد می‌شود و نمایندگی مسی به روش مجدد می‌شود.

(3) Gyralus convexicusculus در دو عمق مختلف قابل اندازه‌گیری شد. شدت فعالیت فسیل شدن این مواد به روش مزبور قابل اندازه‌گیری نیست. شدت فعالیت در آن‌ها است که حتی تکه‌های یکبرکه و ریشه‌ها شامل قدیمی به روش زغال شکل (1) در بین ذرات خاک‌های خاک‌های حاصل این مواد به روش کریس-14 به ترتیب در 30 درصد است. سنی غیر انجام شده به روش دمای 300 و 1000 سال می‌باشد. تشکیل این لاشه‌های زیرین در محدوده زمانی 110-120 هزار سال پیش اندازه‌گیری Younger (1980) همزمان است.

(4) Gyralus convexicusculus به نظر می‌رسد، اگر این مسی بوده و وجود مقدار زیادی (Shell) مکرریلی‌هایی از شاخه نرم‌تان دیده می‌شود. شمار آنها در نقاط مختلف افق از ۵۰ تا ۳۰۰ عدد در هر ۱۰۰ سانتیمتر مکعب خاک به‌طور کرده، و در اندازه‌های مختلف مشاهده شد.
جدول 1. برخی ویژگی‌های مورفولوژیک و فیزیکی پاره‌خاک مواد بررسی در منطقه سگری

<table>
<thead>
<tr>
<th>پاره‌خاک</th>
<th>سمیت</th>
<th>سنگ‌بردار</th>
<th>شن</th>
<th>پوسته‌های رسمی</th>
<th>پوششی آهک</th>
<th>ساخته‌بان</th>
<th>رنگ (مرطوب)</th>
<th>مقیاس (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>10/1</td>
<td>0/7</td>
<td>49/2</td>
<td>بدون جوشش</td>
<td>gryf</td>
<td>10YR 6.5/4</td>
<td>7-20</td>
<td>A</td>
</tr>
<tr>
<td>SL</td>
<td>10/0</td>
<td>3/2</td>
<td>61/3</td>
<td>بدون جوشش</td>
<td>sbkf</td>
<td>10YR 5/4</td>
<td>35-45</td>
<td>Bzy</td>
</tr>
<tr>
<td>SiL</td>
<td>12/5</td>
<td>0/6</td>
<td>75/1</td>
<td>esd</td>
<td>sbkm</td>
<td>10YR 5/6</td>
<td>45-60</td>
<td>2Bz</td>
</tr>
<tr>
<td>Si</td>
<td>12/5</td>
<td>0/2</td>
<td>75/1</td>
<td>esd</td>
<td>gryf</td>
<td>5Y 3/1</td>
<td>6-25</td>
<td>3Ab</td>
</tr>
<tr>
<td>S1L</td>
<td>07/4</td>
<td>0/3</td>
<td>3/2</td>
<td>mysm</td>
<td>abcm</td>
<td>10YR 3/1</td>
<td>55-150</td>
<td>3Bkgb</td>
</tr>
<tr>
<td>SiCL</td>
<td>16/5</td>
<td>5/2</td>
<td>65/1</td>
<td>esd</td>
<td>abkm</td>
<td>5Y 3/1</td>
<td>90-125</td>
<td>3Bwg,b</td>
</tr>
<tr>
<td>SiL</td>
<td>16/5</td>
<td>5/2</td>
<td>65/1</td>
<td>esd</td>
<td>abcm</td>
<td>5Y 6/1</td>
<td>125-160</td>
<td>3Bwg,b</td>
</tr>
<tr>
<td>SiL</td>
<td>14/2</td>
<td>6/2</td>
<td>16/2</td>
<td>esd</td>
<td>abcm</td>
<td>5Y 3/1</td>
<td>160-200</td>
<td>3Bwg,b</td>
</tr>
<tr>
<td>SiL</td>
<td>10/3</td>
<td>8/3</td>
<td>7/3</td>
<td>fisc, mrm</td>
<td>abkm</td>
<td>5G 5/1</td>
<td>160-325</td>
<td>4Bkg,5</td>
</tr>
<tr>
<td>SiL</td>
<td>10/4</td>
<td>6/2</td>
<td>3/2</td>
<td>fisc, mrm</td>
<td>abkm</td>
<td>5G 5/1</td>
<td>225-320</td>
<td>4Bkg,5</td>
</tr>
<tr>
<td>CL</td>
<td>3/6</td>
<td>4/6</td>
<td>2/6</td>
<td>fisc, mrm</td>
<td>abkm</td>
<td>5G 5/1</td>
<td>325-430</td>
<td>43Bkg,b</td>
</tr>
<tr>
<td>SL</td>
<td>16/2</td>
<td>3/2</td>
<td>7/2</td>
<td>esd</td>
<td>بدون ساخته‌بان</td>
<td>5GY 5/1</td>
<td>325-430</td>
<td>5Bwg,b</td>
</tr>
<tr>
<td>L</td>
<td>16/2</td>
<td>3/2</td>
<td>7/2</td>
<td>esd</td>
<td>بدون ساخته‌بان</td>
<td>10GY 5/1</td>
<td>325-430</td>
<td>6Bwg,b</td>
</tr>
<tr>
<td>LS</td>
<td>8/7</td>
<td>7/3</td>
<td>3/7</td>
<td>esd</td>
<td>بدون ساخته‌بان</td>
<td>5GY 1/3</td>
<td>370-430</td>
<td>7Bwg,b</td>
</tr>
</tbody>
</table>

1. L: Loam, SL: Sandy Loam, SiL: Silty Loam, S:CL: Silty Clay Loam, CL: Clay Loam, LS: Loamy Sand
جدول ۲. برخی ویژگی‌های شیمیایی پارینه‌های مورد بررسی در منطقه سگری

<table>
<thead>
<tr>
<th>Fe₂⁺</th>
<th>Fe³⁺</th>
<th>SAR</th>
<th>ECE (dS/m)</th>
<th>pH</th>
<th>CEC (emol(+)/kg)</th>
<th>آنیون‌های محلولی (meq/l)</th>
<th>کاتیون‌های محلولی (meq/l)</th>
<th>Ca²⁺</th>
<th>Mg²⁺</th>
<th>Na⁺</th>
<th>K⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.4</td>
<td>0.3</td>
<td>0.1</td>
<td>7</td>
<td>0.08</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>A</td>
</tr>
<tr>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.2</td>
<td>6</td>
<td>0.12</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.5</td>
</tr>
<tr>
<td>0.3</td>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
<td>5</td>
<td>0.14</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.6</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>0.6</td>
<td>0.4</td>
<td>4</td>
<td>0.16</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.7</td>
</tr>
<tr>
<td>0.2</td>
<td>0.2</td>
<td>0.7</td>
<td>0.5</td>
<td>3</td>
<td>0.18</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.8</td>
</tr>
<tr>
<td>0.3</td>
<td>0.3</td>
<td>0.8</td>
<td>0.6</td>
<td>2</td>
<td>0.20</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.9</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4</td>
<td>0.9</td>
<td>0.7</td>
<td>1</td>
<td>0.22</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>1.0</td>
</tr>
</tbody>
</table>

* ول یک به ترتیب میانگین کلی، نسبت متغیر، نسبت میانگین کالری همگرایی از طریق روش عددی ابزار مانیو و دریافت است. ۱۳۰۸*
جدول 3: طبقه‌بندی گونه‌های نرم‌پوستی پایه در پارینه‌خاک مورد بررسی‌گردید
gونه | جنس | سرده | زیرگروه | تیره | راسته | زیردره | رده
---|---|---|---|---|---|---|---
Gastropoda | Pulmonata | Basommataphora | Actophila | Ellobiidae | Carychiidae | Charychiium | Radix | Radix peregra | Gryaulus | Gryaulus convexiusculus
Gastropoda | Pumonata | Basommataphora | Planorbidae | Planorbidae | Planorbiaceae | Gryaulus | Gryaulus

شکل 2. نمونه‌هایی از مواد آلفا فسفیتی شده (زغال شده) در لایه تیره رنگ پارینه‌خاک سگزی

شکل 3. نمونه‌هایی از غلاف آهنی نرم‌پوست گونه Radix peregra در لایه تیره رنگ پارینه‌خاک سگزی

گزارش کردند. از افق‌های پیشرفته موجود در این نیم‌پرینه به افق‌های جیپسیک (Saliic) و سالیک (Gypseic) در قسمت بالای نیم‌پرینه اشاره کرد که تحت تأثیر سفره آب زیرزمینی و تبخیر و تعقیر شدید در منطقه به وجود آمده‌اند. تغییرات شدید بعید در مقطع مورد بررسی، به ویژه به آهن دی‌تیتونی (Fe₂) (چندان نظم و روال مشخصی ندارد، و کاهش این نسبت در افق تیره رنگ دال بر مقدار آهن کربنات است. از فراورده بلورف شدن آهن به صورت درجا، در این افق است. در لایه‌های زیرین، به دلیل توضیحات سفره آب زیرزمینی، مقدار مطلق آهن دی‌تیتونی به شدت کاهش می‌یابد (جدول 2). پژوهنده‌گان دیگر (9، 14 و 24) نیز این پدیده را
دگرگونی‌هایی که ناشی از سفره آب زیرزمینی است، بهره‌گیری از ویژگی‌های شیمیایی را در تفسیر فرآیندها و شرایط محیطی گذشته دچار مشکل می‌سازد. بر اساس همین استدلال، آنالیز‌های روی نمونه‌های این مقطع، به دلیل پر هزینه بودن صورت XRF نگرفته است.

می‌تواند متفاوت گروه‌هایی تغییر در شرایط رسوب‌گذاری گذشته می‌باشد. که خود ناشی از دگرگونی‌های اقلیمی و آب و هوای گذشته است. همچنین، وجود دیگر نشانگر در بخش بالایی مقطع، وجود دیگر نشانگر در منطقه سگزی در گذشته، را تأیید می‌کند. ماکروسیل‌های بالای شده، که با محیط آب شیرین سازگاری دارند، نشان دهنده حجم زیاد آب و شرایط پر آب‌تر نموده‌اند.
شکل 6. توزیع عمیق نسبت اکسیدهای مختلف در نیمرخ سیاه‌شهر

شکل 7. توزیع عمیق نسبت آهن اگزالاتی (Feo) به آهن دیئنوتی (Fe0) در نیمرخ‌های مورد بررسی [الف: سکری ب: سیاه‌شهر ج: امام‌قلی‌سایه]
ماتن تغییر آب و هوای دریه کوانتر موجود در برخی پارشی‌های خاک‌هایی در منطقه ...
جدول 1 برخی ویژگی‌های مورفولوژیک و فیزیکی پاره‌خاک مورد بررسی در منطقه سیاه‌شهر

<table>
<thead>
<tr>
<th>محل</th>
<th>پشت خاک</th>
<th>رس</th>
<th>سیلت</th>
<th>سیالگری‌های شنی</th>
<th>ضخامت آهک</th>
<th>سایت</th>
<th>رنگ</th>
<th>عمرن</th>
<th>رنگ خاک</th>
<th>(میلی‌متر)</th>
<th>عمق</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL</td>
<td>1/5</td>
<td>26/3</td>
<td>78/5</td>
<td>26/28</td>
<td>esc</td>
<td>gr</td>
<td>f</td>
<td>10YR 5/4</td>
<td>0-14</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>SCL</td>
<td>37/6</td>
<td>15/4</td>
<td>54/5</td>
<td>37/27</td>
<td>1apf</td>
<td>7.5YR 4/4</td>
<td>26-44</td>
<td>2Btk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>50/1</td>
<td>8/1</td>
<td>40/4</td>
<td>50/30</td>
<td>c3s3m2e</td>
<td>abs</td>
<td>f</td>
<td>7.5YR 5/4</td>
<td>15-48</td>
<td>2Btk</td>
<td></td>
</tr>
<tr>
<td>SC</td>
<td>54/7</td>
<td>1/1</td>
<td>50/5</td>
<td>54/12</td>
<td>2mkpf</td>
<td>mrs</td>
<td>m</td>
<td>10YR 5/4</td>
<td>15-160</td>
<td>2Btky</td>
<td></td>
</tr>
<tr>
<td>SC</td>
<td>50/2</td>
<td>1/1</td>
<td>50/5</td>
<td>50/12</td>
<td>2mkpf</td>
<td>mrs</td>
<td>m</td>
<td>7.5YR 6/4</td>
<td>15-160</td>
<td>2Btky</td>
<td></td>
</tr>
<tr>
<td>SC</td>
<td>41/3</td>
<td>8/5</td>
<td>50/3</td>
<td>41/13</td>
<td>2mkpf</td>
<td>mrs</td>
<td>m</td>
<td>7.5YR 5/4</td>
<td>15-160</td>
<td>2Btky</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>50/8</td>
<td>8/5</td>
<td>50/3</td>
<td>50/13</td>
<td>3mkpf</td>
<td>c3s</td>
<td>m</td>
<td>7.5YR 4/4</td>
<td>15-160</td>
<td>2Btky</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>51/5</td>
<td>19/7</td>
<td>76/5</td>
<td>51/19</td>
<td>5apf</td>
<td>c3s</td>
<td>m</td>
<td>10YR 5/4</td>
<td>15-160</td>
<td>3Btky</td>
<td></td>
</tr>
<tr>
<td>SCL</td>
<td>36/9</td>
<td>8/1</td>
<td>76/2</td>
<td>36/19</td>
<td>1apf</td>
<td>c3s</td>
<td>m</td>
<td>10YR 4/6</td>
<td>15-160</td>
<td>3Btky</td>
<td></td>
</tr>
<tr>
<td>SCL</td>
<td>44</td>
<td>8/2</td>
<td>76/2</td>
<td>44/19</td>
<td>1apf</td>
<td>c3s</td>
<td>m</td>
<td>10YR 5/4</td>
<td>15-160</td>
<td>3Btky</td>
<td></td>
</tr>
<tr>
<td>SCL</td>
<td>22</td>
<td>8/17</td>
<td>76/0</td>
<td>22/17</td>
<td>evd</td>
<td>abk</td>
<td>m</td>
<td>10YR 4/5</td>
<td>30-210</td>
<td>3By</td>
<td></td>
</tr>
<tr>
<td>SCL</td>
<td>44</td>
<td>8/3</td>
<td>76/1</td>
<td>44/19</td>
<td>3mkpf</td>
<td>mrs</td>
<td>m</td>
<td>7.5YR 3/4</td>
<td>15-210</td>
<td>4Btky</td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>50</td>
<td>8/2</td>
<td>76/2</td>
<td>50/19</td>
<td>3mkpf</td>
<td>mrs</td>
<td>m</td>
<td>7.5YR 3/4</td>
<td>15-210</td>
<td>4Btky</td>
<td></td>
</tr>
</tbody>
</table>

1. SL: Sandy Loam, SCL: Sandy Clay Loam, C: Clay, SC: Sandy Clay, CL: Clay Loam
جدول ۲: برخی ویژگی‌های شیمیایی پایه خاک مورد بررسی در منطقه سبامانشهر*.

<table>
<thead>
<tr>
<th>Fenh</th>
<th>Fe0</th>
<th>SAR</th>
<th>Ece</th>
<th>pH</th>
<th>CEC (cmol(+)/kg)</th>
<th>کالسیوم محلول (meq/l)</th>
<th>مگنیسیوم محلول (meq/l)</th>
<th>نیترات محلول (meq/l)</th>
<th>نیتریل محلول (meq/l)</th>
<th>Ca²⁺</th>
<th>Mg²⁺</th>
<th>Na⁺</th>
<th>K⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09</td>
<td>0.14</td>
<td>7.0</td>
<td>6.7</td>
<td>6.5</td>
<td>10.8</td>
<td>80</td>
<td>40</td>
<td>0.04</td>
<td>0.04</td>
<td>4.8</td>
<td>4.8</td>
<td>32.3</td>
<td>12.2</td>
</tr>
<tr>
<td>0.28</td>
<td>0.42</td>
<td>7.0</td>
<td>6.7</td>
<td>6.5</td>
<td>13.9</td>
<td>80</td>
<td>40</td>
<td>0.04</td>
<td>0.04</td>
<td>4.8</td>
<td>4.8</td>
<td>32.3</td>
<td>12.2</td>
</tr>
<tr>
<td>0.28</td>
<td>0.42</td>
<td>7.0</td>
<td>6.7</td>
<td>6.5</td>
<td>15.0</td>
<td>80</td>
<td>40</td>
<td>0.04</td>
<td>0.04</td>
<td>4.8</td>
<td>4.8</td>
<td>32.3</td>
<td>12.2</td>
</tr>
<tr>
<td>0.28</td>
<td>0.42</td>
<td>7.0</td>
<td>6.7</td>
<td>6.5</td>
<td>15.0</td>
<td>80</td>
<td>40</td>
<td>0.04</td>
<td>0.04</td>
<td>4.8</td>
<td>4.8</td>
<td>32.3</td>
<td>12.2</td>
</tr>
<tr>
<td>0.28</td>
<td>0.42</td>
<td>7.0</td>
<td>6.7</td>
<td>6.5</td>
<td>15.0</td>
<td>80</td>
<td>40</td>
<td>0.04</td>
<td>0.04</td>
<td>4.8</td>
<td>4.8</td>
<td>32.3</td>
<td>12.2</td>
</tr>
<tr>
<td>0.28</td>
<td>0.42</td>
<td>7.0</td>
<td>6.7</td>
<td>6.5</td>
<td>15.0</td>
<td>80</td>
<td>40</td>
<td>0.04</td>
<td>0.04</td>
<td>4.8</td>
<td>4.8</td>
<td>32.3</td>
<td>12.2</td>
</tr>
</tbody>
</table>

* علائم‌های مربوط به ترکیب FeFO با ترکیب FeO، SAR، CEC را نشان می‌دهد.
اکثر آشکاری در توزیع گچ تاناه قابل رؤیت، به ویژه از نوع پننده، به صورت کامل مشخص و این نیم‌رخ دیده می‌شود. به طوری که تا عمق ۵۰ سانتی‌متر اثر از گچ تاناه و وجود ندارد. ولی از عمق ۸۰ تا ۱۰۰ سانتی‌متر گچ تاناه قابل رؤیت می‌باشد و عمدهاً از پننده دیده می‌شود. این عمق به پایین گچ تاناه از بین می‌رود. تغییرات گچ این نیم‌رخ را احتمالاً می‌تواند على زج نشان دهنده کرد که در گذشته ای است که در زمان تشکیل این بخش از نیم‌رخ شرایط اقلیمی به مراتب مرطوب‌تر یا سرد و مرطوب‌تر از حال حاضر بوده است.

بر اساس آنالیز و روابط ایجاد شده، با استفاده از XRF و روابط ایجاد شده، با استفاده از Fe (شکل ۷-۵) نتیجه گرفته شد که این بخش به عنوان FM برای دیگر (۱۳ و ۱۴) نیز تأکید داده که این نیم‌رخ در شرایط برای اولیه هوا و انتقال رس و وجود داشته است. این نتایج در شرایط محیطی و خشکی تردن باعث کاهش رطوبت مؤثر شد. گچ از اقیانوس سطحی شسته و در دمای مشخص که تابع رطوبت مؤثر بوده است، این نتایج به آنچه است. مرکزی بوده است.

نیم‌رخ اماق‌پس چهارمعلو و بختیاری
برخی از گچ‌های مورفولوژیک، فیزیکی و شیمیایی پارین‌رخ یا مورد بررسی در منطقه اماق پس چهارمعلو و بختیاری در جدول ۶ و ۷ اورده شده است. در این نیم‌رخ بر اساس شواره‌ی مورفولوژیکی موجب در صحرا و آنتاریلی توزیع اندازه درخت و نسبت عیاری ریز به شن ریز (شکل ۷-۶) در چندین انتقال و گسترشی دیده شد. در قسمت بالایی نیم‌رخ مقطعی یافت می‌شود که برای شرایط غطسی بیش از ۱۰۰ میلی‌متر بارندگی سالانه و زمین‌ریزی زیستی (Xeric) همواره دیده است. این نشتگی ریز یا بخش از نیم‌رخ بررسی گردیده است. این نشتگی ریز یا بخش از نیم‌رخ این باعث از نیم‌رخ بررسی گردیده است. این نشتگی ریز یا بخش از نیم‌رخ بررسی گردیده است.
جدول 6 برخی ویژگی‌های مورفولوژیک و فیزیکی پاره‌خاک مورد بررسی در منطقه امام‌رضا

<table>
<thead>
<tr>
<th>پایه‌حاکی</th>
<th>رس</th>
<th>سیلت</th>
<th>سنگ‌زره</th>
<th>پوست‌های رس</th>
<th>ساختار</th>
<th>وضعیت آهکی</th>
<th>رنگ</th>
<th>عمق</th>
<th>(cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIL</td>
<td>24/4</td>
<td>14/3</td>
<td>-</td>
<td>excl</td>
<td>g~m</td>
<td>10 YR 4/2</td>
<td>A</td>
<td>10-15</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>21/8</td>
<td>16/3</td>
<td>33/7</td>
<td>tmkpf</td>
<td>c~ism,ss</td>
<td>10 YR 4/5</td>
<td>Btk1</td>
<td>15-45</td>
<td></td>
</tr>
<tr>
<td>SIC</td>
<td>50</td>
<td>15/1</td>
<td>4/9</td>
<td>tmkpf</td>
<td>c~ism,ss</td>
<td>10 YR 4/3</td>
<td>Btk2</td>
<td>45-65</td>
<td></td>
</tr>
<tr>
<td>SIC</td>
<td>19/9</td>
<td>8/1</td>
<td>1</td>
<td>tmkpf</td>
<td>c~ism,ss</td>
<td>10 YR 4/3</td>
<td>Btk2</td>
<td>85-100</td>
<td></td>
</tr>
<tr>
<td>SIC</td>
<td>48</td>
<td>44/1</td>
<td>11</td>
<td>tmkpf</td>
<td>c~ism,ss</td>
<td>10 YR 4/3</td>
<td>Btk3</td>
<td>105-125</td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>29/2</td>
<td>38/5</td>
<td>37/3</td>
<td>m~ism,ss</td>
<td>abk~f</td>
<td>10 YR 6/3</td>
<td>S~b</td>
<td>20-230</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>9/9</td>
<td>33/8</td>
<td>34/3</td>
<td>evd</td>
<td>abk~f</td>
<td>5 Y 6/5</td>
<td>S~b</td>
<td>150-175</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>21/9</td>
<td>46/7</td>
<td>37/5</td>
<td>10</td>
<td>2m~pf, po</td>
<td>m~ism,ss</td>
<td>abk~m</td>
<td>10 YR 7/4</td>
<td>3Bsk,b</td>
</tr>
<tr>
<td>L</td>
<td>46/9</td>
<td>36/5</td>
<td>37/9</td>
<td>10</td>
<td>2m~pf, po</td>
<td>m~ism,ss</td>
<td>abk~m</td>
<td>7.5 Y 4/4</td>
<td>3Bsk,b</td>
</tr>
<tr>
<td>L</td>
<td>47/3</td>
<td>77/6</td>
<td>20</td>
<td>10</td>
<td>2m~pf, po</td>
<td>m~isma</td>
<td>abk~m</td>
<td>7.5 Y 4/4</td>
<td>3Bsk,b</td>
</tr>
<tr>
<td>SIC</td>
<td>10/2</td>
<td>47/7</td>
<td>13/2</td>
<td>10</td>
<td>2m~pf, po</td>
<td>g~sm</td>
<td>abk~m</td>
<td>7.5 Y 4/6</td>
<td>3Bsk,b</td>
</tr>
<tr>
<td>C</td>
<td>91</td>
<td>32/7</td>
<td>18/5</td>
<td>10</td>
<td>3m~pf</td>
<td>نیا جوشند</td>
<td>abk~m</td>
<td>2.5 Y 4/4</td>
<td>4Bt,b</td>
</tr>
<tr>
<td>C</td>
<td>68/1</td>
<td>33/7</td>
<td>11/5</td>
<td>10</td>
<td>3m~pf</td>
<td>نیا جوشند</td>
<td>abk~c</td>
<td>2.5 Y 4/4</td>
<td>4Bt,b</td>
</tr>
<tr>
<td>SIC</td>
<td>9/5</td>
<td>44/5</td>
<td>8</td>
<td>10</td>
<td>3m~pf</td>
<td>نیا جوشند</td>
<td>abk~c</td>
<td>2.5 Y 6/4</td>
<td>4Bt,b</td>
</tr>
</tbody>
</table>

جدول ۷ برخی ویژگی‌های شیمیایی پاره‌خاک مورد بررسی در مناطق امتدادی

<table>
<thead>
<tr>
<th>اانفیک</th>
<th>کاتیون‌های محلول (میلی‌میلی‌مول/لیتر)</th>
<th>مولی‌تیتر</th>
<th>آهک</th>
<th>مواد آلی</th>
<th>CEC (میلی‌میلی‌مول/کیلوگرم)</th>
<th>pH</th>
<th>SAR (دی‌سی/متر)</th>
<th>ECE (میلی‌میلی‌مول/کیلوگرم)</th>
<th>F20</th>
<th>F10</th>
<th>Fe2</th>
<th>Fe1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>0.97</td>
<td>0.84</td>
<td>0.43</td>
<td>6.7</td>
<td>3.5</td>
<td>1.2</td>
<td>5</td>
<td>0.06</td>
<td>0.22</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>0.85</td>
<td>0.79</td>
<td>0.40</td>
<td>6.9</td>
<td>3.2</td>
<td>1.0</td>
<td>5</td>
<td>0.04</td>
<td>0.20</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>0.84</td>
<td>0.78</td>
<td>0.40</td>
<td>6.9</td>
<td>3.2</td>
<td>1.0</td>
<td>5</td>
<td>0.04</td>
<td>0.20</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>0.8</td>
<td>0.76</td>
<td>0.40</td>
<td>6.8</td>
<td>3.1</td>
<td>1.0</td>
<td>4</td>
<td>0.02</td>
<td>0.18</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>0.77</td>
<td>0.75</td>
<td>0.40</td>
<td>6.7</td>
<td>3.0</td>
<td>0.9</td>
<td>4</td>
<td>0.02</td>
<td>0.16</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>0.74</td>
<td>0.73</td>
<td>0.40</td>
<td>6.5</td>
<td>2.9</td>
<td>0.9</td>
<td>3</td>
<td>0.01</td>
<td>0.15</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>0.71</td>
<td>0.72</td>
<td>0.40</td>
<td>6.3</td>
<td>2.8</td>
<td>0.9</td>
<td>3</td>
<td>0.01</td>
<td>0.14</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>0.7</td>
<td>0.7</td>
<td>0.39</td>
<td>6.2</td>
<td>2.7</td>
<td>0.9</td>
<td>2</td>
<td>0.01</td>
<td>0.13</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>0.69</td>
<td>0.69</td>
<td>0.39</td>
<td>6.1</td>
<td>2.6</td>
<td>0.9</td>
<td>2</td>
<td>0.01</td>
<td>0.12</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

1. علائم 1 میلی‌میلی‌مول/لیتر، 2 میلی‌میلی‌مول/کیلوگرم، 3 مولی‌تیتر و 4 میلی‌میلی‌مول/کیلوگرم
نتیجه‌گیری
شواهد مورفولوژیکی به شمار موجود در پارینه‌های سکری تایید کننده سریع حرکت اورنجی‌های طبقه‌بندی دستگاه و ارائه داشتن این ساختارها از آن‌ها نشان می‌دهد که این دستگاه‌ها دارای تکامل‌های دیگری از این نمودهای آن‌ها هستند. در 4bی این نشان نیز به کمکی نمودار خود‌رسد، که به این نشان می‌دهد انتقال این‌ها و انتقال رس، و سپس بلوری شدن آن اتفاق افتاده است. (۳۳).

منابع مورد استفاده

۱. علی، پرو. م. ۱۳۴۱. نمایش زیبای و رودخانه ای ایران. بررسی کار ترنریشن شناسی ایرانی در ایران، مؤسسه مطالعات و تحقیقات فرهنگی.
۲. زرین کیش، م. ۱۳۷۲. خاکشناسی کاربردی. انتشارات دانشگاه تهران.
۳. غوی، ج. و. است. ۱۳۸۷. آثاری از نمایش آب و هوای طبیعی در خاک‌های ایران. دومین کنفرانس منطقه‌ای تغییر اقلیمی.
۴. سازمان هواشناسی کشور، آبان ۱۳۷۷، تهران.