اثر لجن فاضلاب و pH خاک بر قابلیت جذب عناصر کمصرف و فلزات سنگین

سکینه واثی، مجید افروینی، حسین شریعتمداری و مصطفی مبیل

چکیده

افزار تاکید داشته که فقدان زیاد خاک باعث ابتلا به سنگ تراکمی در خاک می‌شود. هدف این پژوهش گلنگاه‌ای بررسی تأثیر لجن فاضلاب بر قابلیت جذب عناصر کمصرف و فلزات سنگین در خاک‌های با pH متغیر و تحلیل فاکتوریل در چهار طرح کاملاً تصادفی با سه تکرار اندازه‌گیری شد. نتایج نشان داد که شامل لجن فاضلاب در مقادیر صفر، ۱۰۰۰ و ۲۰۰۰ تن در هكتار و خاک شامل خاک‌های رست (pH = ۶/۸) و اصفهان (pH =۷/۴) انگورود (pH =۶/۸) لاهیجان (pH =۷/۸) و گیاهان در ترکیب (Zea mays) برای گرفتن و

لجن فاضلاب باعث افزایش میزان ردیابی مقدار قابل استخراج (به روش DTPA آهن، روی، مس، سرب، کادمیوم و نیکل در هر چهار خاک شد. این اندازه‌گیری می‌تواند برای پیش‌بینی هر چهار خاک شود. این اندازه‌گیری می‌تواند برای پیش‌بینی هر چهار خاک شود. این اندازه‌گیری می‌تواند برای پیش‌بینی هر چهار خاک شود. این اندازه‌گیری می‌تواند برای پیش‌بینی هر چهار خاک شود. این اندازه‌گیری می‌تواند برای پیش‌بینی هر چهار خاک شود. این اندازه‌گیری می‌تواند برای پیش‌بینی هر چهار خاک شود. این اندازه‌گیری می‌تواند برای پیش‌بینی هر چهار خاک شود. این اندازه‌گیری می‌تواند برای پیش‌بینی هر چهار خاک شود. این اندازه‌گیری می‌تواند برای پیش‌بینی هر چهار خاک شود. این اندازه‌گیری می‌تواند برای پیش‌بینی هر چهار خاک شود. این اندازه‌گیری می‌تواند برای پیش‌بینی هر چهار خاک شود. این اندازه‌گیری می‌تواند برای پیش‌بینی هر چهار خاک شود. این اندازه‌گیری می‌تواند برای پیش‌بینی هر چهار

واژه‌های کلیدی: لجن فاضلاب، فلزات سنگین، عناصر کمصرف، خاک اسیدی، خاک آمیکی، ژر.
مقدمه

به رغم جنبشی‌های مفید لجن فاضلاب به عنوان کود آمی، به دلیل وجود مقداری نسبتاً زیاد فلزات ستکین در لجن، کاربرد آن در تشخیص ممکن است مشکلی نباشد. با ایجاد امکان شدن برش از حد فلزات ستکین مانند سرب، کادمیوم، مس و روی در خاک گرد، آذینگی خاک به این عناصر موجب نمود آنها به زنجره‌هایی از طریق جذب به وسیله گیاهی و ایجاد سپریت می‌گردد. (۱،۲،۴،۶ و ۱۷) اگرچه برخی از فلزات ستکین برای رشد پیوسته‌کننده آزمایشی، ویلی غلافت‌هاي کمی بیش از حد است. اینها موانع برای حیات گیاهی و جانوری برای خطرهای بیش از ممکن می‌شود. این می‌تواند عواطفی گریزی هسته ای باشد. (۲۰) افزایش شدید از احتمال غلظت‌های فلزات ستکین در غلظت‌های یا غلظت‌های زیاد سیلیک، کادمیوم، مس، سرب، نیکل و روی را به صورت ۱۰ سال در سه مقدار ۲۲۹ و ۴۸۷ تر میکروگرام کربن به‌کار می‌برده و افزایش مقدار قابل‌توجه خاک یا لجن فلزات ستکین در شرایط اکثر اصول تأثیر کاربرد لجن فلزات ستکین در خاک می‌گردد. با افزایش قابل توجه خاک، میزان غلافت‌های فلزات ستکین در خاک به این عناصر همکار کرده که نهایتاً، به‌طور کلی در خاک افزایش عنصر سبیلی به خاک است. (۵) و (۱۷)

افزایش و همکاری (۱) گزارش کرده‌اند که افزایش لجن فلزات ستکین به خاک باعث افزایش میزان غلافت قابل عصاره‌گیری مس، روی و سرب به وسیلهٔ EDTA در خاک و افزایش حذف این فلزات در گیاه‌ها است. (۶) بازیابی و جکوبس (۶) لجن شهری در انجام فلزات ستکین با غلظت‌های زیاد شاخص کادمیوم، مس، سرب، نیکل و روی را به صورت ۱۰ سال در سه مقدار ۲۲۹ و ۴۸۷ تر میکروگرام کربن به‌کار می‌برده و افزایش مقدار قابل‌توجه خاک یا لجن فلزات ستکین در شرایط اکثر اصول تأثیر کاربرد لجن فلزات ستکین در خاک به این عناصر همکار کرده که نهایتاً، به‌طور کلی در خاک افزایش عنصر سبیلی به خاک است. (۵) و (۱۷)
جدول 1. برخی ویژگی‌های فیزیکی و شیمیایی گل‌های مورد آزمایش

<table>
<thead>
<tr>
<th>CEC (cmol+/kg)</th>
<th>موارد آلی (%)</th>
<th>ECc (dS/m)</th>
<th>pH</th>
<th>بافت</th>
<th>رده‌بندی خاک</th>
<th>منطقه نمونه‌برداری</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4</td>
<td>2/5</td>
<td>1/4</td>
<td>7/8</td>
<td>لوم رسی</td>
<td>Calcic Argiudolls</td>
<td>رشت</td>
</tr>
<tr>
<td>14/5</td>
<td>19/10</td>
<td>10/20</td>
<td>4/8</td>
<td>لوم رسی شي</td>
<td>Typic Hapludults</td>
<td>لنگورد</td>
</tr>
<tr>
<td>19/5</td>
<td>10/10</td>
<td>10/57</td>
<td>5/7</td>
<td>لوم رسی</td>
<td>Typic Hapludults</td>
<td>لاوهجان</td>
</tr>
<tr>
<td>13/5</td>
<td>8/30</td>
<td>7/9</td>
<td>Typic Hapludults</td>
<td>اصفهان</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

تالیف، و بحث
تأثیر لجن فاضلاب در قابلیت گذج عناصر در خاک

یکی از شاخص‌هایی که در ارزیابی اثر موادی همجون لجن فاضلاب یا آلودگی خاک به فلزات سنگین به کار می‌رود، مقدار جذب گذج این عناصر در خاک است. اثر فلورون لجن به خاک حامل فلزات نمونه‌برداری شده است. با استفاده از آزمایش‌های متعدد، مشاهده گردید که قابلیت حمل فلزات سنگین به پایداری این عناصر در خاک می‌باشد. این مشاهده با توجه به اینکه بعضی از فلزات سنگین به عنوان عناصر ضروری در صحت در این جدول نشان داده شده است. به طور کلی، نتایج این آزمایش‌ها به روش DTPA ترمان پانت اسید نالسیسید می‌باشد.
جدول 2. برخی ویژگی‌های لجن فاضلاب مورد استفاده

<table>
<thead>
<tr>
<th>عنصر</th>
<th>غلظت کل (mg/kg)</th>
<th>غلظت قابل جذب (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نیکل</td>
<td>۶۰/۵</td>
<td>۲/۴</td>
</tr>
<tr>
<td>کادمیم</td>
<td>۳/۴</td>
<td>۰/۷</td>
</tr>
<tr>
<td>سرب</td>
<td>۱۶۰</td>
<td>۸/۰</td>
</tr>
<tr>
<td>کالس</td>
<td>۱۲</td>
<td>۴/۱۷</td>
</tr>
<tr>
<td>مگنز</td>
<td>۳۷۵</td>
<td>۹۰/۰</td>
</tr>
<tr>
<td>منیزیم</td>
<td>۴۵۰</td>
<td>۱۹۰/۰</td>
</tr>
<tr>
<td>روی</td>
<td>۱۱۹/۱۰</td>
<td>۸۹/۷</td>
</tr>
<tr>
<td>آلومین</td>
<td>۱۳/۵</td>
<td>۷/۵</td>
</tr>
</tbody>
</table>

(dS/m)

<table>
<thead>
<tr>
<th>عصاره‌گیری شده با DTPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
</tr>
<tr>
<td>رشت</td>
</tr>
<tr>
<td>لنگرود</td>
</tr>
<tr>
<td>لاهیجان</td>
</tr>
<tr>
<td>اصفهان</td>
</tr>
</tbody>
</table>

جدول 3. اثر تبادل‌های لجن فاضلاب بر غلظت فلزات (میلی‌گرم در کیلوگرم) قابل عصاره‌گیری از خاک‌های تحت کشت ذرات

<table>
<thead>
<tr>
<th>عنصر</th>
<th>غلظت کل (mg/kg)</th>
<th>غلظت قابل جذب (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نیکل</td>
<td>۸۱/۰۴</td>
<td>۸/۱۰</td>
</tr>
<tr>
<td>کادمیم</td>
<td>۲/۴۵</td>
<td>۲/۴۵</td>
</tr>
<tr>
<td>سرب</td>
<td>۷/۲۸</td>
<td>۳/۲۸</td>
</tr>
<tr>
<td>کالس</td>
<td>۲/۱۱</td>
<td>۲/۱۱</td>
</tr>
<tr>
<td>مگنز</td>
<td>۱۸۹/۳۶</td>
<td>۱۸۹/۳۶</td>
</tr>
<tr>
<td>منیزیم</td>
<td>۴۹/۳۶</td>
<td>۴۹/۳۶</td>
</tr>
<tr>
<td>روی</td>
<td>۹۵/۰۶</td>
<td>۹۵/۰۶</td>
</tr>
<tr>
<td>آلومین</td>
<td>۹/۱۱</td>
<td>۹/۱۱</td>
</tr>
<tr>
<td>روی</td>
<td>۲۷/۸۳</td>
<td>۲۷/۸۳</td>
</tr>
<tr>
<td>آلومین</td>
<td>۳/۸۵</td>
<td>۳/۸۵</td>
</tr>
<tr>
<td>روی</td>
<td>۵۵/۰۸</td>
<td>۵۵/۰۸</td>
</tr>
<tr>
<td>آلومین</td>
<td>۴۰/۸۷</td>
<td>۴۰/۸۷</td>
</tr>
<tr>
<td>روی</td>
<td>۵۰/۴۰</td>
<td>۵۰/۴۰</td>
</tr>
<tr>
<td>آلومین</td>
<td>۵۰/۴۰</td>
<td>۵۰/۴۰</td>
</tr>
<tr>
<td>روی</td>
<td>۲۰۰</td>
<td>۲۰۰</td>
</tr>
</tbody>
</table>

(dS/m)

<table>
<thead>
<tr>
<th>عصاره‌گیری شده با DTPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
</tr>
<tr>
<td>رشت</td>
</tr>
<tr>
<td>لنگرود</td>
</tr>
<tr>
<td>لاهیجان</td>
</tr>
<tr>
<td>اصفهان</td>
</tr>
</tbody>
</table>

1. عصاره‌گیری ذرت با DTPA

1. در هر حاک و در هر ستون، اعدادی که دارای جریح، نشان‌دهنده نریست، در سطح اختلال پیچ درصد فاکتور معنی‌دار می‌باشد.
گزارش کردند که افزودن این عصاره در قالب جذب خاک را افزایش داده است. این افزایش نیز باعث به دلیل
افزایش مستقیم ریو در اثر افزودن لجن به خاک شد.
همچنین، کاهش

\(\text{pH}\) خاک با اثر تجزیه مواد آلی حاصل از
افزودن لجن و نیز تشکیل کلاته‌های رژیم و ظرفیت ترکیبات
آبی اضافه شده، در افزایش میزان روش محلول خاک مؤثر

خواهند بود (13).

مقایسه گروهی خاک‌های تحت کشت (جدول 4) نشان می‌دهد این عصاره

معنی‌داری در افزایش ریو قابل جذب در چهار خاک مورد

بایستی را در داده عوامل مختلف مؤثر است در این بخش از

افزودن لجن. باسلام. به همین دلیل، کمبود ریو قابل جذب تیز

پیکر گیاه از علل تغییر تغییرات خاک در خاک‌های اصفهان است،

و به نظر می‌رسد کاربرد لجن نیازی به تغییرات در رفع این

کمبود مؤثر نباشد.

برای یک گروه خاک‌های تحت کشت (جدول 4) نشان می‌دهد، این

مکانیزم ممکن قابل جذب در چهار خاک مورد مطالعه

باشد. به همین دلیل، کمبود ریو قابل جذب تیز

یکی از علل تغییرات تغییرات خاک در خاک‌های اصفهان است،

و به نظر می‌رسد کاربرد لجن نیازی به تغییرات در رفع این

کمبود مؤثر نباشد.

مقدار مس قابل جذب در هر چهار خاک تحت کشت

در حالت مناسب، با مقدار لجن خاک باعث به طور معنی‌دار افزایش

پایش (جدول 3). مقدار مس قابل جذب خاکی در خاک‌های رشته و

نگرهود به ترتیب از مقادیر ۴/۲۷ و ۲/۷۸ میلی‌گرم در کیلوگرم

در تیمار شاهد به ۹/۴ و ۲/۰ میلی‌گرم در کیلو و در

در حالت هفت‌گانه شاهد و نیز در خاک‌های

لایه‌بان و اصفهان از ۱/۰۴ و ۱/۱۴ میلی‌گرم در کیلوگرم

در تیمار شاهد به ۱۰/۷۸ و ۱۰/۹۴ میلی‌گرم در کیلوگرم

در تیمار

۱۰۰۰ در حالت هفت‌گانه. این افزایش در خاک‌های لکرود،

لایه‌بان و اصفهان در تیمار‌ها ۳۰۰ و ۴۰۰ تن لجن در

همچنین، در خاک رشت در تیمارها ۱۰۰ و ۲۰۰ تن لجن در

هفت‌گانه نسبت به شاهد معنی‌دار است. این نتایج نشان می‌دهد لجن

افزایش کود نسبت به پیش‌تر در تیمار مورد نظر گیاه در

خاک‌ها به ویژه در خاک‌های آبیکی، منطقه اصفهان به شمار

می‌رود.

مقدار لجن خاک‌های تحت کشت (جدول 4) نشان می‌دهد، این

مکانیزم ممکن قابل جذب در چهار خاک مورد مطالعه

باشد. به همین دلیل، کمبود ریو قابل جذب تیز

یکی از علل تغییرات تغییرات خاک در خاک‌های اصفهان است،

و به نظر می‌رسد کاربرد لجن نیازی به تغییرات در رفع این

کمبود مؤثر نباشد.

مقدار مس قابل جذب در چهار خاک تحت کشت

در حالت مناسب، با مقدار لجن خاک باعث به طور معنی‌دار افزایش

پایش (جدول 3). مقدار مس قابل جذب خاکی در خاک‌های رشته و

نگرهود به ترتیب از مقادیر ۴/۲۷ و ۲/۷۸ میلی‌گرم در کیلوگرم

در تیمار شاهد به ۹/۴ و ۲/۰ میلی‌گرم در کیلو و در

در حالت هفت‌گانه شاهد و نیز در خاک‌های

لایه‌بان و اصفهان از ۱/۰۴ و ۱/۱۴ میلی‌گرم در کیلوگرم

در تیمار شاهد به ۱۰/۷۸ و ۱۰/۹۴ میلی‌گرم در کیلوگرم

در تیمار

۱۰۰۰ در حالت هفت‌گانه. این افزایش در خاک‌های لکرود،

لایه‌بان و اصفهان در تیمار‌ها ۳۰۰ و ۴۰۰ تن لجن در

همچنین، در خاک رشت در تیمارها ۱۰۰ و ۲۰۰ تن لجن در

هفت‌گانه نسبت به شاهد معنی‌دار است. این نتایج نشان می‌دهد لجن

افزایش کود نسبت به پیش‌تر در تیمار مورد نظر گیاه در

خاک‌ها به ویژه در خاک‌های آبیکی، منطقه اصفهان به شمار

می‌رود.
جدول 4. نتایج مقایسه گروهی میانگین غلظت فلزات (میلی گرم در کیلوگرم) قالب عصاره‌گیری از خاک‌ها

<table>
<thead>
<tr>
<th>موارد مقایسه</th>
<th>آهن</th>
<th>روی</th>
<th>مس</th>
<th>سنگر</th>
<th>سرب</th>
<th>نیکل</th>
<th>کادمیوم</th>
<th>کیالت</th>
<th>لئن فاضلاب (t/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>خاک</td>
<td>24/2</td>
<td>4/5</td>
<td>4/08</td>
<td>87/6</td>
<td>3/12</td>
<td>14/5</td>
<td>7/30</td>
<td>9/20</td>
<td>4/12</td>
</tr>
<tr>
<td>لئن فاضلاب</td>
<td>0/12</td>
<td>0/13</td>
<td>0/12</td>
<td>0/84</td>
<td>0/84</td>
<td>0/84</td>
<td>0/84</td>
<td>0/84</td>
<td>0/84</td>
</tr>
<tr>
<td>شاهد</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
<tr>
<td>1/9</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
<tr>
<td>2/7</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
<tr>
<td>3/9</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
<tr>
<td>4/5</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
</tbody>
</table>

1. در هر ستون و در هر مورد مقایسه، میانگین هایی که دارای حروف یکسان هستند، در سطح احتمال 0.05 درصد فاقد نمایش می‌باشند.
پH خاک بر قابلیت جذب کالسیر کم مصرف و فشار سگنی

با انیفریش مقدار لجن فعالیت افرایش نشان داد (جدول ۳). افزایش سرب قابل جذب در نکته انکار با بررسی متفاوت لجن فعالیت و شاهد می‌دارد شد. مقادیر مختلف لجن فعالیت و شاهد می‌دارد. مقدار سرب قابل جذب در نکته انکار با بررسی متفاوت لجن فعالیت و شاهد می‌دارد. شاه و افسانه نشان دادن. این افزایش در در نکته انکار با بررسی مقادیر مختلف لجن فعالیت و شاهد می‌دارد. شاه و افسانه نشان دادن. این افزایش در در نکته انکار با بررسی مقادیر مختلف لجن فعالیت و شاهد می‌دارد. شاه و افسانه نشان دادن. این افزایش در در نکته انکار با بررسی

مقاومت گروهی خاکهای (جدول ۴) نشان می‌دهد که مقادیر مختلف لجن فعالیت با مشاهده کاهشی در نکته انکار با بررسی مقادیر مختلف لجن فعالیت و شاهد می‌دارد. شاه و افسانه نشان دادن. این افزایش در در نکته انکار با بررسی مقادیر مختلف لجن فعالیت و شاهد می‌دارد. شاه و افسانه نشان دادن. این افزایش در در نکته انکار با بررسی مقادیر مختلف لجن فعالیت و شاهد می‌دارد. شاه و افسانه نشان دادن. این افزایش در در نکته انکار با بررسی مقادیر مختلف لجن فعالیت و شاهد می‌دارد. شاه و افسانه نشان دادن. این افزایش در در نکته انکار با بررسی مقادیر مختلف لجن فعالیت و شاهد می‌دارد. شاه و افسانه نشان دادن. این افزایش در در نکته انکار با بررسی مقادیر مختلف لجن فعالیت و شاهد می‌دارد. شاه و افسانه نشان دادن. این افزایش در در نکته انکار با بررسی مقادیر مختلف لجن فعالیت و شاهد می‌دارد. شاه و افسانه نشان دادن. این افزایش در در نکته انکار با بررسی مقادیر مختلف لجن فعالیت و شاهد می‌دارد. شاه و افسانه نشان دادن. این افزایش در در نکته انکار با بررسی مقادیر مختلف لجن فعالیت و شاهد می‌دارد. شاه و افسانه نشان دادن. این افزایش در در نکته انکار با بررسی مقادیر مختلف لجن فعالیت و شاهد می‌دارد. شاه و افسانه نشان دادن. این افزایش در در نکته انکار با بررسی مقادیر مختلف لجن فعالیت و شاهد می‌دارد. شاه و افسانه نشان دادن. این افزایش در در نکته انکار با بررسی مقادیر مختلف لجن فعالیت و شاهد می‌دارد. شاه و افسانه نشان دادن. این افزایش در در نکته انکار با بررسی مقادیر مختلف لجن فعالیت و شاهد می‌دارد. شاه و افسانه نشان دادن. این افزایش در در نکته انکار با بررسی مقادیر مختلف لجن فعالیت و شاهد می‌دارد. شاه و افسانه نشان دادن. این افزایش در در نکته انکار با بررسی مقادیر مختلف لجن فعالیت و شاهد می‌دارد. شاه و افسانه نشان دادن. این افزایش در در نکته انکار با بررسی مقادیر مختلف لجن فعالیت و شاهد می‌دارد. شاه و افسانه نشان دادن. این افزایش در در نکته انکار با بررسی مقادیر مختلف لجن فعالیت و شاهد می‌دارد. شاه و افسانه نشان دادن. این افزایش در در نکته انکار با بررسی مقادیر مختلف لجن فعالیت و شاهد می‌دارد. شاه و افسانه نشان دادن. این افزایش در در نکته انکار با بررسی مقادیر مختلف لجن فعالیت و شاهد می‌دارد. شاه و افسانه نشان دادن. این افزایش در در نکته انکار با بررسی مقادیر مختلف لجن فعالیت و شاهد می‌دارد. شاه و افسانه نشان دادن. این افزایش در در نکته انکار با بررسی مقادیر مختلف لجن فعالیت و شاهد می‌دارد. شاه و افسانه نشان دادن. این افزایش در در نکته انکار با بررسی مقادیر مختلف لجن فعالیت و شاهد می‌دارد. شاه و افسانه نشان دادن. این افزایش در در نکته انکار با بررسی مقادیر مختلف لجن فعالیت و شاهد می‌دارد. شاه و افسانه نشان دادن. این افزایش در در نکته انکار با بررسی مقادیر مختلف لجن فعالیت و شاهد می‌دارد. شاه و افسانه نشان دادن. این افزایش در در نکте
تأثیر تیمارهای مختلف بر غلظت فلزات در گیاهی درت

همان گونه که پیش گفته شد، افزودن لجن فاضلاب باعث افزایش غلظت کالر و عصاره‌گیری فلزات در خاک‌های مختلف به ویژه خاک‌های اسیدی شد. یکجارایی، اندازه می‌رود که مقدار جذب و انباشتگی فلزات در گیاه نیز با افزایش تیمار لجن فاضلاب در خاک افزایش یابد. جدول ۵ غلظت فلزات در اندام هوایی درت را نشان می‌دهد. در بیشتر موارد افزایش تیمار لجن فاضلاب باعث افزایش غلظت بیشتر فلزات در چهار خاک شد. افزایش غلظت‌ها برای تمام فلزات بیشتر کاملاً، سرب و رودی در خاک رشت، و سرب در خاک لگرو، به سطح نیتر درصد معنادار بود.

قابلیت‌های خاک‌ها نشان می‌دهد که مقدار جذب بیشتر فلزات در اندام هوایی درت در خاک‌های اسیدی نگبودریت بوده و در خاک‌های اسیدی تولید و به وجود آمده، غلظت تمام فلزات در اندام هوایی، حتی در خاک‌های اسیدی نگبودریت و لاهیجان، زیر حد سه‌پتی برای این فلزات بود (۱۸).

تأثیر تیمارهای مختلف بر رشد گیاهی درت

وزن خشک اندام هوایی درت با افزایش تیمار لجن فاضلاب در خاک‌ها افزایش یافته است (جدول ۳). افزایش وزن خشک اندام هوایی درت در کاهش‌های رشد و ویژگی‌های اساسی باعث افزایش عملکرد فلزات در گیاهی شده، به طوری که در بیمه ۲۰۰ نژ در نتایج عملکرد تا سه برابر افزایش نشان داده است. والسپاسی و همکاران (۲۳) در پژوهش‌های سالی آگهی در چهار خود در نوع لجن وی‌بو در تعداد مختلف انجام دادند. نتیجه گرفتن افزوردن لجن فلزات با تا مقدار خاصی باعث افزایش عملکرد می‌شود و لیس از این حذ کننده وی‌بو در عملکرد ندارد. که این محدوده هم نوع و شارای خاک، نوع لجن مصرفی و ترکیب شیمیایی آن، نوع گیاه مورد نوع سنتکی دارد.

نتیجه‌گیری

از لحاظ لجن فلزات باعث افزایش تیمار می‌باشد و در غلظت آهن، روی، مس، نیکل، سرب، نیکل و کلسیم کم‌صرف و فلزات سنتکی مذکور در خاک‌های اسیدی (نگبودریت و لاهیجان) به دلیل حلالیت زیاد فلزات در این خاک‌ها بیشتر از خاک‌های غیر اسیدی (رست و اصفهان) بود.

یافته‌ها این پژوهش نشان می‌دهد که تأثیر لجن فلزات در خاک‌های اسیدی از نظر آلودگی فلزات سنتکی خطر کمتری می‌باشد.
<table>
<thead>
<tr>
<th>جدول 5. آثار تیمارهای لجن فاضلاب بر غلظت فلزات (میلی گرم در کیلو گرم) در اندام هواپی گیاه درخت در خاک‌های مختلف۱</th>
<th>لجن فاضلاب</th>
<th>خاک</th>
<th>کادمیم</th>
<th>نیکل</th>
<th>سرب</th>
<th>کیالت</th>
<th>سنگز</th>
<th>روی</th>
<th>ام</th>
<th>مس</th>
</tr>
</thead>
<tbody>
<tr>
<td>30/4</td>
<td>5/5</td>
<td>5/2</td>
<td>5/2</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>35/4</td>
<td>6/1</td>
<td>6/1</td>
<td>6/1</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>7/1</td>
<td>7/1</td>
<td>7/1</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>45/4</td>
<td>8/1</td>
<td>8/1</td>
<td>8/1</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>9/1</td>
<td>9/1</td>
<td>9/1</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>55/4</td>
<td>10/1</td>
<td>10/1</td>
<td>10/1</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>11/1</td>
<td>11/1</td>
<td>11/1</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>65/4</td>
<td>12/1</td>
<td>12/1</td>
<td>12/1</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>13/1</td>
<td>13/1</td>
<td>13/1</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>75/4</td>
<td>14/1</td>
<td>14/1</td>
<td>14/1</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>80/4</td>
<td>15/1</td>
<td>15/1</td>
<td>15/1</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>85/4</td>
<td>16/1</td>
<td>16/1</td>
<td>16/1</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>17/1</td>
<td>17/1</td>
<td>17/1</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>95/4</td>
<td>18/1</td>
<td>18/1</td>
<td>18/1</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>19/1</td>
<td>19/1</td>
<td>19/1</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
</tr>
</tbody>
</table>

۱ در هر خاک و در هر سالن، اعدادی که دارای خروش مثلث‌های نسبی هستند، در صفحه احتمال پیش درصد فاکتور متغیر می‌باشد.

جدول 6. آثار تیمارهای لجن فاضلاب بر وزن خشک (گرم) گیاه درخت در خاک‌های مختلف۱

<table>
<thead>
<tr>
<th>لجن فاضلاب</th>
<th>خاک</th>
<th>وزن خشک ریشه (t/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30/4</td>
<td>5/5</td>
<td>5/2</td>
</tr>
<tr>
<td>35/4</td>
<td>6/1</td>
<td>6/1</td>
</tr>
<tr>
<td>40</td>
<td>7/1</td>
<td>7/1</td>
</tr>
<tr>
<td>45/4</td>
<td>8/1</td>
<td>8/1</td>
</tr>
<tr>
<td>50</td>
<td>9/1</td>
<td>9/1</td>
</tr>
<tr>
<td>55/4</td>
<td>10/1</td>
<td>10/1</td>
</tr>
<tr>
<td>60</td>
<td>11/1</td>
<td>11/1</td>
</tr>
<tr>
<td>65/4</td>
<td>12/1</td>
<td>12/1</td>
</tr>
<tr>
<td>70</td>
<td>13/1</td>
<td>13/1</td>
</tr>
<tr>
<td>75/4</td>
<td>14/1</td>
<td>14/1</td>
</tr>
<tr>
<td>80/4</td>
<td>15/1</td>
<td>15/1</td>
</tr>
<tr>
<td>85/4</td>
<td>16/1</td>
<td>16/1</td>
</tr>
<tr>
<td>90</td>
<td>17/1</td>
<td>17/1</td>
</tr>
<tr>
<td>95/4</td>
<td>18/1</td>
<td>18/1</td>
</tr>
<tr>
<td>100</td>
<td>19/1</td>
<td>19/1</td>
</tr>
</tbody>
</table>

۱ در هر خاک و در هر سالن، اعدادی که دارای خروش مثلث‌های نسبی هستند، در صفحه احتمال پیش درصد فاکتور متغیر می‌باشد.

۱۰۳
سپسگرایی
این پژوهش از طریق طرح ملی پژوهشی با کد M12، با حمایت
شورای تحقیقات علمی کشور به شماره ثبت 1151 انجام گرفته است، که بедин وسیله تشکر و قدردانی می‌شود.

دارد، ضمن این که در رفع کمبود شماری از عنصر کم‌صرف
خاک هموگون آهن، روی و مس می‌تواند مؤثر باشد. اینبه با
توجه به اثربخشی این فعالیت در خاک، پیشنهاد می‌شود در
هر منطقه راه‌های ورود فلزات سنگین به این ماده برسی، و با
کاهش ورود این فلزات در فعالیت‌های شهری، ارزش کودی
لجن فعالیت افزایش یابد.

منابع مورد استفاده
1. افیوئی، م.ی. رضایی نژاد و ب. خیامی‌باشی. 1377، اثر لجن فعالیت بر عملکرد و جذب فلزات سنگین به وسیله کاهو و استفاح.
2. عرفانی؛ ب. 1376، اثر استفاده از لجن فعالیت به عنوان کود در آلاینده و ایجاد سنگین در خاک و کیما. پاپانامه کارشناسی ارشد خاکشناسی، دانشگاه صنعتی اصفهان.
3. عرفانی، م. 1376، اثر تعادل‌های لجن فعالیت بر پرخی خصوصیات خاک و جذب و تراکم عناصر سنگین به وسیله استفاح.
4. مجله خاک. 1376، شیمی خاک (ترجمه). مرکز نشر دانشگاهی، تهران.