تخمین گنجایش تبادل کاتیونی خاک با استفاده از برخی ویژگی‌های فیزیکوشیمیایی خاک

فرشید نوربخش، احمد جلالیان و حسین شریعتمداری

چکیده

گنجایش تبادل کاتیونی (CEC) از مهم‌ترین ویژگی‌های شیمیایی خاک است که کلیت‌های خاک، را از جنبه‌های مختلف تحت تأثیر قرار می‌دهد. CEC در براورد پایانی خطر فلزات سنگین و بخش آن‌های آلی کاتیونی تأثیر مثبت و یکی از مهم‌ترین پارامترهای ورودی در پیش‌بینی مدل‌های کامپیوتری از جمله مدل EPIC است. ورودی قاره‌ای آزمایشگاهی که در اندازه‌گیری این ویژگی به کار می‌روند CEC معمولاً وقت‌گیر و مشکل‌بار است. از این رو، داشتن مدلی که توانست CEC در این پژوهش را بپوشاند به عنوان مناسب‌ترین نمونه‌های مسئول بررسی pH خاک را از روی دیگر ویژگی‌های خاک تخمین بزند غیره. است. در این برسی با استفاده از اطلاعات 44 نمونه خاک از انخفاض مختلف صورت گرفت. نتایج نشان داد CEC خاکها با درصد نسبی آتشفشان مفهومی (394/3/10795/5) و درصد میزان آلی (*** = 37/3) به صورت سیستمی در سه طبقه pH و CEC مستقر می‌باشند. این مقدار pH و CEC اثری قابل ملاحظه در N خاک ندارد. CEC و pH به صورت سیستمی در سه طبقه B و A جهت استفاده در ایجاد انواع مختلف خاک‌های زمین‌نواز، در مقایسه با دست نیاز به تمایل به دست نیازهای سازی‌های مختلف خاک‌های اسپیدی و ارتباط آنها با خاک‌های چند منطقه‌ای قابل ملاحظه در تمرکز خاک است. طبق آزمایشات گزارشی و انجام خاک‌های چند منطقه‌ای نشان داد که در این برسی چنین خاک‌های ماده‌آلی مهم‌ترین عامل مؤثر بر خاک است.

واژه‌های کلیدی: گنجایش تبادل کاتیونی، همبستگی، ساده‌شدن خاک و چند منطقه‌ای، کیفیت خاک

1. به ترتیب استاد، استاد و استادیار خاکشناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
نکته‌ای: بنا بر آمار‌های موجود، میزان قربانیان کرونا در جهان در یک ماه در حدود ۱۰ میلیون نفر گزارش شده است.

روش های مصرفی برای تشخیص مبتلایان:
1. تست آزمایشگاهی: این روش در طول اکثر مراحل مبتلاست تبدیل می‌گردد.
2. تست آزمایشگاهی کرونا: این روش در طول اکثر مراحل مبتلاست تبدیل می‌گردد.
3. تست طبی: این روش در طول اکثر مراحل مبتلاست تبدیل می‌گردد.

روش های مصرفی برای درمان و درمان کرونا:
1. درمان با آنتی‌بیوتیک‌ها: این روش در طول اکثر مراحل مبتلاست تبدیل می‌گردد.
2. درمان با آنتی‌بیوتیک‌ها: این روش در طول اکثر مراحل مبتلاست تبدیل می‌گردد.
3. درمان با آنتی‌بیوتیک‌ها: این روش در طول اکثر مراحل مبتلاست تبدیل می‌گردد.

روش های مصرفی برای کاهش مبتلایان:
1. کاهش مبتلایان: این روش در طول اکثر مراحل مبتلاست تبدیل می‌گردد.
2. کاهش مبتلایان: این روش در طول اکثر مراحل مبتلاست تبدیل می‌گردد.
3. کاهش مبتلایان: این روش در طول اکثر مراحل مبتلاست تبدیل می‌گردد.
به طور کلی، در پژوهش‌هایی که CEC براورد می‌شود، فرض بر این است که حاصل عملی در جهرم رس و مواد آلی خاک است. بیان رياضی این مطلب به صورت زیر است:

\[CEC = b \cdot OM + c \cdot C \]

که در این فرمول C و OM به ترتیب درصد مواد آلی و رس خاک، و b و c ضرایب آنها می‌باشند. ضرایب b و c باین‌گر هر یک از اجزاء به طور خاصی است. استفاده از CEC رگرسیون‌های چند متغیره برای به دست آوردن معادلات فوق معنی‌دار یا یک ضریب ثابت (α) همراه است. که شکل معادله را به صورت زیر در می‌آورد:

\[CEC = a + b \cdot OM + c \cdot C + d \cdot Si + e \cdot S + f \cdot pH \]

از آن چا ممکن است CEC تحت تأثیر عواملی كه قرار بگیرد، و یا ممکن است به دخالت کانی‌های موجود در بخش سیستم سبب سه شم اندکی در CEC باند داشته باشد و یا ممکن است در یک جامعه آماری بزرگ از خاک‌ها، همبستگی معکوسی بین CEC و درصد شن خاک وجود داشته باشد.

مدل فوق ممکن است به صورت زیر درآید:

\[CEC = a + b \cdot OM + c \cdot C + d \cdot Si + e \cdot S + f \cdot pH \]

که در این فرمول S و Si به ترتیب درصد سیلت و شن خاک‌هایی است که در CEC به دست آمده شده و 4 ضریب b ممکن است به دست آورد رابطه زیر باشد:

\[CEC = a + b \cdot OM + c \cdot C + d \cdot Si + e \cdot S + f \cdot pH \]

که در این فرمول S و Si به ترتیب درصد سیلت و شن خاک‌هایی است که در CEC به دست آمده شده و 4 ضریب b ممکن است به دست آورد رابطه زیر باشد:

\[CEC = a + b \cdot OM + c \cdot C + d \cdot Si + e \cdot S + f \cdot pH \]

که در این فرمول S و Si به ترتیب درصد سیلت و شن خاک‌هایی است که در CEC به دست آمده شده و 4 ضریب b ممکن است به دست آورد رابطه زیر باشد:

\[CEC = a + b \cdot OM + c \cdot C + d \cdot Si + e \cdot S + f \cdot pH \]

که در این فرمول S و Si به ترتیب درصد سیلت و شن خاک‌هایی است که در CEC به دست آمده شده و 4 ضریب b ممکن است به دست آورد رابطه زیر باشد:

\[CEC = a + b \cdot OM + c \cdot C + d \cdot Si + e \cdot S + f \cdot pH \]

که در این فرمول S و Si به ترتیب درصد سیلت و شن خاک‌هایی است که در CEC به دست آمده شده و 4 ضریب b ممکن است به دست آورد رابطه زیر باشد:

\[CEC = a + b \cdot OM + c \cdot C + d \cdot Si + e \cdot S + f \cdot pH \]
تهیه و نوین کشاورزی و منابع طبیعی / سال هفتم / شماره سوم / پاییز ۱۳۸۲

به چشم می‌خورد. همان گونه که دیده می‌شود، همیستگی گنجشک تبادل کاتیوئی، یک جراح با pHx، که با کلیه و پیروی‌ها شامل درصد مواد آلی و سیلیت و در سطح ۱۰۰۰/۱۰۰ معنی‌دار است. در میان این ویژگی‌های همیستگی CEC با شن منفی و لیک‌ها مواد آلی، رس و سیلیت مثبت است.

جدول ۳ نشان دهنده ضرایب رگرسیون ساده و خط‌گزینی استاندارد تخمین میان (به عنوان متغیر نابغه) و به‌طوری از ویژگی‌های خاک (به عنوان متغیر مستقل) است. در این جدول ویژگی‌های معنا برای معنای داده‌ای آزمایش شده است. همیستگی CEC با رس و ویژگی تبادل کاتیونی است. ولی در ایجاد بهار منفی و پدیده تبادل آلی می‌تواند درصد رس را کاهش می‌دهد.

به‌نظر می‌رسد، با افزایش شن ذرات که دارای توانایی ایجاد باز منفی و ایجاد گنجشک تبادل کاتیوئی هستند کاهش را می‌یابد. این پدیده به صورت یک رابطه منفی معنی‌دار بین درصد و درصد رس خاک‌ها به چشم می‌خورد. (r = -0.72/77.****). نتیجه‌ای بین درصد شن و درصد مواد آلی خاک‌ها نیز یک ارتباط منفی معنی‌دار و وجود دارد (188****). بنابراین، تأثیر کاهش درصد شن بر CEC نتایجی از ارتباط منفی درصد شن با درصد رس و مواد آلی خاک‌های سبز (جهد ۲). کاهش درصد مواد آلی خاک با افزایش درصد شن را می‌توان به سرعت افزودن فرازی‌ها نسبت به خاک‌های خشک نسبت داد که نتیجه بیشتر دارد (۱۵).

معادله ٣ به عنوان یک مدل جند متغیر، ضریب تعیین (R²) و گزینش نسبت به دیگر مدل‌های ساده خطره‌نشان داد. این معادله به صورت زیر است:

\[\text{CEC} = \frac{4.74}{100} + \frac{0.73}{OM} + \frac{2.7}{C} \] \[R^2 = 0.797 **** \]

که در این معادله، CEC یا خاک‌ها به شیب تابستانه درصد مواد آلی و رس، SE و خط‌گزینی استاندارد تعیین است.

drug از ۶/۷/۷۷ دارد و بعد از ۷/۷/۷۷ به میزان شکستگی pHx می‌باشد.

در تمام نمونه‌های خاک، درصد اندازه ذرات در روش پیست (۶) درصد مواد آلی به روش واکی - با و (۶) و ظرفیت تبادل کاتیوئی به روش بوور (۷) تعیین شده است.

مطالعات آماری شامل رگرسیون‌های ساده خطی و رگرسیون‌های چند متغیره گام به گام (Stepwise) با استفاده از نرم‌افزار استاتس گرافیک صورت گرفت. برای بررسی اطلاعات از مدل ۴ استفاده شد. تجزیه آماری فوق یک پر به برای کل داده‌ها، یک پر از چند کلمه‌ای، به تفاوتهای بین C یا B یا A با یک اختصاصی برای خاک‌های رده ارزیدنی، نر و یک پر اختصاصی برای خاک‌های اسپیدی (r < ۰/۷) انجام گردید. در هر یک از موارد، ضریب هم‌بستگی ضریب تعیین، سطح معنی‌دار بود و خط‌گزینی استاندارد تعیین، ضرایب و ویژگی‌های خاک تعیین، و براساس آن تفسیرهای لازم صورت گرفت.

tabیه و بحث

چنان که در جدول ۳ دیده می‌شود، گسترده و عضیف از ویژگی‌های خاک در پژوهش به کار رفته است. خاک از نظر درصد اندازه ذرات، درصد مواد آلی و گنجشک تبادل کاتیوئی داخلی نسبتاً گسترده‌ای داشته. دانه میزان شن، سیلیت و رس در کل خاک‌های مورد بررسی به ترتیب ۰/۷۲/۶، ۷۸/۰، ۷۰/۲ و ۷۱/۰ درصد است. این دانه‌ای برای درصد مواد آلی ۸/۰/۷/۱۰ و برای CEC ۴/۰/۴/۰ و برای ۰/۴/۵/۰ و برای C ۱/۰/۰/۰/۰۰. و برای pHx درصد است. این دانه‌ای برای درصد مواد آلی ۸/۷/۷/۱۰ و برای CEC ۴/۰/۴/۰ و برای ۴/۰/۴/۰ و برای C ۱/۰/۰/۰/۰۰.

خاک بود (جدول ۲). در این پژوهش نسبت کل نمونه‌ها (بین در نظر گرفتن نوع فاکتور) به یک بیج جامعه آماری زیگ (شامل ۴۴/۷۷ نمونه) در نظر گرفته شد و همیستگی ساده خطی و چند جند متغیره برای آنها انجام گردید. مادریس همیستگی‌های ساده خطی و ویژگی‌های مورد بررسی در جدول ۲
جدول 1. ویژگی‌های خاک‌های مورد بررسی

<table>
<thead>
<tr>
<th>شاخص‌های آماری</th>
<th>A</th>
<th>B</th>
<th>اردي سول</th>
<th>C</th>
<th>کل نمونه‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>شن (٪) انحراف معیار</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
<td></td>
<td>0.007</td>
</tr>
<tr>
<td>دامنه</td>
<td>33.7-50.0</td>
<td>33.7-50.0</td>
<td>33.7-50.0</td>
<td></td>
<td>33.7-50.0</td>
</tr>
<tr>
<td>میانگین</td>
<td>0.033</td>
<td>0.033</td>
<td>0.033</td>
<td></td>
<td>0.033</td>
</tr>
<tr>
<td>انحراف معیار (٪) مواد آلی</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
<td></td>
<td>0.007</td>
</tr>
<tr>
<td>دامنه</td>
<td>33.7-50.0</td>
<td>33.7-50.0</td>
<td>33.7-50.0</td>
<td></td>
<td>33.7-50.0</td>
</tr>
<tr>
<td>میانگین</td>
<td>0.033</td>
<td>0.033</td>
<td>0.033</td>
<td></td>
<td>0.033</td>
</tr>
<tr>
<td>انحراف معیار pH</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
<td></td>
<td>0.007</td>
</tr>
<tr>
<td>دامنه</td>
<td>33.7-50.0</td>
<td>33.7-50.0</td>
<td>33.7-50.0</td>
<td></td>
<td>33.7-50.0</td>
</tr>
<tr>
<td>میانگین</td>
<td>0.033</td>
<td>0.033</td>
<td>0.033</td>
<td></td>
<td>0.033</td>
</tr>
<tr>
<td>انحراف معیار CEC (cmol+ / kg)</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
<td></td>
<td>0.007</td>
</tr>
<tr>
<td>دامنه</td>
<td>33.7-50.0</td>
<td>33.7-50.0</td>
<td>33.7-50.0</td>
<td></td>
<td>33.7-50.0</td>
</tr>
<tr>
<td>میانگین</td>
<td>0.033</td>
<td>0.033</td>
<td>0.033</td>
<td></td>
<td>0.033</td>
</tr>
</tbody>
</table>
| انحراف معیار

تجزیه‌گری تداخل کاتیونی خاک با استفاده از برخی ویژگی‌های فیزیکوشیمیایی خاک

نشان داده شده است. چنان که دیده می‌شود، ضریب تغییر این افزایش یک درصد ماده آلی سبب 7/35 واحد افزایش در می‌شود. حال آن که افزایش یک درصد رس سبب 27/20 واحد افزایش در افزایش در CEC می‌گردد. در شکل 1 نمودار پراکنگ

تقریباً مشابهی برای CEC کل خاک‌ها به همراه دارد. CEC افزایش در استفاده از ماده آلی، به عنوان یک مدل به‌طور مناسب، نیز تهیه

جدول 2. مانیتور میسگی ویژگی‌های خاک‌های مورد بررسی

<table>
<thead>
<tr>
<th>درصد رس</th>
<th>درصد سیلت</th>
<th>درصد سیلت</th>
<th>درصد رس</th>
<th>درصد رس</th>
<th>درصد رس</th>
<th>درصد رس</th>
</tr>
</thead>
<tbody>
<tr>
<td>38/8</td>
<td>14/93</td>
<td>0/13</td>
<td>0/2</td>
<td>0/7</td>
<td>0/2</td>
<td>0/2</td>
</tr>
<tr>
<td>15/7</td>
<td>0/8</td>
<td>0/7</td>
<td>0/2</td>
<td>0/7</td>
<td>0/2</td>
<td>0/2</td>
</tr>
<tr>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

CEC افزایش یک درصد ماده آلی سبب 7/35 واحد افزایش در

CEC افزایش یک درصد رس سبب 27/20 واحد

CEC افزایش در CEC می‌گردد. در شکل 1 نمودار پراکنگ

تقریباً مشابهی برای CEC کل خاک‌ها به همراه دارد. CEC افزایش در استفاده از ماده آلی، به عنوان یک مدل به‌طور مناسب، نیز تهیه

CEC
جدول 3 مشخصات آماری همبستگی CEC با سایر ویژگی‌های خاک‌های مورد بررسی

<table>
<thead>
<tr>
<th>ضریب همبستگی</th>
<th>SEE</th>
<th>ضریب تعیین (%)</th>
<th>عرض از مبدأ (a)</th>
<th>شیب (b)</th>
<th>کل خاک‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ضریب تعیین (%)</th>
<th>SEE</th>
<th>ضریب تعیین (%)</th>
<th>عرض از مبدأ (a)</th>
<th>شیب (b)</th>
<th>کل خاک‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>افق</th>
<th>ضریب تعیین (%)</th>
<th>عرض از مبدأ (a)</th>
<th>شیب (b)</th>
<th>کل خاک‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>مواد آلی</td>
<td>0/129</td>
<td>10/129</td>
<td>0/209 (ns)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>رس</td>
<td>0/129</td>
<td>10/129</td>
<td>0/209 (ns)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>سیلت</td>
<td>0/129</td>
<td>10/129</td>
<td>0/209 (ns)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شن</td>
<td>0/129</td>
<td>10/129</td>
<td>0/209 (ns)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>افق</th>
<th>ضریب تعیین (%)</th>
<th>عرض از مبدأ (a)</th>
<th>شیب (b)</th>
<th>کل خاک‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>مواد آلی</td>
<td>0/129</td>
<td>10/129</td>
<td>0/209 (ns)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>رس</td>
<td>0/129</td>
<td>10/129</td>
<td>0/209 (ns)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>سیلت</td>
<td>0/129</td>
<td>10/129</td>
<td>0/209 (ns)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شن</td>
<td>0/129</td>
<td>10/129</td>
<td>0/209 (ns)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>افق</th>
<th>ضریب تعیین (%)</th>
<th>عرض از مبدأ (a)</th>
<th>شیب (b)</th>
<th>کل خاک‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>مواد آلی</td>
<td>0/129</td>
<td>10/129</td>
<td>0/209 (ns)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>رس</td>
<td>0/129</td>
<td>10/129</td>
<td>0/209 (ns)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>سیلت</td>
<td>0/129</td>
<td>10/129</td>
<td>0/209 (ns)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شن</td>
<td>0/129</td>
<td>10/129</td>
<td>0/209 (ns)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\text{CEC} = 0.74 + 0.29 \text{ OM} + 0.25 \text{ C} - 0.05 S
\]

ضریب تعیین \(R^2 \) به دست آورده، ولی با وارد کردن \(R^2 = 0.75 ** * \) به ماده همکاری \(A \) به مدل مشابه با معادله 3.

\[
\text{SEE} = 0.57
\]

112
تخمین گنجایش تبادل کاتانونی خاک با استفاده از برخی ویژگی‌های فیزیکوشیمیایی خاک

شکل ۱: تخمینی از معادله ۵ در برابر CEC

![نمودار شکل ۱](https://example.com/figure1.png)

کاتانونی را در افق‌های A و B با داشته باشیم. درصد مواد آلی C و B و A در افق C بیشتر از افق B و درصد مواد آلی افق B بیشتر از افق A است. این کاهش با توجه به روند معمول توزیع مواد آلی در بروز خاک، کاملاً مطیعی به نظر می‌رسد. آزمون ۴ استیوند نشان داد که درصد کربن آلی در افق‌های A و B، افق‌های C و B تغییر دیده می‌شود. از سوی دیگر، روند تغییر درصد رس در بروز خاک ها به گونه‌ای است که در افق A نشانه دارد. این اکتشافات نشانی از پدیده انتقال است. که باعث جا‌بندی رس‌ها از افق‌های (ابلیپیون‌ها) به افق‌های تحت‌اولین (افقهای ب) می‌گردد (۳).

آزمون ۱ نشان داد که درصد رس در افق B به طور معنادار

به طور معنادار (P<0.001) بیشتر از افق‌های C و A و افق بروز بیشتر از دایر گذاری کنجاله تبادل کاتانونی با توزیع درصد رس و مواد آلی متفاوت است. آزمون ۲ نشان داد که میان کنجاله تبادل کاتانونی افق‌های B و A در سطح پیک درصد (P<0.01) متفاوت معنادار وجود ندارد. به‌طور کلی نشان داد که افق‌های CEC و افق‌های C با افق‌های B نسبت به افق A ممکن است باعث یک‌تایی کاهش مواد آلی در ب بیشتری حاصل می‌شود. که باعث کاهش pH می‌گردد (۳).

پرسی هیپسمتی‌های ساده خشکی و جنگ متغیر به جدا سازی افق‌ها

شکل ۲: میانگین درصد رس، درصد مواد آلی و گنجایش تبادل

شکل ۱: تخمینی از معادله ۵ در برابر CEC

![نمودار شکل ۱](https://example.com/figure1.png)
شکل ۲ میانگین درصد رس، درصد مواد آلی و CEC خاک‌های مورد بررسی در اف‌هاهای مختلف

اَف‌قهای A، B و C درصد شن باریک است. به کارگیری مدل چند متغیری معادله ۳ برای اف‌های A، CEC در محاسبه زیر گرفته شده:

\[
\text{CEC} = \frac{2/4V + 7/8A + 0/39C}{V}
\]

\[
R^2 = 0.868 \quad \text{SEE} = 8.398
\]

برای افزایش pH ۰٫۱ می‌شود و هیچ ویژگی دیگری مانند شی، سیلت، با واری مدل نمی‌شود. با توجه به ضرایب C و OM توان CEC دریافت که با افزایش یک درصد ماده آلی، ۰/۱۹ واحد به خاک اضافه می‌شود. حال آن که با افزایش یک درصد رس تنها CEC به ۰/۲۹ واحد در خاک افزوده می‌شود.

توبیندگان این مطالعه را بن آنان داشته تا تحلیل‌های رگرسیون ساده خط خود چند متغیره را برای هر یک از اف‌ها A، B و C جداگانه انجام دهند. در جدول ۳ نتایج تحلیل رگرسیون‌های ساده خطی دیای می‌شود. در هر یک از اف‌ها نیز ارتباط معنی‌دار مثبت بین CEC و درصد ماده آلی، رس و سیلت به CEC و درصد ماده آلی، رس و سیلت به CEC و درصد ماده آلی، رس و سیلت به CEC و درصد ماده آلی، رس و سیلت به
تحمیل گنجینه تیوال کاتانوی خاک با استفاده از برخی الگوی ریسک‌محاسباتی خاک

اگرایهای تیوال دیده می‌شود. CEC این افق‌های تیوال در سیستم‌های محیطی و سیستم‌های شیمیایی معمول است. نتایج تجزیه ریسک‌محاسباتی تیوال‌های چند متغیره بر اساس تیوال‌های CEC تیوال‌های CEC را بررسی کرده‌اند. CEC این افق‌های تیوال در سیستم‌های محیطی و سیستم‌های شیمیایی معمول است. نتایج تجزیه ریسک‌محاسباتی تیوال‌های چند متغیره بر اساس تیوال‌های CEC تیوال‌های CEC را بررسی کرده‌اند. CEC این افق‌های تیوال در سیستم‌های محیطی و سیستم‌های شیمیایی معمول است. نتایج تجزیه ریسک‌محاسباتی تیوال‌های چند متغیره بر اساس تیوال‌های CEC تیوال‌های CEC را بررسی کرده‌اند. CEC این افق‌های تیوال در سیستم‌های محیطی و سیستم‌های شیمیایی معمول است. نتایج تجزیه ریسک‌محاسباتی تیوال‌های چند متغیره بر اساس تیوال‌های CEC تیوال‌های CEC را بررسی کرده‌اند. CEC این افق‌های تیوال در سیستم‌های محیطی و سیستم‌های شیمیایی معمول است. نتایج تجزیه ریسک‌محاسباتی تیوال‌های چند متغیره بر اساس تیوال‌های CEC تیوال‌های CEC را بررسی کرده‌اند. CEC این افق‌های تیوال در سیستم‌های محیطی و سیستم‌های شیمیایی معمول است. نتایج تجزیه ریسک‌محاسباتی تیوال‌های چند متغیره بر اساس تیوال‌های CEC تیوال‌های CEC را بررسی کرده‌اند. CEC این افق‌های تیوال در سیستم‌های محیطی و سیستم‌های شیمیایی معمول است. نتایج تجزیه ریسک‌محاسباتی تیوال‌های چند متغیره بر اساس تیوال‌های CEC تیوال‌های CEC را بررسی کرده‌اند. CEC این افق‌های تیوال در سیستم‌های محیطی و سیستم‌های شیمیایی معمول است. نتایج تجزیه ریسک‌محاسباتی تیوال‌های چند متغیره بر اساس تیوال‌های CEC تیوال‌های CEC را بررسی کرده‌اند. CEC این افق‌های تیوال در سیستم‌های محیطی و سیستم‌های شیمیایی معمول است. نتایج تجزیه Rگاف‌هایی چند متغیره بر اساس مدل‌های 3 برای
ضریب تغییر ایجاد ماده کلکترز از ضرایب تغییر معادلات
مربط به افزایش قند که جذاب‌سازی خاک‌ها به‌ویژه خاک‌های مرطوب در افزایش ضریب تغییر
روابط آماری مدل‌های چند متغیره نسبت به مدل‌های ساده
خطی داشته است.

بررسی همبستگی چند متغیره در خاک‌های اسیدی
در پژوهش حاضر، 88 نمونه خاک با pH 7 وجود دارد، که
تعلق به خاک‌های مالی سول، آلی سول و اولی سول استان
گیلان می‌باشد. بررسی همبستگی چند متغیره کام‌های کام‌نیشان
می‌کند که به‌ویژه خاک‌های کام‌ها، که در آزمایشگاه‌های
نیز وجود دارد، توصیه می‌شود.

سیاست‌گذاری
هر چه انجام اکثریت از محل اعتبارات پژوهشی داشته‌ایم
که می‌توانیم هر چکنداکه نیاز به بهینه‌سازی سلسله‌ای در
جهت افزایش محورهای اصلی و تاکید نیز به دلیل همکاری‌ای
در آزمایشگاه‌ها سیاست‌گذاری می‌شود.

متناوب مورد استفاده
1. کریمی، ن. ع. 1376. همایش رس و ماده آلی در ترویج تبلیغاتی خاک‌های آهکی استان فارس. خلاصه مقالات پنجمین
کنگره علوم خاک ایران. اموزشکده کشاورزی کرج.
2. نوربخش، ف. و. افشاری. 1376. بررسی امکان استفاده از جذب سطحی میان بلو تجهیزات ترویجی مدل‌های تبلیغاتی
خاک بر روی خاک‌های نیز، سازندگی. 168-170.

خاک‌های اریتری سول به سرعت زیر است

\[
\text{CEC} = \frac{0.69 + 0.538 \text{OM} + \frac{0}{0}}{20} \quad \text{C} \quad (R^2 = 0.71) \quad \text{SEE} = 8.42
\]

\[
\text{CEC} = \frac{0.69 + 0.538 \text{OM} + \frac{0}{0}}{20} \quad \text{C} \quad (R^2 = 0.71) \quad \text{SEE} = 8.42
\]