بررسی تولید کنسرو سوسمس و تغییرات فیزیکوشیمیایی آن در مراحل فرابند و نگهداری

سیما چراگی دهدزی، شهرام دخانی، محمد شاهدی

چکیده

یکی از راهاهای افزایش زمان نگهداری نگهداری سوسمس و کاهش مصرف انرژی‌هایی جهانی، تولید کنسرو آن است. تولید سوسمس و کنسرو آن با فرمول اختصاصی و آزمایش‌های مختلف در دو مرحله انجام گرفت. مرحله اول شامل نسبت حسی سوسمس با دندان، فرمول تولید کنسرو آن و کارکرد صلوی اسکیزه‌بندی بود. در مرحله دوم آزمایش‌های فیزیکوشیمیایی و حسی انجام شد. کنسرو سوسمس در فوتوی (550 ± 10۰ کیلو‌جرم) و شیشه (مشابه شماره ۱۹۲-۲۰۵) تولید کرد. نتایج نشان داد که نگهداری استریپسیسون را با نسبت ۷۵ درصد مطلوب در انتقال از دو فرآیند پذیرفت. کنسرو سوسمس و کنسرو آن در نحوه نگهداری با نسبت ۷۵ درصد مطلوب در انتقال از دو فرآیند پذیرفت. فرمول سیستم‌پیشنهاد نگهداری استریپسیسون را با نسبت ۷۵ درصد مطلوب در انتقال از دو فرآیند پذیرفت. کنسرو سوسمس و کنسرو آن در نحوه نگهداری با نسبت ۷۵ درصد مطلوب در انتقال از دو فرآیند پذیرفت.

واژه‌های کلیدی: کنسرو سوسمس، اسکاریپسیسون، تغییرات فیزیکوشیمیایی، مقاومت برخی نگهداری

1. دانشجوی سابق کارشناسی ارشد صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
2. استاد علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

185
استریلپاسیون بر حسب دقت در دما 11 درجه سانتی‌گراد، آنها نیز بهتری درآمده و بیشتر است (15).

عمل موثر در تولید کنسرس سوسپس شال فرمولاسیون مایع سوپسی، تحت تهیه‌کننده مایع سوپسی، نحوه پر کردن مواد ملی‌شان (Casing)‌ها، روش و فاکتورهای لازم باید به‌خوبی مشخص شود. باید این کار را از هم‌اکنون امضا بفرمود. به‌طور کلی، ما احتمال انباشته‌ای در دمای استریلپاسیون، تهیه می‌کنیم که هر دانه در حداقل 17 درجه سانتی‌گراد در دما 29-30 درجه سانتی‌گراد، در محدوده مذکور در این کنسرس، باید انجام شود.

مقدمه
پیشینه تولید سوپسی حدود 200 سال است. جرج لینزر (George Lehner) در سال 1905 نخستین سوپسی را بنا نمود (Wiener) به دست آورد که در پر کردن غوشت و فاکتورهایی که از طریق کنسرس در نظر گرفته می‌باشد. به‌طور کلی، سوپسی‌های کنسرسی در سال 1900 اولین ساخت کنسرس پیرفت و بوده که معمولاً محصول را در قوطی بر می‌کردن و آن را در حمام آبی بار، و به نتیجه در بیش از 100 درجه سانتی‌گراد و حداکثر 108 درجه سانتی‌گراد قرار می‌گیرد (15). پیشرفت‌ها و تکنیک‌های استریلپاسیون متغیر با فشار زیاد باعث شد که در صنعت تولید کنسرس‌های غوشتی، حدود سال 1955 سوپسی، با استریلپاسیون واقعی شود (10).

در بایا پذیرفته‌ی اجاق (15)، سوپسی‌های کنسرسی یا کنسرس‌هایی که یکی از کنسرس‌های با فراوان حارثی تأسیس (پخت و پاستوریزاسیون) باشد. بنابراین، سوپسی‌های با فراوان حارثی باید باهر نشود. هرد برد، و یکنواختی بافت این در مراحل فراوان حفظ شود. پراپر گزارش استریلپاسیون کنسرسی وجود یافت که هم‌اکنون در صنعت سوپسی‌ها در هنگام کنسرس شدن، آب جذب کرده، و به علت افزایش حجم، پوشش آن‌ها پر می‌شود.

این نوع کنسرس سوپسی‌های با در جرم 90 درجه سانتی‌گراد، کنسرس‌هایی که در دما 110-120 درجه سانتی‌گراد و چ (کنسرس با فراوان حارثی کمال، به‌طور کلی نگهداری آن هیچ مشکلی ندارد، و عده

186
کاهش داده و آن را به صورت محصول به آپ افزود. همچنین، می‌توان با عملیات دود دادن، پیوسته‌ای محفظه روی سوسمس‌های بدون پوشش ایجاد کرد (۱).

کاهش مصرف تیرپنت برای حفظ سلامتی انسان، افزایش عمر ماندگاری سوسمس، کاهش هزینه ابارداری و حمل و نقل، و آسانی مصرف از جمله مواردی هستند که در تولید کنسرس سوسمس اهمیت دارد.

مود و روش‌ها

در این پژوهش، پس از تهیه چپ نوع سوسمس با فرمول‌های مختلف (جدول ۱) در کارخانه صنایع، واقع در ۲۰ کیلومتری اصفهان، کنسرس کردند آن و اعمال فرآیند حرارتی با برای چهار دقیقه در فوتوی ۴۸۰ (۲۱۶×۴۸۰) و شیشه شماهار ۷۸×۷۸×۱۷ میلی‌متری F value اصفهان، کنسرس کردند آن و اعمال فرآیند حرارتی با برای چهار دقیقه در فوتوی ۴۸۰ (۲۱۶×۴۸۰) و شیشه شماهار ۷۸×۷۸×۱۷ میلی‌متری F value اصفهان‌یا می‌تواند با استفاده از ۱۷۰ mm، قطر، قطره نوع داشته باشگاهی شفتگان، اصلاح‌شان از آزمایش‌های فیزیک‌شیمیایی، روی آنجام شد. این آزمایش‌ها شامل اندازه‌گیری میزان رطوبتی، چربی و بررسی مقاومت بریشی بانک سوسمس‌های غیرکنسرس و کنسرس در آغاز نگهداری، و ماهه‌ای اول، و مصور نگهداری بود. همچنین، عطر، طعم، بانک و رنگ سوسمس‌های کنسرس شده در فوتو، پس از سه ماه نگهداری، از نظر حسی ارزیابی شد.

روش آماده‌سازی نمونه برای آزمایش‌های شیمیایی

نمونه‌های غیر کنسرسی، تحت سیستم در آرسوس به صورت خمیری یکنواخت در آرد، سپس در دمای ۱۸ درجه سانتی‌گراد به صورت منظود نگهداری و پیش از آزمایش به مدت ۲۴ ساعت در دمای چهار درجه سانتی‌گراد قرار داده شد. نمونه‌های کنسرسی سوسمس‌ها از محلول آب نمک خارج (۱) و پس از یکنواخت شدن در آرسوس، در دمای ۱۸- درجه سانتی‌گراد نگهداری شد. محلول آب نمک کنسرسی نیز به صورت منظود در دمای ۱۸ درجه سانتی‌گراد نگهداری و ۲۴ ساعت پیش از آنجام آزمایش در دمای چهار درجه سانتی‌گراد قرار داده شد.

روش آماده‌سازی نمونه برای آزمایش‌های اشیایی

آزمایش‌های فیزیکی و شیمیایی

آزمایش‌های فیزیکی و شیمیایی در مورد نمونه سوسمس پیش از کنسرس شدن و سوسمس کنسرسی در آغاز نگهداری، و ماهه‌ای اول دو و سوم نگهداری در فوتوی و شیشه در دمای اندازه و یک (Warner bratzeler shear) استفاده از سیستم وارنر برترلر شیر (Instron) شماره ۴۰۲-۱۱، دو و سوم نگهداری انجام شد. سپس انگشتان انجام شد (۲ و ۱۲) و میزان مقاومت برخی با استفاده از فرمول زیر محاسبه گردید:

\[S = \frac{F}{\pi r^2} \]

۱۸۷
جدول ۱. نوع و مقدار (درصد) مواد اولیه در چهار فرمول مختلف سوپسیون تولیدی

<table>
<thead>
<tr>
<th>مقدار (درصد)</th>
<th>مواد اولیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>فرصمیون ۴</td>
<td>۲۸/۶۵</td>
</tr>
<tr>
<td>فرصمیون ۳</td>
<td>۲۶/۶۸</td>
</tr>
<tr>
<td>فرصمیون ۲</td>
<td>۲۷/۰۹</td>
</tr>
<tr>
<td>فرصمیون ۱</td>
<td>۲۸/۰۸</td>
</tr>
</tbody>
</table>

توجه: شش بودن، هم‌مان چهار نمونه فرصمیون سوپسیون کنسری داده‌ها، از آنها خوانش شد پس از بررسی به بی‌герین نمونه امتیاز یک، و به ترتیب به درک‌ترین نمونه امتیاز چهار و بدهد.

روش تجزیه و تحلیل آماری تابع
برای بررسی و تجزیه و تحلیل آماری داده‌ها، آزمایش فاکتوریل در چارچوب طرح کاملاً تصادفی به کار برده شد (۵). عوامل ارتباطی شده در آزمایش‌های شیمیایی عبارت بود از چهار نوع فرصمیون سوپسیون، در فاصله حزاگ‌تی

که: میزان مقاومت برخی (گرم نیرو بر سانتی‌متر مربع) و حداکثر نیرویی که دستگاه برا برخ برخ نمونه وارد می‌کند (گرم نیرو).

از آمایش‌های شیمیایی شامل اندازه‌گیری رطوبت (۱ و ۸)، جریبی با روش سوکسل (۱۱) و پروتئین با روش ماکروکلدال (۱ و ۹) در سوپسیون غیر کنسری، و کنسر شده در فوکی در آغاز‌نشینگ، خانه‌های ماده‌های نسلی، دوم و سوم تک‌داره انجام شد.

آزمون‌های چی
برای بررسی عطر، طعم، بافت و رنگ سوپسیون‌های کنسر شده
که بین سوسیس و محلول آب نمک درون قوطی تبدیلاتی صورت گرفته و ییده‌های اسم‌های انشوار موجب جذب آب نمک در محلول شده است. تتبع بی‌دسترسایی از این اتاق گی‌ری رطوبت با گزاره‌های اسم‌های کوچک و همکاران ۸۷) تفاوت‌ساز و همکاران ۱۹) ویم و همچنین ۱۹) هم‌خوانی دارد.
برای جدول ۲ میزان چربی در سوسیس‌های غیر کنسروی و کنسروی اخیر علّی‌های ندارد. نتایج تجزیه واریانس جدول ۳ نشان می‌دهد که اثر فرآیند حرارتی استقلال‌سازی به میزان چربی در هر چهار فرآیند سوسیس معنی‌دار نیست.
نتایج تجزیه واریانس جدول ۵ نشان دهنده معنی‌دار بودن اثر نوع فرآیندی‌ها بر میزان چربی در سوسیس‌های کنسروی شده در قوطی پس از همه نگه‌داشته و در سطح احتمال پک درصد است و بر اساس جدول ۴، سوسیس‌های با فرمول‌های ۱ و ۳ به ترتیب حداکثر و حداکثر میزان چربی را به خود اختصاص داده‌اند.
نتایج تجزیه واریانس جدول ۷ نشان می‌دهد که اثر مدت نگهداری بر میزان چربی در هر چهار فرآیند سوسیس کنسروی شده در قوطی پس از آن چاک که در فرمول‌های ۱ و ۳ به ترتیب بیشترین و کمترین میزان روغن‌گاهی که بر جای گذاشته شده است (جدول ۱)، این دو فرمول برای نتایج جدول ۴ به ترتیب همچنین روغن‌گاهی که بر جای گذاشته شده است (جدول ۱) دارد.
یم و همچنین ۱۹) دریافتند که بین سوسیس‌ها و محلول آب نمک درون قوطی در طول نگهداری کنسرو سوسیس تبدیلاتی صورت گرفته و ییده‌های اسم‌های انشوار موجب جذب آب نمک در محلول شده است. تتبع بی‌دسترسایی از این اتاق گی‌ری رطوبت با گزاره‌های اسم‌های کوچک و همکاران ۸۷) تفاوت‌ساز و همکاران ۱۹) ویم و همچنین ۱۹) هم‌خوانی دارد.
برای جدول ۲ میزان چربی در سوسیس‌های غیر کنسروی و کنسروی اخیر علّی‌های ندارد. نتایج تجزیه واریانس جدول ۳ نشان می‌دهد که اثر فرآیند حرارتی استقلال‌سازی به میزان چربی در هر چهار فرآیند سوسیس معنی‌دار نیست.
نتایج تجزیه واریانس جدول ۵ نشان دهنده معنی‌دار بودن اثر نوع فرآیندی‌ها بر میزان چربی در سوسیس‌های کنسروی شده در قوطی پس از همه نگه‌داشته و در سطح احتمال پک درصد است و بر اساس جدول ۴، سوسیس‌های با فرمول‌های ۱ و ۳ به ترتیب حداکثر و حداکثر میزان چربی را به خود اختصاص داده‌اند.
نتایج تجزیه واریانس جدول ۷ نشان می‌دهد که اثر مدت نگهداری بر میزان چربی در هر چهار فرآیند سوسیس کنسروی شده در قوطی پس از آن چاک که در فرمول‌های ۱ و ۳ به ترتیب بیشترین و کمترین میزان روغن‌گاهی که بر جای گذاشته شده است (جدول ۱)، این دو فرمول برای نتایج جدول ۴ به ترتیب همچنین روغن‌گاهی که بر جای گذاشته شده است (جدول ۱) دارد.
یم و همچنین ۱۹) دریافتند که بین سوسیس‌ها و محلول آب نمک درون قوطی در طول نگهداری کنسرو سوسیس تبدیلاتی صورت گرفته و ییده‌های اسم‌های انشوار موجب جذب آب نمک در محلول شده است. تتبع بی‌دسترسایی از این اتاق گی‌ری رطوبت با گزاره‌های اسم‌های کوچک و همکاران ۸۷) تفاوت‌ساز و همکاران ۱۹) ویم و همچنین ۱۹) هم‌خوانی دارد.
برای جدول ۲ میزان چربی در سوسیس‌های غیر کنسروی و کنسروی اخیر علّی‌های ندارد. نتایج تجزیه واریانس جدول ۳ نشان می‌دهد که اثر فرآیند حرارتی استقلال‌سازی به میزان چربی در هر چهار فرآیند سوسیس معنی‌دار نیست.
نتایج تجزیه واریانس جدول ۵ نشان می‌دهد که اثر نوع فرآیندی‌ها بر میزان چربی در سوسیس کنسروی شده در قوطی پس از همه نگه‌داشته و در سطح احتمال پک درصد است. برای جدول ۴، سوسیس‌های کنسروی شده در قوطی در آغاز نگهداری دارای حداکثر میزان رطوبت بوده، این مقدار ناپایدار می‌باشد و در طول افزایش پوهیده، در نهایت سوسیس به صورت مشخص محسوسی تنش‌نشان است. جدول ۵ نشان می‌دهد که اثر مدت نگهداری بر میزان رطوبت سوسیس‌ها با چهار فرآیند سطح احتمال پک درصد معنی‌دار است.
از آن چاک که در فرمول‌های ۳ و ۴ میزان ناپایدار بیشتر از که در جدول ۱ بوده است (جدول ۱)، این فرمول به نتایج جدول ۴ بیشترین میزان رطوبت را دارد.
افزایش رطوبت سوسیس در اثر فرآیند حرارتی استقلال‌سازی و نگهداری کنسرو سوسیس نیز به دلیل آن است.
جدول ۲. مقایسه و گروه‌بندی میانگین اثر فرآیند حرماتی استریپلازیاپس با میزان رطوبت، چربی و پروتئین و مقاومت به شکست برای چهار فرمول سوسپس

| مقاومت به شکست | پروتئین | رطوبت | فرآیند حرماتی استریپلازیاپس
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(گرم بر سانتی‌متر مربع)</td>
<td>(درصد)</td>
<td>(درصد)</td>
<td></td>
</tr>
</tbody>
</table>
| به‌ بدون فرآیند حرماتی استریپلازیاپس | ۵۰/۲۷۵ | ۲۰/۷۶۵ | ۵۰/۶۵۳ | ۱ | گروه‌بندی نشان می‌دهد که اختلاف معنی‌دار در سطح احتمال پنج درصد است.

جدول ۳. تجزیه و اریال‌شده‌ی نوع فرمولاسیون و فرآیند حرماتی استریپلازیاپس بر میزان پروتئین، چربی، رطوبت و مقاومت

<table>
<thead>
<tr>
<th>نوع فرمولاسیون</th>
<th>تغییرات</th>
<th>درجه</th>
<th>میانگین مربوطات</th>
<th>درجه</th>
<th>مقاومت به شکست</th>
<th>پروتئین</th>
<th>رطوبت</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۵/۶۷۴</td>
<td>۳</td>
<td>۶/۱۷۶</td>
<td>۱/۸۵۰</td>
<td>۸/۵۶۵</td>
<td>۲۰/۸۲۵</td>
<td>۱/۴۲۲</td>
</tr>
<tr>
<td>۲</td>
<td>۴/۱۵۵</td>
<td>۲</td>
<td>۲/۸۵۰</td>
<td>۶/۴۵۴</td>
<td>۴/۲۵۰</td>
<td>۶/۲۵۰</td>
<td>۴/۲۵۰</td>
</tr>
<tr>
<td>۳</td>
<td>۴/۱۸۱</td>
<td>۱</td>
<td>۶/۲۵۰</td>
<td>۴/۲۵۰</td>
<td>۶/۲۵۰</td>
<td>۴/۲۵۰</td>
<td>۴/۲۵۰</td>
</tr>
<tr>
<td>۴</td>
<td>۳/۸۲</td>
<td>۶</td>
<td>۶/۴۵۴</td>
<td>۴/۲۵۰</td>
<td>۶/۲۵۰</td>
<td>۴/۲۵۰</td>
<td>۴/۲۵۰</td>
</tr>
<tr>
<td>خطا</td>
<td>۹/۲۶۷</td>
<td>۲۴</td>
<td>۸/۸۵۰</td>
<td>۴/۲۵۰</td>
<td>۸/۸۵۰</td>
<td>۴/۲۵۰</td>
<td>۸/۸۵۰</td>
</tr>
</tbody>
</table>

جدول ۴. مقایسه و گروه‌بندی اثر نوع فرمولاسیون بر میزان رطوبت، چربی و پروتئین سوسپس‌های کنسرو شده در قوطی

<table>
<thead>
<tr>
<th>نوع فرمولاسیون</th>
<th>پروتئین</th>
<th>رطوبت</th>
<th>در طول مدت نگهداری</th>
</tr>
</thead>
<tbody>
<tr>
<td>(درصد)</td>
<td>(درصد)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱</td>
<td>۱۹/۷۷</td>
<td>۱۹/۷۷</td>
<td>۱</td>
</tr>
<tr>
<td>۲</td>
<td>۱۶/۸۳</td>
<td>۱۶/۸۳</td>
<td>۳</td>
</tr>
<tr>
<td>۳</td>
<td>۱۶/۸۳</td>
<td>۱۶/۸۳</td>
<td>۵</td>
</tr>
<tr>
<td>۴</td>
<td>۱۹/۰۷۶</td>
<td>۱۹/۰۷۶</td>
<td>۷</td>
</tr>
</tbody>
</table>
جدول ۵. تجزیه و تحلیل اثر نوع فرمول‌سازی و مدت نگهداری بر میزان پروتئین، چربی و رطوبت سوسیس‌های کنسروی

<table>
<thead>
<tr>
<th>نوع فرمول‌سازی</th>
<th>مدت نگهداری</th>
<th>تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>نوع فرمول‌سازی‌های اولیه</td>
<td>مدت نگهداری</td>
<td>تغییرات</td>
</tr>
<tr>
<td>۳/۰۷۶/۰۸۶/۰۴۷</td>
<td>۰/۰۵۸</td>
<td>۰/۰۴۶</td>
</tr>
<tr>
<td>۳/۰۷۶/۰۴۷/۰۸۶</td>
<td>۰/۰۴۶</td>
<td>۰/۰۲۸</td>
</tr>
<tr>
<td>۳/۰۸۶/۰۴۷/۰۸۶</td>
<td>۰/۰۲۸</td>
<td>۰/۰۱۸</td>
</tr>
</tbody>
</table>

جدول ۶. مقایسه و گروه‌بندی اثر مدت نگهداری بر میزان پروتئین، چربی و رطوبت سوسیس‌های کنسروی شده در فوتوی برای چهار فرمول (مایکلین چهار فرمول)

<table>
<thead>
<tr>
<th>پروتئین ۱</th>
<th>چربی ۱</th>
<th>رطوبت ۱</th>
<th>مدت نگهداری (میلی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۱۵۴/۱۶۷</td>
<td>۱/۹/۲۵</td>
<td>۱۲/۰/۳</td>
<td>۰/۱۶/۰/۲۵</td>
</tr>
</tbody>
</table>

امامیم آزمون مقایسه مایکلین‌ها روی روش دانکن (جدول ۲). سوسیس‌های غیر کنسروی و کنسروی در یک گروه قرار گرفته‌اند. از نظر میزان پروتئین نفاوت معنی‌دار با هم ندارند.

جدول ۴. میانه‌های که سوسیس با فرمول ۲ حاکمین با ترتیب نگهداری‌ها: سوسیس‌های غیر کنسروی و سوسیس‌های کنسروی در فوتوی اختلاف معنی‌دار ندارند. بر بیان نتایج تجزیه و تحلیل یافته با پایداری نوع فرمول‌سازی بر میزان پروتئین سوسیس‌های کنسروی در مدت نگهداری است.
نتایج تجزیه واریانس (جدول ۵) نشان داد که اثر مدت نگهداری بر فیزیکی مردان رفتار در چهار فرمول سوسیس کنسرو شده در قوطی، در صحت احتمال یک درصد معنی‌دار است. همچنین برای جدول ۶ سوسیس کنسرو در آغاز نگهداری، دارای حداکثر مردان پروپتینیت است. این مقدار ناپایان ماه دوم کاهش یافته و در ماه سوم تغییر مشخصی نداشت. این نتایج با گزارش‌های ایست반 کویچ و همکاران (۱۸) و یم و هملجنر (۱۹) همخوانی دارد.

در پژوهش حاضر، به دلیل چند آب در سوسیس و در ترتیب افزایش میزان رطوبت و وزن آن، نیز انتقال پروپتینیت از سوسیس به محول آب تنها کنسرو در اثر پیدایش اسید و انتشار در طول مدت نگهداری کنسرو سوسیس مردان پروپتینیت در سوسیس کاهش داشت. است. در طول مدت نگهداری کنسرو سوسیس مردان پروپتینیت در سوسیس کاهش داشت. است.
شکل ۱. تأثیر نوع فرمولاسیون و مدت نگهداری بر میزان مقاومت پرشی بایت سوسپسهای کنسرو شده برای دو نوع ظرف (میانگین دو نوع ظرف)

شکل ۲. تأثیر نوع فرمولاسیون و نوع ظرف بر میزان مقاومت پرشی بایت سوسپسهای کنسرو شده در مدت نگهداری (میانگین نتایج در زمان‌های مختلف)
نتیجه‌گیری
فرآیند حرارتی استرپلیزاسیون باعث افزایش میزان رطوبت شده، و بی‌میزان چربی و پروتئین سوسپس‌ها با هر چهار فرمرول بی‌تأثیر بوده است. همچنین، در طول مدت نگهداری افزایش میزان رطوبت و کاهش میزان پروتئین و چربی در سوسپس‌های کنسرو شده در قوطی برای هر چهار فرمرول دیده شد.

در میزان سوسپس‌های کنسرو شده در قوطی، فرمرول 3 بی‌پشتین میزان رطوبت، فرمرول 1 بی‌پشتین میزان چربی و فرمرول 2 بی‌پشتین میزان پروتئین را پس از سه ماه نگهداری دارا بوده است.

نتایج ارزیابی حسی
برای روش رانک (برگرفته از منبع 12)، هنگامی که شمار داوران 10 مورد و شمار تیمارها 4 باشد، تیمار‌هایی که مجموع امتیازات آنها بین 17 تا 23 باشند، از نظر آماری در سطح احتمال یک درصد تفاوت معنی‌داری با هم ندارند، چون بر اساس نتایج جدول 7 مجموعه امتیازات کلی تیمارها در این محدوده قرار گرفت.
جدول 7 ترتیب آماری آزمون حسی و مقایسه چهار فرمول مختلف سوپس-کنسرو شده در فروشی از نظر عطر، طعم، بافت و رنگ

<table>
<thead>
<tr>
<th>دارو</th>
<th>عطر و طعم</th>
<th>بافت</th>
<th>رنگ</th>
<th>دارو</th>
<th>عطر و طعم</th>
<th>بافت</th>
<th>رنگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

مجموع

هر تیمار

همچنین، پیشرفت دوره نگهداری تا پایان ماه دوم موجب کاهش میزان مقاومت برخی بایستی سوپس‌ها شده، و در سوپس‌های کنسرو شده در هر دو نوع ظرف، و در مدت ماه نگهداری، بافت سوپس‌ها با فرمول 3 بیشترین میزان مقاومت برخی را داشت.

در ارزیابی حسی از نظر دارو، عطر، طعم، بافت و رنگ، کنسرو توصیه می‌گردد.

منابع مورد استفاده

1. پروانه، و. ۱۳۴۳. کنترل کیفی و آزمایش‌های شیمیایی موارد غذایی. انتشارات دانشگاه تهران.
2. خسروی، ا. ۱۳۷۷. بررسی تغییرات فیزیک شیمیایی فراورده‌های گوشتی در طی تولید. فرآیند حرارتی و مدت نگهداری در انبار و بستن‌بندی مختلف. پایان‌نامه کارشناسی ارشد، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان.
3. شفافی زنپور، م. ۱۳۷۸. تغییرات حرارتی در موارد غذایی بسته‌بندی شده. انتشارات مخن‌کشیر، مشهد.
4. ملکی، م. و. ش. دخانی. ۱۳۷۴. صنایع غذایی - نگهداری غذا با استفاده از حرارت، خشک کردن و بخیه زدن. انتشارات دانشگاه شیراز.
5. یزدانی، م. و. رضا، و. و. و. و. ۱۳۸۷. طرح‌های آماری در پژوهش‌های کشاورزی. انتشارات دانشگاه تehrان.