بررسی تولید کنسرو سوسیس و تغییرات فیزیکوشیمیایی آن در مراحل فرابند و نگهداری

سیما چراگی دهدزی ۱، شهرام دخانی ۲ و محمد شاهدی ۲

چکیده

یکی از راههای افزایش زمان نگهداری کنسرو چربی‌سازی، تولید کنسرو آن است. تولید سوسیس و کنسرو آن با فرمولی خاص و آزمایش‌های مختلف در مرحله انتخاب کنسرت به مدت و در مرحله دوم آزمایش‌های ناقصیکشی‌پذیر و حسی التهیه نوع سوسیس یا چربی. فرمول و تولید کنسرو آن در کارخانه صنایع استانداردی و در مرحله دوم آزمایش‌های ناقصیکشی‌پذیر و حسی التهیه شده. کنسرو سوسیس در فوته (1400) به شیوه شماره 17-100 تولید شد و نتایج بدیهی گزارش نشان داد. در این تحقیق فرمول و شیوه‌ها با توجه به تخمین دو درصد با دما 75 درجه سانتی‌گراد بنیاد یک بکر شب‌های آزمایش‌های شیمیایی معمول اندازه‌گیری میزان رطوبت، چربی و پروتئین در فرمول و تولید کنسرو سوسیس و کنسرو چربی‌سازی روش‌های استاندارد و AOAC و آزمایش‌های شیمیایی ماده اندازه‌گیری میزان ماده‌های ضریب پشتیبانی بین سوسیس‌ها، فیبر، کنسرو و کنسرو شده در تخمین و شیوه‌ها در دسته سه ماده غذاهای انجام یافته، برای تجزیه و تحلیل آماده‌ازبی سیستم‌های منویه‌های سوسیس‌ها غیر کنسرو و کنسرو، آزمایش‌های فاکتوریل در جوار پر در مورد تغییرات طرح کاملی تصادفی و برای مقایسه میانگین‌ها آزمون جنگ‌دانه‌های دانگن به کار بردند.

تقریباً استریلزاسیون باعث افزایش رطوبت و کاهش میزان مقاومت برخی بین‌ها سوسیس‌ها با هر چهار فرمول شد. با پیشرفت دوره نگهداری روی آن رابطه مانند دوم نیز رطوبت سوسیس‌های کنسرو شده در ترکیب با هر چهار فرمول افزایش یافت، و میزان پروتئین و چربی کاهش داشت. همچنین در هر دو نوع کنسرو و با هر چهار فرمول، در میزان ضریب پشتیبانی بین سوسیس‌های کنسرو شده کاهش دیده شد. نتایج آزمون‌های حسی تشخیص داد که سوسیس‌های کنسرو شده در ترکیب با هر چهار فرمول از نظر عطر، طعم، بافت و رنگ در سطح احتمال یک درصد ثابت معنی‌داری با هم ندارند.

واژه‌های کلیدی: کنسرو سوسیس، استریلزاسیون، تغییرات فیزیکوشیمیایی، مقاومت برخی، نگهداری

1. دانشجوی سابق کارشناسی ارشد صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
2. استاد علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

185
استرلیپاسیون بر حسب دقیقه در دمای ۱۲۱ درجه سانتی گراد آنها نیز جهار دقیقه و پیشرفت است (۱۵). عوامل مؤثر در تویل کنسرس سوسپسیز شامل فرمولاسیون خیار سوسپسیز، نحوه تهیه سوسپسیز، نحوه پر کردن پوسیشا (Casings) روش دود دادن، پر کردن ظرف با سوسپسیز، نحوه افروسردی آب نمک و دربنیده و روش استرلیپاسیون است (۱۵).

در استرلیپاسیون غذاهای کم اسید و غیر اسیدی، فرض بر این است که مقاومت منیوکریا به غذا می‌باشد. در غذا موجود است. از این منظره کار را بر اساس دوره‌های استرلیپاسیون غذاهای غیر اسیدی در سه فازهای بسیار خطرناک تولید سوسپسیز، زهراه بسیار ضعیف می‌باشد.

تغییرات کیفیت کنسرس سوسپسیز در مرحله تویل و نگهداری، از طبقه کدورت محلول، تغییرات ویژگی‌های بالینی، و کاهش عطر و طعم انجام می‌شود، طوری که ظاهر محصول به ویژه در سه مرحله، نامطلوب می‌شود (۸). عطر و طعم ویژگی‌های بالینی در دوره انبات این تغییرات کرده که علت آن تبدلاتی است که بین سوسپسیز و محلول درون قوی‌الاجابه می‌تواند. یکی از مسئله‌های اصلی که در انجام بی‌بی‌بی می‌باشد، تغییرات ویژگی‌های بالینی، و انتشار موجب خروج پروتئین‌ها از محصول و جذب آب نمک به وسیله محلول می‌گردد، و پروتئین‌های محلول، ادویه و دیگر مواد مغذی از سوسپسیز به محلول منتقل می‌شود (۳)، (۱۸). این تبدلات نظارت بر آب نمک و سوسپسیز از تولیدات دانه‌ای شده و تا ۱۲ ساعت پس از آن، حداقلی تا یک هفته ادامه پیدا می‌کند (۶).

مائلوده و همکاران (۱۴) از جریان اسیدی میان سوسپسیز و محلول بر کنده را در ۱۳۰ فوتول سوسپسیز بررسی کرده، به یاد آوری که پس از رسیدن که این جریان در فاصله زمانی آغاز گرفته و هشتمین روز شدت و است. خروج مولکول‌های بسیار زین پروتئین‌های عضوی و حتی آرومایکتیک، ممکن است تا همان زمان پس از پوسیپاسیز‌ها بی‌سیار غیر قابل قبول داده شود. این تبدلات را خیلی کمتر انجام می‌دهند. برای کاهش این پدیده، باید سعی کرد مقادیر ادویه را

مقدمه
پیشینه تولید سوسپسیز حدود ۲۰۰۰ سال است. جرح لیزری در سال ۱۹۰۵ تحقیق سوسپسیز را با نام (George Lechner) پیشنهاد کرد. (۲) نگهداری عموم ویر (Wiener) با بارز عرضه کردن (۲) نگهداری گوشت و فراورده‌های غذایی از طریق کنسرس کردن به پیش از یک قرن پیش با می‌گردد (۷). در سال ۱۹۹۰ از ساخت کنسرس سوسپسیز نگهداری شد. عموماً محصول دارای قوی‌الجراحی بر می‌کردند و آن را در حمام آبی بیان و به ندرت در بیش از ۱۰۰ درجه سانتی گراد و حداکثر تا ۱۲۸ درجه سانتی گراد قرار می‌گرفت. (۱۵) این نگهداری نظارت و کاربرد استریل کننده‌های متحرک با فشار زیادی باعث شد که در صنعت تولید سوسپسیز گوشتی، حدود سال ۱۹۷۵ کنسرس سوسپسیز با استریلیزاسیون واقعی شود. (۱۰).

برای پایه پژوهش های نیچ (۱۵)، کمپ کمپ‌های کنسرسیون می‌باشد که با استریلیزاسیون اقدام می‌کنند. از این منظره بعضی مقاومت شده آن در برای حرارت می‌گردد (امولیسیون مقاوم به حرارت).

ویرت (۲۰) دریافت که تحلیل فشار حرارتی می‌باشد. کنسرسیون یا فراورده‌های کنسرسیون (استریل‌پاسیون) در نظر گرفته می‌باشد. (۱۵) هم‌اکنون کنسرسیون‌ها با استریلیزاسیون، ناقص (پخت و یا پاستوریزاسیون) باشند. (۱۵) این کنسرسیون‌ها با راه بندی شده و نشست کننده، کمک به آن توانایی بانفون، که در مرحله فراورده در بیش از ۱۰۰ درجه سانتی گراد پایین می‌گردد (امولیسیون مقاوم به حرارت).

اسپری سوسپسیز کنسرسیون (۱۵) که این ابزار به داشتن یک نگهداری که شیفرون کنسرسیون در به انجام، شروع کنسرسیون یا شروع کنسرسیون‌ها در تأسیس (پخت و یا پاستوریزاسیون) باشند. (۱۵) این کنسرسیون‌ها با راه بندی شده و نشست کننده، کمک به آن توانایی بانفون، که در مرحله فراورده در بیش از ۱۰۰ درجه سانتی گراد پایین می‌گردد (امولیسیون مقاوم به حرارت).

برای استریلیزاسیون ماینی (۱۵)، سوسپسیز‌های کنسرسیون باید کمک کردن و پیوند خوبی داشته باشد. به همین علت پژوهش می‌شود، که در این کنسرسیون که این کنسرسیون‌ها با راه بندی شده و نشست کننده، کمک به آن توانایی بانفون، که در مرحله فراورده در بیش از ۱۰۰ درجه سانتی گراد پایین می‌گردد (امولیسیون مقاوم به حرارت).
پروسه تولید کنسرو سویسی و تغییرات فیزیکی آن در مراحل فرآیند و تهیه‌کننده

مواد و روش‌ها

در این پژوهش، پس از از هدها مواد سویسی با فرمول‌های مختلف (جدول ۱)، اصفهان، کنسرو کردن آن و اعمال فرآیندهای حرارتی به کمک جهار در فوتی (۲۱۰±۵ درجه سانتی‌گراد) و به وسیله شمانه شماره F value اعمال گردید. در کارگاه‌های داخلی دانشگاه، دانشگاه صنعتی اصفهان، آزمایش‌های فیزیک‌شماری چهار انگشتری شده‌اند. این آزمایش‌ها شامل اندازه‌گیری میزان طول‌کشی، پرتوینی، چربی و بررسی مقاومت بررسی شده بود. سویسی‌های غیر کنسروی و کنسروی در آگاز نگهداری و ماهه اول، دوم و سوم تهیه‌کننده، به همراه عطر، طعم، بافت و رنگ سویسی‌های کنسرو شده و قطعی، پس از ماه نگهداری، از نظر حسی ارزیابی شد.

روش آماده سازی نمونه‌ها برای آزمایش‌های شیمیایی

نمونه‌های غیر کنسروی، تحت نوسان آبی مخربی یک‌نواخت در آمد و سپس در دمای ۱۸ درجه سانتی‌گراد و مدت ۲۴ ساعت صورت می‌نماید. باند (پیک) آبندهای شده از آزمایش به مدت ۳۵ ساعت در دمای چهار درجه سانتی‌گراد در فاز داده شد. در نمونه‌های کنسروی، سویسی‌های غیر کنسروی از مخلوط آب اتم تهیه خارج (۴ حلقه). و پس از یک‌نواخت شدن در آسیاب، در دمای ۱۸ درجه سانتی‌گراد تهیه می‌گردند. مخلوط آب اتم در دمای ۱۸ درجه سانتی‌گراد، بین دو ساعت پیش از انجام آزمایش در دمای چهار درجه سانتی‌گراد فاز داده شد.

آزمایش‌های فیزیکی و شیمیایی

آزمایش‌های فیزیکی در مورد نمونه سویسی پیش از کنسرو شدن و سویسی کنسروی در آگاز نگهداری و ماهه اول، دور، و ماهه اول، شش به اینکه وارنر برادرلر شیر (Instron) استفاده شده بود. نصب شده روی دستگاه اینستران (Instron) شماره ۲۰-۱۱، ساختمان انگشتان انجام شد (۲ و ۳). و میزان مقاومت بررسی با استفاده از فرمول زیر محاسبه گردید:

\[S = \frac{F}{\pi r^2} \]

کاهش داده و آن را به صورت مخلوط به آب فومن. هم‌چنین، مواد تولید مخلوط بود داده داده، به وسیله محیط‌زهی روز سویسی‌های بدون وسیله انجام کرد (۷).

کاهش مصرف نیتریت برای حفاظت سلامتی انسان، افزایش عمر مادگاری سویسی، کاهش هریه ایباداری و حمل و نقل، و آسانی مصرف از جمله مواردی هستند که در تولید کنسرو سویسی اهمیت دارند.
جدول ۱. نوع و مقدار (درصد) مواد اولیه در چهار فرمول مختلف سوسیس تولیدی

<table>
<thead>
<tr>
<th>مقدار (درصد)</th>
<th>مواد اولیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>فرملولاسیون ۴</td>
<td>۲۸/۶۵</td>
</tr>
<tr>
<td>فرملولاسیون ۳</td>
<td>۲۶/۵۸</td>
</tr>
<tr>
<td>فرملولاسیون ۲</td>
<td>۲۶/۰۸</td>
</tr>
<tr>
<td>فرملولاسیون ۱</td>
<td>۲۶/۰۹</td>
</tr>
<tr>
<td>مواد اولیه</td>
<td></td>
</tr>
<tr>
<td>کوشت سیب دهلی</td>
<td>۲۸/۰۹</td>
</tr>
<tr>
<td>خمر گوشت سیب</td>
<td>۲۶/۸</td>
</tr>
<tr>
<td>گوشت کپاس</td>
<td>۲۶/۵۸</td>
</tr>
<tr>
<td>یخ</td>
<td>۲۶/۰۸</td>
</tr>
<tr>
<td>روغن گیاهی</td>
<td>۲۶/۰۸</td>
</tr>
<tr>
<td>نمک طعم</td>
<td>۲۶/۰۸</td>
</tr>
<tr>
<td>قند سدیم</td>
<td>۲۶/۰۸</td>
</tr>
<tr>
<td>فلز فربند</td>
<td>۲۶/۰۸</td>
</tr>
<tr>
<td>فلز سفید</td>
<td>۲۶/۰۸</td>
</tr>
<tr>
<td>زنجبیل</td>
<td>۲۶/۰۸</td>
</tr>
<tr>
<td>جوز</td>
<td>۲۶/۰۸</td>
</tr>
<tr>
<td>شکر</td>
<td>۲۶/۰۸</td>
</tr>
<tr>
<td>سیر</td>
<td>۲۶/۰۸</td>
</tr>
<tr>
<td>گلوتین</td>
<td>۲۶/۰۸</td>
</tr>
<tr>
<td>آرد</td>
<td>۲۶/۰۸</td>
</tr>
<tr>
<td>نشاسته</td>
<td>۲۶/۰۸</td>
</tr>
<tr>
<td>نیتریت سدیم</td>
<td>۲۶/۰۸</td>
</tr>
<tr>
<td>اسکورپین اسید</td>
<td>۲۶/۰۸</td>
</tr>
</tbody>
</table>

(Multiple comparison) در فوتوشی از روش مقایسه چند تایی

که:

$$ S = \frac{1}{2} \sum_{i=1}^{k} \sum_{j=i+1}^{k} \frac{1}{n_{ij}} $$

$$ F = \frac{S}{\max_{i,j} \{ n_{ij} \}} $$

$$ F = \frac{S}{\max_{i,j} \{ n_{ij} \}} $$

روش تجزیه و تحلیل آماری نتایج برای بررسی و تجزیه و تحلیل آماری داده‌ها، آزمایش فاکتوریل در چارچوب طرح کاملاً تصادفی به کار برده شد (۵). عوامل ارزیابی شده در آزمایش‌های شبیه‌سازی عبارت بود از چهار نوع، فرملولاسیون سوسیس، فرملولاسیون سوسیس، فرملولاسیون سوسیس، فرملولاسیون سوسیس و F = \frac{S}{\max_{i,j} \{ n_{ij} \}} $$

جریبی با روش سوکسین (۱۱) و پروتئین با روش مادرفیلدل (۱ و ۹)، در سوسیس غیر کنسروی، کنسرو شده در فوتوشی ذیل نگه‌داری و ماهن‌ها اول، دوم و سوم نگه‌داری، انجام شد.

آزمایش‌های حیاتی برای بررسی عطر، طعم، بافت و رنگ سوسیس‌های کنسرو شده

۱۸۸
که بین سوسیس و محصول آب نمک درون قوطی‌ها بی‌سابقه، بنابراین، نمک در محفظه شده است. در نتیجه، به دست آمده از اندازه‌گیری رطوبت با گزاره‌های آزمایشگاهی کوچک و همکاران (۱۹)، ثناواروس و همکاران (۱۹) و بیم و همکاران (۱۹) هم‌خوانی دارد.

برای جدول ۲ میزان چربی در سوسیس‌های غیر کنسروی و کنسروی اختلاف معنی‌دار ندارد. نتایج تجزیه واریانس جدول ۲ نشان می‌دهد که اثر فرآیند حرارتی استرپلیزاسیون بر میزان چربی در هر چهار فرولومس معنی‌دار نیست.

نتایج تجزیه واریانس جدول ۵ نشان دهندان معنی‌داری وجود اثر نوع فرولومسیون بر میزان چربی در سوسیس‌های کنسروی شده در قوطی است. در سطح اختیار ۲٪ درصد معنی‌دار است. همچنین، با توجه به جدول ۴، مشخص می‌شود که سوسیس با فرمول ۳، حداکثر و سوسیس با فرمول ۴، حداقل میزان رطوبت را دارد. نتایج تجزیه واریانس (جدول ۵) نشان می‌دهد که اثر نوع فرولومسیون بر میزان رطوبت سوسیس‌های کنسروی در قوطی در میان تیمارها در سطح اختیار ۲٪ درصد معنی‌دار است. در جدول ۶، سوسیس‌های کنسروی شده در قوطی در اولین زمان‌هایی گاهی که برنده به گزاره‌های اقیانی و روانی (جدول ۱)، این دوره فرولومس در ادامه تناوت جدول ۴، میزان چربی در میزان چربی را دارد.

بیم و همکاران (۱۹) در این مطالعه که بین سوسیس‌ها و محصول آب نمک درون قوطی در طول فرآیندهای کنسروسوسیس تیادالاتی صورت گرفته و پیده‌های انسجام و انشار موجب چربی از محصولی می‌گردد. این تیادالات در ۱۵ روز اول نگهداری شدیدتر است (۱۹). در پژوهش حاضر نیز میزان چربی پس از ماه نخست به تعادل رسیده و تبادل آن تقریباً به صفر نزدیک است.

امکان ممکن نوع فرولومسیون ۳ یپشترین میزان یک‌بار به گزاره‌های اقیانی و روانی (جدول ۱)، این فرصت پیش‌ترین میزان رطوبت را دارد.

افزایش رطوبت سوسیس‌های کنسروسوسیس تیادالاتی استرپلیزاسیون و نگهداری کنسروسوسیس نیز به دلیل آن است.
جدول 2. مقایسه و گروه‌بندی میانگین اثر فراآیند حرارتی استریپلسانسون بر میزان رطوبت، چربی، پروتئین و مقاومت برشی برف

<table>
<thead>
<tr>
<th>فراآیند حرارتی استریپلسانسون</th>
<th>پروتئین(^1)</th>
<th>چربی(^2)</th>
<th>رطوبت(^1) (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>بدون فراآیند حرارتی استریپلسانسون</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>با فراآیند حرارتی استریپلسانسون در قوطی</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>با فراآیند حرارتی استریپلسانسون در شب</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

جدول 3. تجزیه و اریان اثر نوع فرمولاسیون و فراآیند حرارتی استریپلسانسون بر میزان پروتئین، چربی، رطوبت و مقاومت برشی برفی سوسیس

<table>
<thead>
<tr>
<th>نوع فرمولاسیون</th>
<th>درجه مقاومت برشی</th>
<th>درجه آزادی</th>
<th>درجه پروتئین</th>
<th>درجه چربی</th>
<th>درجه رطوبت</th>
</tr>
</thead>
<tbody>
<tr>
<td>نوع فرمولاسیون و فراآیند حرارتی استریپلسانسون</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>نوع فرمولاسیون</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>نوع فرمولاسیون و فراآیند حرارتی استریپلسانسون</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

جدول 4. مقایسه و گروه‌بندی اثر نوع فرمولاسیون بر میزان رطوبت، چربی و پروتئین سوسیس‌های کنسرو شده در قوطی در طول مدت نگهداری

<table>
<thead>
<tr>
<th>نوع فرمولاسیون</th>
<th>پروتئین(^1) (درصد)</th>
<th>چربی(^2) (درصد)</th>
<th>رطوبت(^1) (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نوع فرمولاسیون</td>
<td>19/771(^a)</td>
<td>58/410(^b)</td>
<td>1</td>
</tr>
<tr>
<td>نوع فرمولاسیون</td>
<td>16/317(^a)</td>
<td>58/156(^b)</td>
<td>2</td>
</tr>
<tr>
<td>نوع فرمولاسیون</td>
<td>14/343(^b)</td>
<td>60/193(^a)</td>
<td>3</td>
</tr>
<tr>
<td>نوع فرمولاسیون</td>
<td>19/573(^b)</td>
<td>58/171(^a)</td>
<td>4</td>
</tr>
</tbody>
</table>
جدول 5. تجزیه و تحلیل نوع فرمولاسیون و مدت نگهداری بر میزان پروتئین، چربی و رطوبت سوپرسهای کنسروی، و اثر نوع فرمولاسیون، مدت نگهداری و نوع ظرف بر میزان مقاومت برش سوپرسهای کنسروی

| میانگین مربوط | نوع فرمولاسیون | میانگین مربوط | رطوبت | چربی | پروتئین | درجه | تغییرات
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(درصد)</td>
<td>مدت نگهداری</td>
<td>(درصد)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 6. مقایسه و گروه‌بندی اثر مدت نگهداری بر میانگین میزان رطوبت، چربی و پروتئین سوپرسهای کنسرو شده در فوتو

<table>
<thead>
<tr>
<th>برای چهره فرمول (میانگین چهره فروم)</th>
<th>پروتئین</th>
<th>چربی</th>
<th>رطوبت</th>
<th>مدت نگهداری</th>
</tr>
</thead>
<tbody>
<tr>
<td>(درصد)</td>
<td></td>
<td></td>
<td></td>
<td>(مایع)</td>
</tr>
<tr>
<td>10/0/948</td>
<td>16/0/451</td>
<td>6/0/550</td>
<td>6/0/161</td>
<td>6/0/277</td>
</tr>
<tr>
<td>10/0/93</td>
<td>16/0/451</td>
<td>6/0/550</td>
<td>6/0/161</td>
<td>6/0/277</td>
</tr>
<tr>
<td>15/0/94</td>
<td>16/0/451</td>
<td>6/0/550</td>
<td>6/0/161</td>
<td>6/0/277</td>
</tr>
</tbody>
</table>

1. اعداد میانگین نور تکرار شده.
2. جدول مقایسه اساس آزمون F و گروه‌بندی اثر مدت نگهداری بر میانگین میزان رطوبت، چربی و پروتئین سوپرسهای کنسروی در فوتو در سطح احتمال 1% دارای اهمیت است.

شده است.

کاهش چربی در سوپرس در طول نگهداری کنسرو به دلیل

چنان که در جدول 2 دیده می‌شود، میزان پروتئین سوپرسهای غیر کنسروی و سوپرسهای کنسرو در فوتو از نظر میزان پروتئین تفاوت معنی‌دار با هم ندارند.

جدول 4 نشان می‌دهد که سوپرس با فروم 2 حداکثر و با فروم 1 حداکثر میزان پروتئین را به خود اختصاص داده است. برای نمونه، میزان پروتئین سوپرسهای کنسرو در فوتو در هر چهار فروم سوپرس معنی‌دار نیست. همچنین، بر
سطح اختلال یک درصد معنی‌دار است. بر اساس آزمون مقایسه
مانگی‌ها به روش دانکن، بافت سوسیس‌های غیر کنسروی و
کنسرو شده در فوطی و شیبی در گروه‌های مجزا قرار گرفته، و
از نظر میزان مقایم بررسی تفاوت معنی‌دار دارا هم دارد (جدول
۲). برای هر یک از ۱ میزان مقایمت برخی بافت سوسیس‌های
کنسرو شده در هر دو نوع ظرف به دست‌آورده می‌گردد.

نتایج تجزیه واریانس (جدول ۵) نشان داد که اثر مدت
نگهداری بر میزان پروپتین در هر چهار فرمول سوسیس کنسرو
شده در فوطی، در سطح احتمال ۰/۰۵ معنی‌دار است.
همچنین برای جدول ۶ سوسیس کنسروی در آغاز نگهداری
dارای حداکثر میزان پروپتین است. این مقدار تا پایان ماه دوم
کاهش یافته و در ماه سوم تغییر مشخصی نداشت. این
نتایج با گزارش‌های استاتیستیک و همکاران (۱۸) و یک و
همچنین (۱۹) هم‌خوانی دارد.

برای پایین‌ترین جدول، ۵ اثرات فرمول‌رسیون و مدت
نگهداری بر میزان مقایم برخی بافت سوسیس‌های کنسرو
شده در هر دو نوع ظرف، در سطح احتمال یک درصد معنی‌دار
بوده است. برای هر یک از ۱ میزان مقایمت برخی بافت
سوسیس‌های کنسرو شده در فوطی نسبت به شیبی در مدت
نگهداری پیشرفت بوده، و بافت سوسیس‌های فرمول ۳ در قوطی و با
فرمول ۴ در شیبی به ترتیب حداکثر و کم‌ترین میزان مقایم
برخی به راه خود اختصاص داده‌اند. نتایج جدول ۵ نیز نشان
می‌دهد که نوع فرمول‌رسیون و نوع ظرف در میزان مقایم
برخی سوسیس‌های کنسرو شده در مدت نگهداری، در سطح
احتمال یک درصد معنی‌دار است.

برای هر یک از ۱ میزان مقایم برخی بافت سوسیس‌های
کنسرو شده در هر دو نوع ظرف به دست‌آورده می‌گردد.

نتایج آزمایش‌های فیزیکی
برای جدول ۱ میزان مقایم برخی بافت سوسیس‌های غیر
کنسروی یک درصد معنی‌دار است. بر اساس آزمون مقایسه
مانگی‌ها به روش دانکن، بافت سوسیس‌های غیر کنسروی شده در هر دو نوع
ظرف بوده، و سعی برای نگهداری کنسرو شده در فوطی
نسبت به شیبی پیشرفت بوده است.

جدول ۲ نشان می‌دهد که اثر فاکتور حرارتی استریلیزاسیون
بر میزان مقایم برخی بافت سوسیس‌های غیر کنسروی در هر چهار فرمول، در
سطح احتمال یک درصد معنی‌دار است. بر اساس آزمون مقایسه

۱۹۲
شکل 1. تأثیر نوع فرمولاسیون و مدت نگهداری بر میزان مقاومت برشی پات سوپرسهای کنسرو شده برای دو نوع ظرف (میانگین دو نوع ظرف)

شکل 2. تأثیر نوع فرمولاسیون و نوع ظرف بر میزان مقاومت برشی پات سوپرسهای کنسرو شده در مدت نگهداری (میانگین نتایج در زمان‌های مختلف)
گرفته‌است، از نظر داراون، عطر، طعم، بلافاصله و رنگ چهار
فرمول سوپرسهای کنسرو شده در کنار، سطح احتمال یک
درصد تفاوت معنی‌داری با هم ندارند.

نتایج گیری
فرایند حرارتی استرپلایسیون باعث افزایش میزان رطوبت شده،
و بیشترین میزان پروتئین سوپرسهای با هر چهار فرمول
پی‌بینی شده است. همچنین، در طول هر چهار فرمول، افزایش
میزان رطوبت و کاهش میزان پروتئین و چربی در سوپرسهای
کنسرو شده در کنار، سطح احتمال یک درصد تفاوت معنی‌داری با هم ندارند.

در میان سوپرسهای کنسرو شده در کنار، فرمول 3
بیشترین میزان رطوبت، فرمول 1 بیشترین میزان چربی، و
فرمول 2 بیشترین میزان پروتئین را پس از سه ماه نگهداری دارا
پیدا می‌کنند.

فرایند حرارتی استرپلایسیون باعث کاهش میزان مقاومت
برنیش سوپرسهای با هر چهار فرمول شد. هک این میزان
مقاومت در سوپرسهای کنسرو شده در کنار، سطح احتمال
بیشتر است.

نتایج ارزیابی حسی
برای روش رانک (برگرفته از مربع 12)، همانگام که شمار
داراون 10 و شمار تیمارها 4 باشد، تیمارها به کمک
امیتاز آنها بین 17 تا 23 باشد، از نظر آماری در سطح احتمال
یک درصد تفاوت معنی‌داری با هم ندارند. جدول 7 مجموع امتیازات کلی تیمارها در این محدوده قرار

شکل 3. تأثیر مدت نگهداری و نوع ظرف بر میزان مقاومت برنیش سوپرسهای کنسرو شده

(18) بوما (17) و کولیویی و همکاران (8) هم‌خوانی دارد.

چون در فرمول 3 نیمی از گوشش به کار برده شده گوشت
گوساله بود و میزان روغن مصرفی نیز حداقل بود (جدول 1)،
میزان مقاومت بریش بافت در حالت بوده است.

با یک‌طرفش دوره تغذیه‌ی به دلیل جا گذار آب در اثر
پیدایی ایست و انتشار، نتایج سوپرسهای کنسرو شده نمپر
و مقاومت آنها به بر سر کمتر شده است.

نتایج ارزیابی حسی
برای روش رانک (برگرفته از مربع 12)، همانگام که شمار
داراون 10 و شمار تیمارها 4 باشد، تیمارها به کمک
امیتاز آنها بین 17 تا 23 باشد، از نظر آماری در سطح احتمال
یک درصد تفاوت معنی‌داری با هم ندارند. جدول 7 مجموع امتیازات کلی تیمارها در این محدوده قرار

شکل 3. تأثیر مدت نگهداری و نوع ظرف بر میزان مقاومت برنیش سوپرسهای کنسرو شده

(18) بوما (17) و کولیویی و همکاران (8) هم‌خوانی دارد.

چون در فرمول 3 نیمی از گوشش به کار برده شده گوشت
گوساله بود و میزان روغن مصرفی نیز حداقل بود (جدول 1)،
میزان مقاومت بریش بافت در حالت بوده است.

با یک‌طرفش دوره تغذیه‌ی به دلیل جا گذار آب در اثر
پیدایی ایست و انتشار، نتایج سوپرسهای کنسرو شده نمپر
و مقاومت آنها به بر سر کمتر شده است.
جدول ۷ تناوب آزمون حسی و مقاپسه چهار فرمول مختلف سوسیس کنسرو شده در فروشی از نظر عطر، طعم، بافت و رنگ
dارو

<table>
<thead>
<tr>
<th>داور</th>
<th>فرمول ۱</th>
<th>عطر و طعم</th>
<th>بافت</th>
<th>رنگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۳</td>
<td>۴</td>
<td>۲</td>
<td>۱</td>
</tr>
<tr>
<td>۲</td>
<td>۴</td>
<td>۲</td>
<td>۳</td>
<td>۱</td>
</tr>
<tr>
<td>۳</td>
<td>۱</td>
<td>۲</td>
<td>۴</td>
<td>۳</td>
</tr>
<tr>
<td>۴</td>
<td>۳</td>
<td>۱</td>
<td>۲</td>
<td>۴</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>داور</th>
<th>فرمول ۲</th>
<th>عطر و طعم</th>
<th>بافت</th>
<th>رنگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۹</td>
<td>۷</td>
<td>۵</td>
<td>۴</td>
</tr>
<tr>
<td>۲</td>
<td>۵</td>
<td>۴</td>
<td>۹</td>
<td>۷</td>
</tr>
<tr>
<td>۳</td>
<td>۷</td>
<td>۵</td>
<td>۹</td>
<td>۵</td>
</tr>
<tr>
<td>۴</td>
<td>۹</td>
<td>۷</td>
<td>۵</td>
<td>۵</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>داور</th>
<th>فرمول ۳</th>
<th>عطر و طعم</th>
<th>بافت</th>
<th>رنگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱۲</td>
<td>۱۰</td>
<td>۸</td>
<td>۶</td>
</tr>
<tr>
<td>۲</td>
<td>۶</td>
<td>۴</td>
<td>۱۲</td>
<td>۱۰</td>
</tr>
<tr>
<td>۳</td>
<td>۱۰</td>
<td>۸</td>
<td>۱۲</td>
<td>۱۰</td>
</tr>
<tr>
<td>۴</td>
<td>۱۲</td>
<td>۱۰</td>
<td>۱۰</td>
<td>۸</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>داور</th>
<th>فرمول ۴</th>
<th>عطر و طعم</th>
<th>بافت</th>
<th>رنگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱۶</td>
<td>۱۴</td>
<td>۱۲</td>
<td>۱۰</td>
</tr>
<tr>
<td>۲</td>
<td>۱۰</td>
<td>۸</td>
<td>۱۲</td>
<td>۱۰</td>
</tr>
<tr>
<td>۳</td>
<td>۱۴</td>
<td>۱۲</td>
<td>۱۰</td>
<td>۸</td>
</tr>
<tr>
<td>۴</td>
<td>۱۶</td>
<td>۱۴</td>
<td>۱۰</td>
<td>۸</td>
</tr>
</tbody>
</table>

جمع: ۱۹۸

کنسرو که در صدر دفاع‌ها با هم نشان داده بود یکی از دو چهار فرمول سوسیس کنسرو شده در فروشی از نظر عطر، طعم، بافت و رنگ محبوب‌تر بوده و در پایان ناتایی این پژوهش، سوسیس با فرمول ۲ مناسب‌تر از نظر ویژگی‌های فیزیکی و شیمیایی در پیش‌مرگ و نسبت به دیگر فرمو‌ها مناسب‌تر بوده و استفاده از این فرمو، به‌علاوه میزان قسمت در میلی‌نمون برای کنسرو به‌طور می‌گردد.

منابع مورد استفاده
1. پرودن، و. ۱۳۸۷. تکنیک‌های فیزیولوژی‌های شیمیایی مواد غذایی. انتشارات دانشگاه تهران.
2. خسروی، ا. ۱۳۷۶. بررسی تغییرات فیزیک‌شیمیایی‌های خودراه انگشتی در طی تولید، تیمی، جدایی و نگهداری در انبار و بست‌بندی‌های مختلف. پایان‌نامه کارشناسی ارشد. دانشگاه کشاورزی، دانشگاه صنعتی اصفهان.
3. شفافی زنوزیان، م. ۱۳۸۷. فرآوری حاره‌ای از مواد غذایی استاتیک. انتشارات سپاه شیراز.
4. فهمیده، م. و. د. دهاق، ۱۳۷۴. مصالح غذایی – دانش‌های فنی با استفاده از حرفه‌ای خشک کردن و بخش رنگ، انتشارات دانشگاه شیراز.
5. برنگ‌سمتی، پ. و. درمانی، ۱۳۸۷. تغییرات فیزیک‌شیمیایی‌های بی‌رو، مدل‌های کشاورزی. انتشارات دانشگاه تهران.

