اثر رطوبت خاک و کود دامی بر تراکم پذیری خاک مزرعه لوری

محمد رضا مصداقی، محمدعلی حاج عباسی، عباس همت و مجید افیونی

چکیده
مطالعه حاضر به جهت بررسی تاثیر رطوبت خاک و کود دامی بر تراکم پذیری خاک به صورت نوارهای خرد شده، در قالب طرح‌های کنترل کامل یک تصادفی با چهار تکرار در مزرعه آموزشی - پژوهشی دانشگاه صنعتی اصفهان (لورک) انجام شد. خاک مورد مطالعه از نظر رده‌بندی تیپیک هایل آرچید می‌باشد. کود دامی یک سال مانده، شامل سه حالت مشخصات، 50 و 100 تن در هکتار تا عمق 30 سانتی‌متر و توسط دیسک سنجین با خاک مخلوط گذاشته شد. پس از گذشت 6 ماه (نیمه اول ماه) در رطوبت‌های خاک، (PL) و درصد حجم خشک (P/E) در تراکم‌ها بررسی شد. برای مطالعه دو گروه مناسب برای پذیرش خاک مورد رطوبت‌های خاکی انتخاب شد. پس از انتخاب مناسب‌ترین رطوبت‌های مربوط به خاک به علت تعداد کود دامی به 60 کیلوگرم در هکتار بررسی گردید. نتایج نشان داد که افزایش کود دامی باعث افزایش تراکم پذیری خاک مزرعه می‌شود و افزایش کود دامی باعث افزایش تراکم پذیری خاک مزرعه می‌شود.

واژه‌های کلیدی - تراکم پذیری، رطوبت خاک، کود دامی و خاک ورژی

مقدمه
استفاده از حیوانات در کشاورزی جامعه ای است که در آن، تراکم پذیری، تروید و در نهایت تراکم پذیری در کود دامی خاک را افزایش می‌دهد. در این مقاله، به بررسی تاثیر کود دامی در تراکم پذیری خاک پرداخته شده‌است.

***- دانشجوی دکتری، دانشگاه صنعتی اصفهان
- استادار حاکم، دانشگاه صنعتی اصفهان
- استادیار حاکم، دانشگاه صنعتی اصفهان
- دانشجوی دکتری، دانشگاه صنعتی اصفهان
- دانشجوی دکتری، دانشگاه صنعتی اصفهان

27
خصوصیات طی می‌سال‌گذشته، به دلیل مکانیکی شدن و افزایش وزن مشابه‌های کوارتزی، تراکم خاک به صورت یک مشکل چند بعده در مقابل کوارتزی پایدار شناخته شده و شامل اثرات تکامل مانند، خاک گیا واقعیت است (27).

تراکم پذیری خاک از نظر تعیین، عبارت است از بانک کمی رفتار خاک تحت تأثیر نش و فشارهای مشخص، که معمولاً این رفتار با تغییر جرم مخاطرات و شیشه (BD)، به عنوان یک تخلخل کل، تخلخل تهیه‌ای، تخلخل پذیری آب به خاک و مقاومت خاک بینان می‌شود (26 و 27). تراکم خاک باعث حساسیت بیش از حد خاک به خشکی، تعادل ناخالصی کاهش جذب آب، کاهش بازده منظر غازهای اولین، رشد زیاد یک‌نواخت گیاهان، کاهش شکست جوانه زنی و تسکین تنش باشد. این وضعیت و نهایتاً تراکم خاک می‌تواند مورد (26 و 25) راه‌کارهای مقابله با تراکم شامل

1. کنترل رطوبت خاک در موقع خاک روزی و تردد مزرعه، 2. کنترل تردد و سیستم تهیه، بر روی خاک (3)، کاهش وزن و فشار تهیه سطحی، می‌باشد. 4. تهیه سیستم‌های خاک با ایجاد کرم ماه آلی

با گذشت مهارت یکپارچه، رطوبت در موقع خاک روزی و تردد (انجام دیگر عملیات مصوب) در مزرعه است (1 و 2). به اعتقاد اسپور و گودین (27) رطوبت

محلول نیش خاک روزی پایین‌تر از حد حمیلی (PL) می‌باشد. آلمااروه سخت (27) اظهار می‌دارند این رطوبت در سه بافت خاک لوم رسی سخت، لوم رسی و لوم در دامنه رطوبت PL-PL است. ولی به اعتقاد پلیوسین (20) این رطوبت تقریباً معادل 40 درصد تخلخل بالاست.

گرفته که شاخه محوری ۱ (CI) در تیمارهای کردی نسبت به تیمار شاهد بسیار کمتر است (به ترتیب از ۲۳). بسیار ماری (۹) در دو خاک زراعی و اندازه‌گیری عوامل خاک‌زمایی انجام دادند. به دلیل مواد آلی باید استخراجی نقش این مواد در خاک کمتر و هدایت هیدرولیکی BD اشباع خاک بیشتر از خاک زراعی بود. نتایج تحقیقات تابیرک و همکاران (۲۵) برای بررسی اثر تغییر مقدار شکم و سایر کود‌های همبستگی خاصی بین BD و میزان کود اضافه شده نشان داد که BD در تیمارهای عمومی به‌کار گرفته شده‌است.

با وجود تحقیقات انجام شده، هنوز تکنیک‌های مناسبی برای مقدار BD ارائه می‌شود. این مورد مواد آلی بر تراکم پذیری خاکا و واردهاتی بوده، خصوصیات فیزیکی خاکا تیمارهای و بدون تراکم در جدول ۲ ته داشتند. این‌گونه کود فیزیکی سری‌های و دارای جرم مخصوصی ظاهراً حدود ۳۰۰ mg m۳ /ه خاک سپس افزایش درصد ماده PLPL (L.L.) (FC) (OM) (SP) آلی (KS) و عوامل هیدرولیکی اشباع خاک (PI) و برداشت فیزیکی شده است.

در زمینه به ابعاد تقریبی ۵۰۰ متری کرک‌های برای پخش کود دامی به ابعاد ۱۵×۶×۴ متری گردیده‌اید. تیمارهای روتوپی و تراکمی بر روی خاک شکم خود را به استفاده از دیسک سنتیفیک تا بیش‌تر از سانیتیریما به خاک مخلوط شده تیمارها به مدت ۵ ماه (پیشرفت آب‌های ماهی) به روش آبیاری غرناهی در و مزرعه نمایه جزیره مواد آلی و نشست خاک آب‌یاری زندگی برای انجام عملیات تراکم از تراکم دوچرخه متبرک ۳ مدل اولونیورسال ۵۷۰۵۵ استفاده شد. نتایج به‌استكشاف جلو و عقب طبق توصیه کارخانه سازانده انتخاب شد (۱۸) به منظور شبیه‌سازی تكرار در موقع کشش و کارکرد در مزرعه، سرعت حركت در ۴/۵ کیلومتر در ساعت تنظیم شد. به دلیل وجود پدیده انتقال وزن در عمليات خاک‌ورزی و دیگر عمليات ماشینی، گران آم‌کردن دار به‌کار می‌رساند.

مواد و روش‌ها

این مطالعه در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه صنعتی اصفهان واقع در مزرعه لورک نجف‌آباد مصوب گرفته است. خاک مورد آزمایش بر تواصل مطالعات گذشته، جزو سیر گردو تیپیک و خاص آمیزه و در سری‌های میوهی سازی نشان دادند (۲۰).

1. Cone index 2. Critical moisture content 3. Fine-loamy, mixed, thermic Typic Hapludolls
4. Wet sieving (van Bavel) method 5. Split-block design 6. Two-wheel drive
جدول 1- برخی از خصوصیات نیزیکی خاک مورد مطالعه

<table>
<thead>
<tr>
<th>MWD (mm)</th>
<th>BD (Mg m⁻³)</th>
<th>PD (Mg m⁻³)</th>
<th>گذر</th>
<th>درصد رس</th>
<th>درصد شن</th>
<th>عمیق</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/24</td>
<td>42</td>
<td>1/24</td>
<td>4</td>
<td>37</td>
<td>16</td>
<td>0-200</td>
</tr>
<tr>
<td>-</td>
<td>1/27</td>
<td>2/66</td>
<td>39</td>
<td>46</td>
<td>8</td>
<td>20-35</td>
</tr>
<tr>
<td>-</td>
<td>1/56</td>
<td>2/58</td>
<td>24</td>
<td>46</td>
<td>8</td>
<td>35-50</td>
</tr>
</tbody>
</table>

1. Particle Density 2. Mean Weight Diameter

جدول 2- خصوصیات خاک سطحی (20-0 cm) در تیمارهای مختلف کودی

<table>
<thead>
<tr>
<th>KS (cm hr⁻¹)</th>
<th>PI</th>
<th>PL</th>
<th>LL</th>
<th>FC</th>
<th>SP</th>
<th>OM</th>
<th>PD (Mg m⁻³)</th>
<th>TI (t ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8</td>
<td>12/1</td>
<td>21/2</td>
<td>33/3</td>
<td>24</td>
<td>77</td>
<td>0/73</td>
<td>0/29</td>
<td></td>
</tr>
<tr>
<td>8/1</td>
<td>14/7</td>
<td>23/2</td>
<td>37/9</td>
<td>26/5</td>
<td>51/2</td>
<td>2/15</td>
<td>2/3</td>
<td></td>
</tr>
<tr>
<td>11/2</td>
<td>16/1</td>
<td>24</td>
<td>40/1</td>
<td>27/8</td>
<td>56/5</td>
<td>3/66</td>
<td>2/23</td>
<td></td>
</tr>
</tbody>
</table>

تراکتور متصل و در جنین تراکم در وضعیت حمل و نقل قرار داده شد (25 و 33). تراکم با توجه به رطوبت بعد از ایبازی، در سه مرحله ایند از رطوبت (PL) 0.80 و 0.5 سانتیمتری و 0.20 سانتیمتری در رطوبت از آب از آب یاری سنس سیس در رطوبت (PS) 8/0 و نهایتاً در رطوبت 0/60 PL سانتیمتری صورت گرفت. تیمارهای یک (P₁) و دو (P₂) مرزه‌ی عبور در هر یک از رطوبت‌های گنجانده شد.

(1) مهارت فرآیندی‌ای شامل مخلوطی باید اندوزگری غیر مقدار هدایت یا استاندارد ساخت شرکت فنینگ ایروین استفاده شد. این دستگاه از نظر ساختاری شامل سه قسمت اصلی ورق‌پرداز، مبدل و میله نفوذ می‌باشد. با دادن میله نفوذ به داخل خاک، همزمان با آن صفحه تبخش ثابت نیز حرکت می‌کند و عمیق‌تر بخشی می‌دهد. میزان نیروی وارد، بر اندازه مخلوطی میله نفوذ در هگم‌ها حرکت، در هر عمق در سطح ذخیره‌ی هدایت نگه داشته می‌شود. این داده‌ها در زیر پرداخته و سپس توسط کامپیوتر مورد بررسی قرار می‌گیرد. برای محاسبه مقاومت نقطه‌ای یا شاخص مخلوطی از فرمول زیر استفاده می‌گردد:

\[
CI = -0.98 (F/A)
\]

که در آن:

- CI = شاخص مخلوطی خاک بر حسب مکانیاسکال
- F = نیروی عمودی وارد خاک بر حسبکیلوجرم
- A = مسطح مقطع مخلوط بر حسب سانتیمتر مربع (cm²).

(31)
تشکست خاک ۱ در اثر هورا تراکم
برای اندازه‌گیری نشست خاک که یکی از شاخص‌های تراکم پذیری است (۱۲ و ۲۴)، در هر تیمار پز از عبور تراکم عمیق محل عاج با و بین عاج با (به تعداد مساوی) از وسط مقطع نشست تا سطح خاک اولیه اندازه‌گیری می‌شود.

نتایج و بحث
نتایج تجزیه واریانس جرم مخصوص ظاهری (BD) و شاخص مخروطی (CI) در جدول ۳ آورده شده است. تاثیر رطوبت، کود دامی (BD) در سطح 1 درصد معنی‌دار بوده، ولی به CI در سطح 17/5 درصد (تغییرات 15 درصد، CI ضریب تغییرات) اثر که تحت شرایط مطالعه معادلگری می‌باشد. با توجه به این‌که در مطالعه متفاوت می‌باشد (امکان 95 درصد معنی‌دار بوده که بین گزارش حاصل متفاوت می‌باشد (امکان 95 درصد معنی‌دار بوده که بین گزارش حاصل متفاوت می‌باشد (امکان 95 درصد معنی‌دار بوده که بین گزارش حاصل متفاوت می‌باشد (امکان 95 درصد معنی‌دار بوده که بین گزارش حاصل متفاوت می‌باشد (امکان 95 درصد معنی‌دار بوده که بین گزارش حاصل متفاوت می‌باشد (امکان 95 درصد معنی‌دار بوده که بین گزارش حاصل متفاوت می‌باشد (امکان 95 درصد معنی‌دار بوده که بین گزارش حاصل متفاوت می‌باشد (امکان 95 درصد معنی‌دار بوده که بین گزارش حاصل متفاوت Mpa 0.5 باشد. CI AIC AB(BD) مصرف ۳۰ سانتیمتری این بود که حاصل تراکم ۳۰ سانتیمتری این بود که حاصل تراکم ۳۰ سانتیمتری این بود که حاصل تراکم ۳۰ سانتیمتری این بود که حاصل TBL ۳۰ سانتیمتری این بود (۲۴).

تأثیر رطوبت بر تراکم پذیری خاک
آزمایش در زمان تراکم بر حسب مصرف ظاهری (M) (منابع منبع ۴)، و (P) (با یکدیگر تفاوت معنی‌دار دارد (ستون‌ها در جدول (۲)).

1. Soil elements 2. Soil sinkage
جدول 3- جدول تجزیه واریانس جرم مخصوص ظاهری (BD) و شاخص مخروطی (CI)

<table>
<thead>
<tr>
<th>CI</th>
<th>BD</th>
<th>میانگین مربعات</th>
<th>درجه آزادی</th>
<th>متن تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/0024</td>
<td>0/00027</td>
<td>3</td>
<td>بلوک</td>
<td></td>
</tr>
<tr>
<td>0/0164</td>
<td>0/01240</td>
<td>2</td>
<td>(W) رطوبت خاک</td>
<td></td>
</tr>
<tr>
<td>0/017</td>
<td>0/0013</td>
<td>6</td>
<td>خطای</td>
<td></td>
</tr>
<tr>
<td>0/0134</td>
<td>0/00541</td>
<td>2</td>
<td>مقدار کود (M)</td>
<td></td>
</tr>
<tr>
<td>0/004</td>
<td>0/002</td>
<td>6</td>
<td>خطای</td>
<td></td>
</tr>
<tr>
<td>0/012</td>
<td>0/0034</td>
<td>4</td>
<td>W × M</td>
<td></td>
</tr>
<tr>
<td>0/0131</td>
<td>0/0007</td>
<td>12</td>
<td>W × M</td>
<td></td>
</tr>
<tr>
<td>0/0171</td>
<td>0/02991</td>
<td>1</td>
<td>تعداد عبور (P)</td>
<td></td>
</tr>
<tr>
<td>0/0146</td>
<td>0/00284</td>
<td>2</td>
<td>W × P</td>
<td></td>
</tr>
<tr>
<td>0/0088</td>
<td>0/00094</td>
<td>2</td>
<td>M × P</td>
<td></td>
</tr>
<tr>
<td>0/0085</td>
<td>0/00054</td>
<td>4</td>
<td>W × M × P</td>
<td></td>
</tr>
<tr>
<td>0/0281</td>
<td>0/00027</td>
<td>27</td>
<td>خطای باقیمانده</td>
<td></td>
</tr>
</tbody>
</table>

پایه درات 1 تحت فشار به راحتی صورت گرفته و این عمل سبب افزایش شدیدی در BD می‌شود (16). تراکم در رطوبت PL و تغییرات میانگین مربعات (CI) جدول 5 تغییرات BD با عمق خاک در تیمار بدن BD کود (M) در رطوبت، تاثیر و عمق تأثیر تراکم بر افزایش می‌یابد. افزایش PD در اثر عبور مجدد (P) نیز در نمودار مشاهده است. در رطوبت و PL به دلیل وجود آب زیاد، خاک سطحی زیستی است. این مقدار کمی در مقایسه با امر مراجعه‌کننده فشار دارد و اطلاعات جریان پاننه، کمتر نشان داده شده است.

ویژه‌تر است و به این معنی است که در رطوبت‌های زیاد (PL) نسبت به PL به دلیل محدودیت

1. Particle orientation
جدول 4- میانگین جرم مخصوص ظاهری (Mg m⁻³) در لا 20-30 سانتی‌متری خاک

<table>
<thead>
<tr>
<th></th>
<th>P_1</th>
<th>P_2</th>
<th>تیمار</th>
</tr>
</thead>
</table>

* در سطوح مختلف رطوبت خاک در حین عبور تراکتور.

مشابه می‌باشد اختلاف معنی‌داری ندارند (دانکن 10%).

جدول 5- مقدار ی ابرای مقایسه میانگین‌های جرم مخصوص ظاهری در لا 20-30 سانتی‌متری خاک در تیمارهای مختلف نسبت به تیمار بدون عبور (P) با استفاده از آزمون 8 فیرجنتیک یک طوله

<table>
<thead>
<tr>
<th></th>
<th>P_1</th>
<th>P_1</th>
<th>تیمار</th>
</tr>
</thead>
</table>

+ و ** به ترتیب نشان می‌دهد اختلاف معنی‌دار در سطوح آماری 0.01 و 0.001 است.

تکردراست.

رونده تغییرات شاخص مخزنی با عمق خاک در تیمار بدون عبور (M_0) در سطوح مختلف رطوبتی و عبور در شکل 2 نشان داده شده است. بین افزایش رطوبت، تایید و عمق تأثیر تراکم بر CI افزایش می‌یابد. (8). در تیمار کودهای این افزایش کمتر بود، ولی در تیمار M_1 مقدار زیادی CI می‌یافت. به خاک اضافه شد و در یک عبور تراکتور، افزایش در رطوبت‌های 0/8 PL و PL CI مفید تراکم قابل توجه است. دلیل این امر احتمالاً به خرابی افزایش به اطراف خاک و جلوگیری از حرشف جریانی خاک به اطراف محل عبور و در نتیجه افزایش مقاومت خاک می‌باشد (33). این نتیجه در مقایسه میانگین‌های جدول 6 تیز می‌باشد.

DER رطوبت در زمان تراکم بر شاخص مخزنی (CI) در تیمار بدون کود و در عبور تفاوت معنی‌دار (در سطح ۱۰%) بین سطوح رطوبتی و PL و PL وجود دارد. ولی در بقیه تیمارها، تفاوتی بین سطوح رطوبتی دیده نمی‌شود (ستون 2 جدول 6). روند تغییرات CI نسبت به تیمار شاهد در رطوبت‌های مختلف شده به می‌باشد نیز با عبور (P) در رطوبت‌های مختلف شیبی به می‌باشد (جدول 7). یعنی با افزایش رطوبت در موقعیت تراکم، مقاومت خاک افزایش یافته است (8 و 26). تبرد در رطوبت 0/8 PL تغییری در مقاومت خاک ایجاد

1. Confined
شکل 2 - تأثیر سطوح مختلف رطوبتی در تیمار بدون کود (P)، با یک عبور (PL) و دو عبور (P\textsubscript{2}) ترکارکور بر پایه CI و مقایسه آنها با شاهد (P\textsubscript{a})

BD در شکل 3 تأثیر کود دامی در رطوبت PL بر افزایش BD نسبت به شاهد (P\textsubscript{a}) نشان داده شده است. در تیمارهای کودی، فاصله مشته‌های قبل و بعد از تراکم کمتر از تیمار P\textsubscript{a} است. به عبارت بهتر، مواد آلی سبب کاهش تراکم پذیری خاک می‌شوند. همچنین تیمارهای کودی سبب افزایش عمق BD بیشتری می‌گردد. بنابراین خاک سطحی در تیمارهای کودی مقاومت کمتری در مقابل خروج گونه‌ها از خود نشان می‌دهد. در تیمار M\textsubscript{p} و M\textsubscript{p}, عمق این تراکم در حدود 35 cm و حدود M\textsubscript{p}, و M\textsubscript{p}, عمق این تراکم در حدود 5 cm است (3). نتیجه این موضوع توسط نظریات نیز اثبات شده است (2).

تأثیر مواد آلی بر تراکم پذیری خاک

انرژی مواد آلی بر میزان خاک‌رسانی (BD) کود سبب کاهش سطحی در BD در تمامی تیمارهای رطوبتی شده است (رده‌ها در جدول 2). اعداد بالا در جدول نشان می‌دهد که تغییرات (ΔBD)BD با انرژی مشابه کود، به خصوص در رطوبت‌های زیاد (PL) و عبور مجدد کاهش می‌یابد (32).
جدول 7 - مقادیر برای مقایسه میانگین‌های شاخص مخرب‌های دیگری در جدول 30 سانتیمتری خاک در تیمارهای مختلف نسبت به تیمار بدون عبور (P) با استفاده از آزمون 1 فیجنتی یک طرفه

<table>
<thead>
<tr>
<th>M</th>
<th>P</th>
<th>M</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/98</td>
<td>2/29</td>
<td>3/2</td>
<td>2/19</td>
</tr>
<tr>
<td>2/94</td>
<td>0/46</td>
<td>2/67</td>
<td>0/32</td>
</tr>
<tr>
<td>0/8</td>
<td>0/129</td>
<td>0/25</td>
<td>0/19</td>
</tr>
</tbody>
</table>

شماره می‌باشد اختلاف معنی‌دار دارای CI (p<0.01). 0 و ** به ترتیب نشان دهنده اختلاف معنی‌دار در سطح آماری 0.05 و 0.01 می‌باشد.

داشته است. ولی در تیمار بدون کود (M۱) نسبت به شاهد (P)، نتایج یک عبور، نشان می‌دهد که افزایش پایین می‌باشد. بنابراین در رطوبت زاید (PL)، خاک تا حد خاصی متقاوم می‌شود و در عبور مجدد (P۲)، وجود مواد آلی از تراکم اضافی جلولگری مواد آلی تا حدودی سبب کاهش تراکم پذیری شدند.

اثر مواد آلی بر عمق تأثیر فشرده

که مواد آلی به خاک در رطوبت بالا (PL) و عبور (P) افزایش کاهش تراکم خاک تحت اثرات مواد جلولگری می‌شود زیرا مواد آلی به صورت بالشک همکار و نیز اثرات بالشک به خاک زیرین جلولگری می‌کند (23). در رطوبت زاید (PL) و PL/0 نیز مواد آلی تا حدودی سبب کاهش تراکم پذیری شدند.

اثر مواد آلی بر شاخص مخرب‌های دیگری (CI) در رطوبت و عبور، تفاوت معنی‌دار بین تیمار M۱ و M۲ وجود دارد ولی تفاوت معنی‌دار بین P۱ و P۲ مشاهده نمی‌شود (درجه 3). پس تریم منحنی‌های متوسط آن در تیمارهای کویی قابل تراکم در هر عمق به عنوان منحنی شاخص اولیه (P) است که شامل شاخص‌های در تیمارهای کویی قابل تراکم با همگام تفاوت معنی‌دار دارند. در پایان در یک عبور تیمارهای کویی تفاوت ندارند ولی در دو عبور مشاهده شد که کاهش کود در سطوح کودی M۲ و مسیس P۲ افزایش اندکی
جدول 8- عمق تأثیر نشردگی (cm) در تیمارهای مختلف رطوبت، کود و عبور

<table>
<thead>
<tr>
<th></th>
<th>P₁</th>
<th></th>
<th></th>
<th>P₁</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M₁</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>M₂</td>
<td>24</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>M₃</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ΔBD ≥ 0.5 Mg m⁻³</th>
<th></th>
<th></th>
<th>ΔCl ≥ 0/1 MPa</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M₁</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>M₂</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>M₃</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>20</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

شکل 2- تأثیر سطوح مختلف کودی در رطوبت P₁ با یک عبور PL و دو عبور (P₁) تراکتور بر CI و مقایسه نظرهای تأثیر آنها با شاهد‌های مربوطه (منحنی‌های خط چین)

شکل 3- تأثیر سطوح مختلف کودی در رطوبت P₁ با یک عبور PL و دو عبور (P₁) تراکتور بر BD و مقایسه نظرهای تأثیر آنها با شاهد‌های مربوطه (منحنی‌های خط چین)
نتیجه‌گیری

1. تردد تراکتور در رطوبت حداکثری (PL) (حتی با وجود مواد آلی در خاک) سبب افزایش میزان دار BD و Cl شد. چون در رطوبت PL تا عمق 30 سانتی‌متر، تحت تأثیر قرار گرفته‌اند و عظمت کار اکثر ادوات کشاورزی در خاک مسطحی 20 cm می‌باشند، لذا به‌زیر این قرار نمی‌گیرد. بنابراین با قرار دادن در مزرعه در این رطوبت چلوگری کردن این سیب افزایش Cl و BD شد ولی به حد بهراتی (به ترتیب 3/4 و 1/23 Mg m⁻³ و 0/6 MPa) نرسید.

2. مواد آلی نه تنها سبب افزایش دامنه تردد پذیری و کاملاً تراکم پذیری خاک، بلکه سبب کاهش فشردگی خاک تحت الأرضی (بیش از 20 cm) نیز شد (16). این موضوع خصوصاً در رطوبتهای زیاد و نکردن فشار وارده (عبور مجدد) قابل توجه بود. از نظر آماری تفاوتی بین تأثیر سطوح کودی 50 و 100 t ha⁻¹ در رطوبت و عبور مجدد بر CI و عبور مجدد بر PL دیده نشد. به عبارت دیگر مواد آلی زیاد (100 t ha⁻¹) ممکن است در رطوبتهای بالا از تأثیر افزایش کاهش فشار وارده (عبور مجدد) جلوگیری کرده، سبب افزایش مقاومت خاک شوند. به طور کلی تأثیر کود دامی در رطوبت و عبور مجدد (P<0/05) بر تراکم پذیری این خاک قابل توجه می‌باشد.

3. عبور مجدد برخلاف نظر مطالعات مختلف (12، 15 و 26)، سبب افزایش قابل توجه درجه تراکم خاک (CI و BD) شد. نتیجه اینکه خاک مذکور حساسیت زیادی به تراکم دارد.

4. رطوبت مطلوب برای تردد پذیری در این مزرعه PL/6 (12 درصد زمین) توصیه می‌گردد. اگر از PL/6 آلی می‌باشد (27 و 29)، با کاهش رطوبت از PL/6 به PL/8 و PL/6/2، نشست خاک کاملاً قابل نتوانی‌پذیری است. ولی نتایج زیادی بین نشست در رطوبت PL/6 و PL/8 به دیده نمی‌شود. این رویداد باید ارائه این تراکم پذیری خاک باشد.

اثر مواد آلی بر نشست خاک در اثر تراکم

نشست خاک در تیمارهای مختلف در شکل 5 نشان داده شده است. با افزایش ماده آلی خاک در رطوبت و عبور نسبتاً به یک عبور نشست خاک کاهش می‌بیند. دلیل این امر خاصیت ارجاعی مواد آلی در رطوبتهای زیاد است (30). ولی در رطوبتهای PL/6 و PL/8 با افزایش کود دامی، نشست خاک افزایش گرفته و استیک خاک کاملاً می‌باید که به دلیل پرکشدن خاک در رطوبتهای بالا در حضور مواد آلی می‌باشد (27 و 29). در این رطوبت از PL/6 به PL/8 و PL/6/2 نشست خاک کاملاً قابل نتوانی‌پذیری از دست، و به دیده نمی‌شود. این رویداد باید ارائه

۳۷
منابع مورد استفاده

1. رفیعی، م. ج. 1376. فیزیک خاک (ترجمه). چاپ سوم، انتشارات دانشگاه تهران، 246 صفحه.

2. لکزبان، ا. 1348. چگونگی تحول، تکامل و بررسی خصوصیات کامپکسیون خاکها در شهری عمدتاً شهر در مزرعه آزمایشی

