بیانگر عابدی کوپایی و محمدعلی فتحی

پیکره

پوسته شنلرک از جمله مواد زاید کشاورزی است که سالانه حدود 100 میلیون تن در جهان و 0.5 میلیون تن در ایران تولید می‌شود. به‌علت مسائل زیست محیطی ناشی از ذغالی این مواد تلاقی‌هایی در مورد کاربرد آنها در صنایع به کار آمده است. صنایع تولید پنب و مصالح سیمانی از جمله این صنایع است. که می‌توانند مقادیر عظیمی از این مواد را مصرف کنند. در این پژوهش امکان استفاده از پوسته شنلرک شنلرک به جای پنب در کالاهای آب‌پز و انرژی مکانیکی و دوران آن در محیط‌های سیمان، و مقایسه آن با پنب کشاورزی بررسی شده است. به منظور تهیه خاکستر پوسته شنلرک مورد نیاز، کوپه‌ای از ورق‌های گالوانیزه طراحی و ساخته شد و در نهایت خاکستر پوسته شنلرک با لامینیت پوزولاتی به صورت تابع دارای تغییر پندار زیاد، نهایت گردونی. به منظور آزمایش مقاومت فشاری و کششی و دوام پنب پس از دوره‌های 28، 490 و 180 روزه، در سه نوع شرایط محیطی مختلف مشکی از آب حاوی چهار درصد سیلانات مسیزم، سولفات سدیم و سولفات کلسیم 200 نمونه، از مکانیک و استوانه‌های یکسایید سه نوع پنب (ویای کنترل و پنب حرارتی)، 303 درصد خاکستر پوسته شنلرک) ساخته شد. نتایج آزمایش روی نمونه‌های مکانیکی با ابعاد 1400 و 1800 میلی‌متر میکروهای استوانه‌های به فشار 0.8 و ارتفاع 1.6 میلی‌متر که با 1800 روزگی داخل محلول‌های مختلف گلیکزید شد، نشان می‌دهد که در نمونه‌های پنب درصد مقاومت خاکستر شنلرک چاه گیاهی، در مقایسه با نمونه‌های کنترل، روند کسب مقاومت فشاری، کششی و دوام پنب در محیط‌های سیمان شیب تندتری دارد. درصد بهبود خاکستر پوسته شنلرک 490 درصد، هر سه سیمان است. واجه‌های کلیدی: پوسته شنلرک کالاهای آب‌پز، خاکستر پوسته شنلرک (RHA و پوزولاته‌ها

1. به ترتیب استادور و دانشجوی سابق کارشناسی ارشد آب‌پز، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.
الف) پوزولان‌های طبیعی (Natural pozzolans)

پوزولان‌های طبیعی شامل خاک‌های دیزی‌نرسه، ایالت‌های جزیره‌ای دریاچه‌ها، کوه‌های اثر جنگ و خاک‌های آتش‌نشان‌شده هستند.

(ب) پوزولان‌های صنعتی یا صنعتی (Artificial pozzolans)

منشا اصلی مواد صنعتی تأسیسات تولید انترزی هستند که از زغال سنگ به عنوان سوخت استفاده می‌کنند. همچنین، کوره‌های ذوب فلزات تولید شده‌اند، فولاد، سنگ پک، قربانی سیلیس و آلاین‌های آهن و سیلیس نیز از منابع اصلی مواد صنعتی می‌باشند. خاکستر پوسته شلوک‌های جزو پوزولان‌های صنعتی به صورت محیطی یا کارگرفته شود، به خاکستر استفاده می‌شود. تا کنون گزارش‌هایی از استفاده از پوزولان‌های صنعتی در بناهایی که در کشور مورد استفاده قرار گرفته است نشان داده شده است.

ب) پوزولان‌های ن Numeric D یا صنعتی (Pozzolanic admixtures)

استفاده از مواد پوزولانی (Pozzolanic admixtures) در صنعتی و صنعتی در سیمان، که خاکستر پوسته شلوک (Rice husk ash, RHA) از مواد بهای تماس شده بین را کاشت دهد، به شکلی می‌تواند موجب شوم تن در محیط‌های مناسب گردد. پوزولان یک ماده طبیعی با صفات خاص سیلیس فعال است و طرف‌های پیشنهادی به بهبود پیشرفت ویژگی‌ها مهم‌ترین جهانی است (17). کاهش آب انتها (Segmentation) و جدایی (Bleeding) هیدراتاسیون سیمان، افزایش خشش (Creep) و تحمل (Creep) و تغییر نوع دوم بین سخت شده‌است، مقاومت در برای ترک‌های خارجی، مقاومت در برای اثرات سولفات‌ها و انساب در اثر پیدایش ترکیب نهایی قلیایی و مواد سنگی پوزولان‌ها براساس منشا، و بر اساس تولیدشان به دو کلیه تقسیم می‌شوند:

14
پرستی ویژگی‌های مکانیکی پوشه بینی کانال‌های اپیاری حاوی خاکستر پوسته...

طرحی کرد. پیت (۱۰) بر اساس پژوهش‌های محتوای، با سوزاندن پوسته شلوک تحت دمای کنترل شده، خاکستر با فعالیت پوژولاری سیار زاید تولید کرد. گزارش‌های مالهورا (۱۵) نشان می‌دهد که از سوزاندن ۱۰۰۰ کیلوگرم پوسته شلوک، به طور میانگین ۲۰۰ کیلوگرم خاکستر به دست می‌آید، و چنانچه این سوزاندن در دمای ۵۰۰ درجه سانتی‌گراد باشد، خاکستری با فعالیت پوژولاری زاید تولید خواهد شد.

بینا و همکاران (۱) نشان خاکستر پوسته شلوک را به عنوان یک پوژولار در ساخت فضاهای بازماندی سک بررسی کردند. (۱) نتایج این پژوهش نشان می‌دهد که استفاده از خاکستر پوسته شلوک اثر مطلوبی بر خاکستر فضای مکانیکی و مهندسی پنبه‌ای در داراک رضایت‌برداری و همکاران (۹) مصارف پوسته شلوک و خاکستر آن را در صمیم ساختار کامپوزیت بررسی کردند. نتایج به دست آمده نشان می‌دهد که با استفاده از مخلوط پوسته شلوک و آهک به نسبت وزنی مشار به توانایی نمایش چسبانده‌های درکیکی شیبی سیمان پرگلند تولید کرد.

اثر خاکستر پوسته شلوک بر خواص فیزیکی و مکانیکی به‌عنوان و غلیظی را روانشادی (۷) بررسی کرد. استفاده پژوهش‌های نشان می‌دهد درصد بهینه جای گزینی خاکستر پوسته شلوک به جای سیمان پرگلند معمولی با میزان مقاومت فشاری بیشتر در بین معمولی و در بین غلیظی به ترتیب ۲۰ و ۳۰ درصد است. زانگک و مالهورا (۲۲) در پژوهش رونمایی‌های بین حاوی خاکستر پوسته شلوک، گزارش می‌نامند که مقاومت فشاری این نمونه‌ها نسبت به بین کنترل تا سه ۱۳۰ روز بیشتر است. همچنین آنها اظهار نموده‌اند که نمونه‌های بین حاوی خاکستر پوسته شلوک مقاومت بسیار خوبی در بر اساس نوین کلرید از خود نشان داده‌اند.

کاجرزن پیچیدگان و استوارت (۱۴) در ایجاد که بین حاوی پوسته شلوک دیگر کاوش‌های دیمی هیدرولاسیون سیمان می‌شود. اسپیت (۲۲) گزارش نموده است که سیمان حاوی خاکستر پوسته شلوک مقاومت شیمیایی بهتر نسبت به سیمان پرگلند...
مواد و روش‌ها

برای بررسی این پروژه، پس از نیاز مصالح و معیارهای مشخصات مورد نیاز طرح اخلاقی بین بن و روش آن نامه ACI111 و در نظر گرفت ضوابط و معیارهای فنی شیب‌های آبیاری (1) به دست آمد. و برای انساس نمونه‌های آزمایشگاهی ساخته شد. برای بررسی ویژگی‌های مکانیکی نمونه‌های آزمایشگاهی، سه تیمار بین آزمایش‌گری داد. یکی از تیمارها بدون خاکستر پوسته شلوک بود و دو تیمار بعدی با کاهش مقدار سیمان بوده و وزن سیمان بین کنترل و گردن کردن خاکستر پوسته شلوک بود و میزان 20 و 30 درصد به سیمان حذف شده به شرح جدول 1 ساخته شد. هر کدام از تیمارها در سه تکرار اجرا شد.

برای ضوابط و معیارهای فنی شیب‌های آبیاری و زودکشی (8) نوع سیمان مورد استفاده بین به گزارش نظر دیگری تصمیم گرفته. مشخصات فنی خصوصی به نحو دریگری تصمیم گیری نشده است. بیان از سیمان پرتنلده معمولی باشد. بنابراین سیمان صریف در این پژوهش از نوع سیمان پرتنلده معمولی انتخاب گردید. چگالی این نوع سیمان 3/15 کرم بسیاری متغیر است.

Coarse مصالح سنگی به دست دانه‌های درشت یا شن (Sand) و ماسه (aggregates/gravel) و زینتی (sand) تشکیل می‌شود و در مجموع حداکثر 25% تا 40% حجم بین را اشغال می‌کند. (8) می‌باشد. انددوز و ماسه نمونه‌های استاندارد شماره 4 است. که اندازه‌سازی سرده 4/75 میلی‌متر است. دانه‌های غیر از اندازه‌های بیشتر از 3/15 میلی‌متر است. میک‌مر و ماسه‌های میک‌مر 3/8 مناسب می‌باشد. شیب از نوع شن و ماسه صرفه‌نگر در این طرح از نوع شن و ماسه شکسته است. 1382 نمونه‌ی سبزی است.
جدول ۱ ویژگی‌های تیپ ساخته شده

<table>
<thead>
<tr>
<th>شماره</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱۰۰</td>
<td>۸۰</td>
<td>۷۰</td>
</tr>
<tr>
<td>۲</td>
<td>۲۰</td>
<td>۰</td>
<td>۳۰</td>
</tr>
</tbody>
</table>

علامت اختصاری

حجم سیمان نسبت به بنن کنترل (%)

میزان خاکستر پوسته شناوک چای کریم

شکل ۱: منحنی دانه‌بندی مصالح درشت‌داره

شکل ۲: منحنی دانه‌بندی مصالح ریزداره
جدول 2. نتایج تجزیه خاکستر بوسته شنوک به وسیله میکروسکوپ الکترونی

<table>
<thead>
<tr>
<th>درصد اتمی</th>
<th>درصد وزنی</th>
<th>عناصر تشکیل دهنده</th>
</tr>
</thead>
<tbody>
<tr>
<td>48/804</td>
<td>34/266</td>
<td>اکسیژن</td>
</tr>
<tr>
<td>7/64</td>
<td>7/10</td>
<td>سدیم</td>
</tr>
<tr>
<td>2/84</td>
<td>2/57</td>
<td>منیزیم</td>
</tr>
<tr>
<td>4/74</td>
<td>5/75</td>
<td>سیلیسیم</td>
</tr>
<tr>
<td>0/398</td>
<td>0/33</td>
<td>کلسیم</td>
</tr>
<tr>
<td>0/482</td>
<td>0/32</td>
<td>پتاسیم</td>
</tr>
<tr>
<td>1/645</td>
<td>1/050</td>
<td>کل</td>
</tr>
</tbody>
</table>

شکل 3. نمودار بیان شکل‌های مختلف از تجزیه خاکستر بوسته شنوک به وسیله میکروسکوپ الکترونی.

ب) در نظر گرفتن کارایی و اسلام 3/5، سانتی‌متر، مقدار آب و در نهایت طرح اختلاف نهایی برای کلیه تیمارها بسیار کمتر از تصحیحات لازم بود. در جدول 2 درصد کامل به صورت انجام شده است (1، 2، 3، 4 و 5).

برای بررسی مقاومت فشاری و کششی و اکسید شدن نمونه‌های ازمه‌پاکی نگهداری شده در داخل آب و محلول سوختات 400 نمونه با استفاده از چاله‌ها مکعبی به ابعاد 70 میلی‌متر و قطعه‌های استوانه‌ای به قطر 2/8 و ارتفاع 1/8 میلی‌متر در شرایط ازمه‌پاکی ساخته شد. از کل نمونه‌ها 00 نمونه بین ساختمان شده از سه تیمار، در صورت بلوری و یا به سیلیس موجود در خاکستر (بیش از 85 درصد) به صورت غیر بلوری و یا نقطه‌ای، ترکیب خاکستر تولید شده را تشکیل می‌دهد. که نشان دهنده مرغوبیت و یازی بودن فعالیت پورولاسیه این خاکستر است. برای افزایش زرمی ذرات، سطح مخصوص و در تیزه‌های افزایش فعالیت پورولاسیه لازم است که خاکستر نا رسیدن به حد مطلوب نرمی و سطح مخصوص، آسیب‌های گردیده این عمل به کمک گلوه‌های فلزی (آسیب لوس انجلس) در مدت یک ساعت انجام گردد. این پس از آسیب کردن، تمام خاکستر حاصل از 1/875 میلی‌متر گذرت از شد.
جدول 3: طرح اختلاف بنن تیمارهای مختلف با کارایی تایت برای حجم واحد بنن (بر حسب کیلوگرم)

<table>
<thead>
<tr>
<th>تیمار</th>
<th>مصالح</th>
<th>آب</th>
<th>شن</th>
<th>ماسه</th>
<th>خاکستر بوسته</th>
<th>شنکتکی</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>300</td>
<td>192</td>
<td>104/8</td>
<td>78/5</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>B</td>
<td>240</td>
<td>222</td>
<td>104/8</td>
<td>78/5</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>C</td>
<td>210</td>
<td>237</td>
<td>104/8</td>
<td>78/5</td>
<td>60</td>
<td>90</td>
</tr>
</tbody>
</table>

جدول 4: مشخصات نمونه‌های آزمایشگاهی برای کل تیمارهای بنن

<table>
<thead>
<tr>
<th>شمار کل</th>
<th>شمار نمونه‌های داخل محلول سولفات</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>بنن</td>
<td>مکمی</td>
<td>استوانتی</td>
</tr>
<tr>
<td>A</td>
<td>135</td>
<td>15</td>
</tr>
<tr>
<td>B</td>
<td>135</td>
<td>15</td>
</tr>
<tr>
<td>C</td>
<td>135</td>
<td>15</td>
</tr>
<tr>
<td>جمع کل</td>
<td>450</td>
<td>45</td>
</tr>
</tbody>
</table>

مشخصات نمونه‌های آزمایشگاهی برای کل تیمارهای بنن در داخل محلول چهار درصد سولفات، میزیم و سدیم قرار گرفت، و آزمایش‌ها مقاومت فشاری و کششی برای کلیه تیمارها پس از 180 روز انجام گردید. برای تعیین تغییرات وزنی نمونه‌های ساخته شده به داخل محلول سولفات داخل محلول سولفات دوباره تعیین کردیم. پس از بررسی محلول چهار درصد سولفات جدید، مقدار نمونه‌های بنن در داخل محلول سولفات قرار داده شدند (3.4 و 12).

نتایج و بحث

با توجه به شکل‌های 5 و 6 مشاهده می‌گردد که مقاومت فشاری نمونه‌ها در هر سه میکمی سولفات با زمان افزایش می‌یابد و این افزایش در نمونه‌های داخل خاکستر بوسته شنکتکی بیش از بین کنترل می‌باشد. همچنین، نتایج به دست آمده نشان می‌دهد که روند افزایش مقاومت در هر سه میکمی سولفات بنن در بین کنترل (بدون خاکستر بوسته شنکتکی) بیش از
شکل ۴. تأثیر زمان بر روند مقاومت فشاری بن ساخته شده با درصد‌های مختلف خاکستر پوسته شلوک‌جاتی در محلول سولفات منیزیم

شکل ۵. تأثیر زمان بر روند مقاومت فشاری بن ساخته شده با درصد‌های مختلف خاکستر پوسته شلوک‌جاتی در محلول سولفات سدیم
شهر ۶. تأثیر زمان بر روند مقاومت فشاری بن ساخته شده با درصد‌های مختلف خاکستر پوسته شلوتک جایگزین

در محلول سولفات کلسیم

کمب مقاومت کشته بن‌های حاوی خاکستر پوسته شلوتک بین سنین پایین، کمتر از مقاومت کشته بن‌های حاوی خاکستر پوسته شلوتک، روند کمب مقاومت کشته افزایش می‌یابد، و در سن ۱۸۰ روز، بیشترین مقاومت کشته بین بن‌های خاکستر پوسته شلوتک تعلق دارد. علت این امر وجود واکنش‌های پوزولانی شدید در این نوع بن‌ها است.

نتایج حاصل از آزمایش افت وزن نمونه‌ها برای هر بن در سن ۵۰ روزه در جدول ۵ آمد است.

با توجه به نتایج به دست آمده ملاحظه می‌گردد که در هر سه محیط سولفاتی، بین کنترل بین از سایر بن‌های این که در آنها از خاکستر پوسته شلوتک استفاده شده، کاهش وزن پی‌ید کرده است. به طوری که در هر سه محیط سولفاتی، بین کنترل کاهش وزن در حدود سه برابر بین B (با ۲۰ درصد خاکستر پوسته شلوتک) و C (با ۲/۴ برابر بین B و C) درصد خاکستر پوسته شلوتک) دارد. کاهش وزن بن‌های حاوی خاکستر پوسته شلوتک در بین‌هایی است که در ترکیبات آن‌ها از خاکستر پوسته شلوتک استفاده شده است. کمبین افت مقاومت فشاری مشابه به نمونه‌های B و C درصد خاکستر پوسته شلوتک می‌باشد. میزان تأثیر سولفات منشی بر افت مقاومت فشاری تمامی نمونه‌ها به ترتیب بیشتر از میزان تأثیر سولفات سدیم و سولفات (W/C) کلسیم است. با توجه به بالا بودن نسبت آب به سیمان (C/W) به تیمار‌های C و B نسبت به تیمار کنترل، قاعدتاً انتظار می‌رود که مقاومت فشاری این دو کمتر از بن‌های باند، که وجود خاکستر پوسته شلوتک سبب آن شده، و بالا بودن نسبت آب به سیمان باعث افزایش کارایی تیمارهای C و B شده است. که بیانگر فعالیت پوزولانی در بن‌های حاوی خاکستر پوسته شلوتک بنا گذشت زمان می‌باشد.

با توجه به شکل‌های ۷ و ۸ مشاهده می‌شود که روند کمب مقاومت کشته (شبکه نیم‌مادونی) روند مقاومت فشاری در بن‌های ساخته شده با خاکستر شلوتک جایگزین، در هر سه محیط سولفاتی، شدیدتر از بن‌های کنترل است. میزان
شکل 7. تأثیر زمان بر روند مقاومت کششی بتن ساخته شده با درصد‌های مختلف خاکستر پوسته شالکوک جایگزین در محلول سولفات دریم

شکل 8. تأثیر زمان بر روند مقاومت کششی بتن ساخته شده با درصد‌های مختلف خاکستر پوسته شالکوک جایگزین در محلول سولفات سدیم

محیط‌های سولفاتی به بهبود کنترل به معنی کاهش نفوذ سولفات‌ها به داخل بتن است. این موضوع می‌تواند ناشی از کنترل تبادل آنها به سواترها یا ریز کوچک‌تر با نفوذ کرد و باعث کاهش نفوذ سولفات‌ها به داخل بتن شود. در این پژوهش، سولفات‌ها به ارزش ابزار ارزشمندی از نظر آزمون آنانالیز واریانس یک‌养成 (SPSS) با استفاده از نرم‌افزار آزمون آنانالیز واریانس یک‌养成 (SPSS) برای نتایج آماری این بتن‌ها تهیه شد.
طرح برای برسی وجود و تعیین محل تفاوت‌های آماری نمونه‌ها با Post Hoc. محل وجود تفاوت از طریق تحلیل ANOVA ( Least significant difference) LSD اجرای آزمون از میانگین های نمونه‌ها برای مقایسه‌ی مکان مشخص شد. نتایج نشان می‌دهد که در سن ۱۸۰ روز و در محیط سولفات‌های سنگین در محل خاک‌سازی بین بین حاوی ۲۵ درصد و بین بین حاوی ۶۵ درصد خاک‌سازی پوسته‌های شلوک و بین بین حاوی ۶۵ درصد خاک‌سازی پوسته‌های شلوک و بین بین حاوی ۶۵ درصد خاک‌سازی پوسته‌های شلوک نیز معنی‌دار است.

۱۷۸ میانگین‌های که به ترتیب در هر سون در یک حرف مشترک هستند بر اساس آزمون LSD در سطح ۵ درصد معنی‌دار نیستند.

<table>
<thead>
<tr>
<th>کاهش وزن (آرم)</th>
<th>درصد خاک‌سازی پوسته شلوک جانبگین</th>
<th>سولفات‌های سنگین</th>
<th>سولفات‌های منیزیم</th>
<th>۱۸۰ روزه</th>
<th>۱۸۰ روزه</th>
<th>۱۸۰ روزه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۷ آ</td>
<td>۳۱  آ</td>
<td>۴۳  آ</td>
<td>۰</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۵  ب</td>
<td>۱۵  ب</td>
<td>۱۴  ب</td>
<td>۲۰</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۳  C</td>
<td>۱۳  C</td>
<td>۱۸  C</td>
<td>۳۰</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

تشکیل ۹. تأثیر زمان بر روند مقاومت کششی بین ساخته شده با درصد‌های مختلف خاک‌سازی پوسته شلوک جانبگین در محلول‌های سولفات

جدول ۵. کاهش وزن بین ساخته شده با درصد‌های مختلف خاک‌سازی پوسته شلوک جانبگین در محلول‌های سولفات

چنین وضعیت در محیط سولفات‌های سنگین نیز صادق است. در محیط سولفات‌های سنگین در سن مذکور، اختلاف مقاومت فشاری بین بین حاوی ۲۵ درصد خاک‌سازی پوسته شلوک و بین بین حاوی ۲۵ درصد و بین بین حاوی ۶۵ درصد خاک‌سازی پوسته شلوک معنی‌دار است (ب).
خبیر فعالیت زیاد پروژه‌های خاکستر پوسته شلوتوک را در مقایسه با سایر پروژه‌های ناشنا می‌دهد.

2. مقاومت فشاری و کششی نمونه‌های بن مگه‌داری شده در محیط‌های سولفاتی، به کمک زمان افزایش می‌یابد. همچنین، در محیط‌های سولفاتی، افزایش مقاومت در نمونه‌های بن حاوی خاکستر پوسته شلوتوک در زمان‌های بیشتر از نمونه‌های بن کنترل است.

3. تاثیب آزمایشی مقاومت فشاری و کششی و دوام بن در محیط‌های سولفاتی، استفاده از خاکستر پوسته شلوتوک را به عنوان ماده پروژه‌بندی خویش‌الکار می‌سازد. به طوری که نتایج نشان می‌دهد که در هر سه محیط سولفاتی مورد آزمایش، بن کنترل در 180 روزه حدود سه برابر بن 20 درصد خاکستر پوسته شلوتوک و 74 درصد خاکستر پوسته شلوتوک، افت وزن بیشتر می‌کند.

4. خاکستر پوسته شلوتوک نفی ممکن در کاهش نفوذپذیری بن دارد. با توجه به این که پس از ساخت شدن سیمان پرپلاک حفره‌ای به‌جای می‌ماند، بن‌ایران محصولات واکنشی پروژه‌ای خاکستر پوسته شلوتوک باعث پر شدن حفره‌ها و یا کاهش ابعاد آنها خواهد شد. در نتیجه باعث بهبود دوم می‌گردد. درصد بهبود دوم بن در برای حمل سولفاتی ها و کاهش افت وزن در بن حاوی خاکستر پوسته شلوتوک می‌گردد. همچنین، نتایج نشان می‌دهد که تأثیر منفی سولفاتی ها بر دوام نمونه‌های بن به ترتیب مربوط به سولفاتی می‌باشد. سولفاتی و سولفاتی می‌باشد. علت این است که سولفاتی می‌باشد.

5. درصد بهبود جایگزین خاکستر پوسته شلوتوک به جای سیمان پرپلاک معمولی با معیار مقاومت فشاری و کششی 180 روزه و دوام در برای حمل سولفاتی‌ها، 20 درصد می‌باشد.

6. ویژگی‌های مکانیکی و دوام بن حاوی خاکستر پوسته شلوتوک جایگزین تا 20 درصد نشان می‌دهد که این نوع بن می‌تواند در بسیاری از کارهای عمرانی، از جمله پوشش پای کالاهای آب‌سوز که در محیط‌های سولفاتی قرار دارند. استفاده کرد.

7. میزان تأثیر سولفاتی می‌باشد. افت مقاومت فشاری و کششی بن‌های کاهش وزن بن به ترتیب بیشتر از نشان می‌دهد که در حدود 90% درصد ترکیبات آن را اکسید سیلیسیم غیر لولی تشکیل می‌دهد. این موضوع به...

نتیجه‌گیری

1. آزمایش‌هایی به عمل آمده روی خاکستر پوسته شلوتوک نشان می‌دهد که در حدود 90% درصد ترکیبات آن را اکسید سیلیسیم غیر لولی تشکیل می‌دهد. این موضوع به...

24
سیاسگرایی
از سازمان مدیریت و برنامه‌ریزی استان اصفهان، دانشگاه کشاورزی و دانشگاه علوم دانشگاهی اصفهان، که امکانات مالی و اجتماعی این پژوهش را فراهم ساخته، سیاسگرایی می‌گردد.

متابع مورد استفاده

1. بهایی، ق. رحمتی و ع. رمضانیان‌پور. 1379. نقش خاکستر پوسته برنج در ساخت فلزات ساختمانی سیبک، لوح فشرده مجموعه مقالات سومین کنفرانس بین‌المللی بنج، 12-14 اردیبهشت 1379، دانشگاه صنعتی امیرکبیر.

2. جعفری‌پور، ف. ساخت سیمان بنجی با برشی برنج. مرکز تحقیقات ساختمان و مسکن، نشریه شماره 23، تهران.

3. رمضانیان‌پور، ع. بررسی خواص مهندسی و باریکی بنجی ساخته شده به مراحلی انگلیزی ذوب آهن اسفنجی و مقایسه با بنن کنترل. مرکز تحقیقات ساخته‌بان و مسکن، تهران.

4. رمضانیان‌پور، ع. 1379. دوام بنج و نقش سیمانهای پویزولوئی. مرکز تحقیقات ساخته‌بان و مسکن، نشریه شماره 174، تهران.

5. رمضانیان‌پور، ع. 1379. طرح/اختلال بنج. مرکز انتشارات دانشگاه علم و صنعت ایران، تهران.

6. رمضانیان‌پور، ع. ف. جعفری‌پور و م. ه. ماجدی اردکانی. 1379. بررسی تحقیقات انگامیابی شده بر روی مصارف پوسته برنج و خاکستر آن در صنعت ساختمان. مرکز تحقیقات ساختمان و مسکن، نشریه شماره 218، تهران.

7. روانشادی، ح. 1379. بررسی اثرات خاکستر پوسته برنج بر خواص مکانیکی و فیزیکی بنن معمولی و غلظتی. پایان‌نامه کارشناسی ارشد. دانشگاه کشاورزی، دانشگاه تهران.

8. سازمان برنامه و بودجه. 1379. ضوابط و معاييرهای فنی شبکه‌های اپاری و زیستی: مشخصات فنی و عمومی. نشریه شماره 801، تهران.

9. سامی، س. 1379. کیفیت و طرح/اختلال بنج. مرکز انتشارات جهاد دانشگاهی، واحد دانشگاه صنعتی اصفهان.

10. شاه نظیری، م. 1374. دستورالعمل‌های آماده‌گرایی بنج. انتشارات پرگام، تهران.

11. مستوفی نژاد، د. 1374. تکنولوژی و طرح/اختلال بنج. دفتر فنی یزد.


