بررسی ویژگیهای مکانیکی پوشش بتنی کانالهای آبیاری حاصل پوسته شلتوک در محیطهای سولفاتی

چهارنیم عابدی کوپایی و محمدعلی نتیجی

پیکره به پوسته شلتوک از جمله مواد زاید کشاورزی است که سالانه حدود ۱۰۰ میلیون تن در جهان و ۷/۵ میلیون تن در ایران تولید می‌شود. به علت مصالح زیست محیطی ناشی از دفع این مواد، تلکس‌هایی در مورد کاربرد آنها در صنایع به عمل آمده است. تحقیق تولید تن و مصالح سپیانی از جمله این صنایع است. که می‌تواند مقدماتی از این مواد را مصرف کند. در این پژوهش امکان استفاده از خاکستر پوسته شلتوک به جای پتامی از سیمان پوشش کانالهای آبیاری و زیست‌محیطی در محیطهای سولفاتی و مقاپس آن با پنین کنترل بررسی شده است. به‌منظور تهیه خاکستر پوسته شلتوک مورد نیاز کوره‌های از میان‌های گالاپاتیزه طراحی و ساخته شد. و در نهایت خاکستر پوسته شلتوک با اعمالی پوزیولاتی برای زیاد، تهیه گردید. به‌منظور آزمایش مقاومت فشاری و کششی و دوام بتن در محیطهای سولفاتی، پوسته شلتوک به‌کمک کلسیمی ۴۰۵ نمونه به مکعبی و استوانه ای‌برای سه نوع بتن (بتن کنترل و بتن‌های ۲۰ و ۴۰ درصد خاکستر پوسته شلتوک) ساخته شد. تا آزمایش روش‌های نمونه‌های مکعبی آب‌دراری به مقدار ۷۰ میلی‌متر در مورد استوانه‌های به فاصله ۵/۰ و ارتقاء، ۱۰/۰ میلی‌متر که تا سرانه ۱/۸۰ روزگیر مدولول مختلف نگهداری شد. ثانیه می‌گذارد که در نمونه‌های بتن درصدی مختلف پوسته شلتوک جایگزین، در مقایسه با نمونه‌های کنترل روند کسب مقاومت فشاری، کششی و دوام بتن در محیطهای سولفاتی شرایط تندتری دارد. درصد بهبود خاکستر پوسته شلتوک جایگزین ۲۰ درصد وزن سیمان است.

واژه‌های کلیدی: پوشش بتنی کانالهای آبیاری، خاکستر پوسته شلتوک (RHA)، پوزولانا

1. به ترتیب استادیار و دانشجوی سایر کارشناسی ارشد آبیاری، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
مقدمه
وجود نمک‌ها در خاک، آب‌های زیرزمینی و آب آبیاری، همچنان خطر اصلی اسیدبازی و استفجش شدن بن و را به دنبال دارد.
از جمله این نمک‌ها سولفات‌های کلسیم (چگ)، منیزیم و سدیم می‌باشد. که وجود آن‌ها در خاک‌های مناطق خشک و نیمه خشک، صدمات خشایابی‌بری به کالیازیم آب‌های آبیاری با پوشش بنی وارد می‌گردد. از اینرو، رشد روزافزون جمعت و افزایش نیازهای مختلف انسان سبب شده است که تولید ضایعات صنعتی و کشاورزی افزونی به فرآیند تجمع این مواد در محیط زیست سبب آلودگی شود. هرچند بهترین راه حل برای کاهش آلودگی بسیاری از ضایعات نیز راه حل عملی است که در شکر سنا به پوسته و تجزیه نازاری دارد. به سخت دریگا و بوجود این که در ایران منابع قند وجود دارد، ولی گرشهر صنعتی و صنعتی عضو ایده‌کننده به کاهش‌ها مشکلات این‌ها، پوسته‌های جامعی روزه مرغ ضایعات کشاورزی، معدنی و صنعتی صورت گیرد (1 و 2).

مقدمة

(Natural pozzolans) طیبیه

یکی از شاخص‌های طبیعی شامل خاک اولوست، اپالیت، جر، شیل، تفه و خاک‌ترهای آنشندشانی مصدومه. این مواد زاید کشاورزی مختلف از مواد آلی همچون سلولز، لیگن، یاف، مقدار کمی پروتئین خام و چربی و مواد معدنی مانند کلسیم، آکسید آلومینیوم و آکسید آهن بهینه. انسپس مناده‌ها به صورتی که در مورد مشخص استفاده شود، بلکه خاک‌ترهای به دست آمده از سوزاندن آنها باید به کار گرفته شود (13 و 19). پوسته شن‌هایی که از مواد زاید کشاورزی استفاده که به مقدار مورد تولید می‌گردد در برخی مناطق از آن به عنوان سوخت استفاده می‌شود و در برخی دیگر دفع آن موجب آلودگی می‌گردد. اگر پوسته شدن‌های تحت شرایط بهتر سوزانده شود، خاک‌تره حاصل دارای یک متغیر خاصیت بهترین نسبت برای این مواد و اگر در شرایط مناسب شده سوزانده شود خاک‌تره حاصل، قسمت محاسبه‌ی که نسبت خاک‌تره است به فرم کرتیسالی در می‌آید که در این عوامل کمی است.

شرایط طبیعی و مصنوعی در سیمان، که خاک‌تره پوسته شن‌های (Rice husk ash، RHA) می‌تواند به‌طور تمام شدن بن را کاهش دهد، بلکه می‌تواند موجب دوم در محیط‌های مخرب گردد. پوسته‌های مصنوعی خاک‌تره صنعتی و با مواد طبیعی با مصوبات حاصل به‌طور مکمل است. طی فرآیند که باعث بهبود پیشگیری و گردش‌های مهم‌رسی بین می‌گردد. که مهم‌ترین آن‌ها عبارت‌اند از (۶ و ۱۷): کاهش آب اندکی در خاک‌تره (Segregation) و جدایی (Bleeding) و نیز تهیه کرده‌که کاهش دمای (Creep) هیدراتاسیون سیمان، افزایش خشر (Hidration) و تخلخل و نفوذ‌پذیری و افزایش دوم بنی سخت شده، مواردی برای ترکه‌های حرارتی، مقاومت در برابر اثر سولفات‌ها و انباکس در اثر پدیده سیستم‌های قلیایی و مواد سیلیکا پوسته‌ها پاسخگو منشا و می‌تواند تولیدشان به دو دسته کلی تقسیم می‌شوند.
طراحی کرده. پیت (۲۰) بر اساس پژوهش‌های مکانیکی، با سیمان‌های پوسته شلوک تحت دما کنترل شده، خاکستری بای با فعالیت پوزولاتی بسیار زیاد تولید کرد. گزارش مالهورت (۱۵) نشان می‌دهد که از سوزاندن ۱۰۰۰ کیلوگرم پوسته شلوک، به طور میانگین ۲۰۰۰ کیلوگرم خاکستر به دست می‌آید، و چنان‌چه این سوزاندن در دما ۵۰۰ درجه سانتی‌گراد باشد.

خاکستری با فعالیت پوزولاتی زیاد تولید خواهد شد.

بی‌نت و همکاران (۱۱) نشان دادند که با شکل خاکستری پوسته شلوک را به عنوان یک پرورش در ساخت فلزات ساختمانی سک بررسی کرده‌اند.

۱. نتایج این پژوهش نشان می‌دهد که استفاده از خاکستری پوسته شلوک بر اثر ملیوی براقی‌های کاناتلی و مهندسی بین دار، درخت‌ناتوانی و در صورتی که پوسته شلوک خاکستری آن را در صورتی که این پژوهش را بررسی کرده‌اند. نتایج به دست آمده نشان می‌دهد که استفاده از مخلوط پوسته شلوک و اکثر با نبیت وزنی مسایلی می‌توان نوعی نویسی مجدد به کاربرد می‌رود و به شیب سیمان پرتنلد تولید کرده.

اثر خاکستری پوسته شلوک بر خواص فیزیکی و مکانیکی بين معمولی و غلظتی را روانشادی (۷) بررسی کرده است.

نتایج پژوهش را نشان می‌دهد که به بهره‌برداری خاکستری به روانی پوسته شلوک به جای سیمان پرتنلد معمولی با میزان مقادیر شیفتی که سیمان پرتنلد در منابع مختلف، مقادیر مختاری برای استفاده در بین معمولی و در بین غلظتی به ترتیب ۲۰ و ۳۰ درصد استعمال ژانک و مالهورت (۲۰) در

پژوهشی روی نمونه‌های خاکستری پوسته شلوک، گزارش نمودند که مقادیر فشاری این نمونه‌ها دارا نسبت به بین کنترل نمی‌باشد. همچنین، آنها اظهار نمودند که نمونه‌های بین حاوی خاکستری پوسته شلوک مقادیر بسیار خوبی در برابر نفوذ یون کلرید از خود نشان دادند.

کاجورن چیپورگان و استوارت (۱۴) در پژوهشی که بین حاوی پوسته شلوک، بود که خاکستری به روش مکانیکی نمونه‌های آزمایشگاهی بین حاوی خاکستری پوسته شلوک بحث و بررسی شده است. ویژگی‌های مورد بررسی عبارتند از مقادیر فشاری و کششی و درمان نمونه‌های بینی در محیط‌های مختلف سوزاندن...
مواد و روش‌ها
برای اجرای این پژوهش، پس از نهایی مصالح و تعیین مشخصات مورد نیاز، طرح اخلاقیت بین بی روش آین نامه آماری (1) به دست آمد و برای این اساس، نمونه‌های آزمایشگاهی ساخته شد. برای بررسی ویژگی‌های مکانیکی نمونه‌های آزمایشگاهی، سه تیمار در زنده بودن خاکستر پوسته شلتوک، به عنوان تکنول، و دو تیمار بدعی کاهش مقدار سیمان به 80 و 70 درصد وزن سیمان تا کنترل و یک تیمار غیر از خاکستر پوسته شلتوک به میزان 20 و 30 درصد بی جای سیمان حذف شده به شرح جدول 1 اشاره شد. هر کدام از تیمارها در سه تکرار اجرا شد.

برای ضوابط و معیارهای فنی شیب‌های آبیاری و زه‌کشی (8)، نوع سیمان مورد استفاده باید به نهایت بین بی جز در موارد که در دفترچه مشخصات فنی خصوصی به نحو دیگری تصویرشده است باشد به این مقدار ویژگی‌های مکانیکی سیمان مصرفی در این پژوهش از نوع سیمان پرترنده محصولی انتخاب گردید. چگالی این نوع سیمان 3/15 گرم بر سانتی‌متر مکعب است.

مصالح سنگی به دست دانه‌های درشت یا شن (Sand) و ماسه (aggregates/gravel) تفکیک می‌شود. در مجموع حداکثر 75/5% حجم بتن را اشغال می‌کند (8). مرز اندامش شن و ماسه، کل استاندارد شماره 4 است، که این استاندارد سازمان قلمداد 4 میلی‌متر است. دانه‌های عبری از الک شماره 4 ماسه و دانه‌های مانده روز این الک صنعتی است. به سه دیگری دانه‌های ریتر از 47/5 میلی‌متر تا 61/50 میلی‌متر، 47/5 میلی‌متر تا 61/50 میلی‌متر، 47/5 میلی‌متر تا 61/50 میلی‌متر را شن می‌نامند (11). شن و ماسه صرف شده در این طرح از نوع شن و ماسه شکسته است، که از کارخانه سنین (9).

(سولفات مینیم، سولفات سدیم و سولفات کلسیم).

شرکت آب و فاضلاب اصفهان تهیه شد و آزمایش‌های مربوط به تغییر منحنی دانه‌برداری درست شدند و هر دو آنها انجام گرفت. شکل‌های 1 و 2 بی ترتیب منحنی دانه‌برداری درشت‌دار و ریزداران را در مقیاس با حدود سنجش شانه‌شان، شده توسط نشان داده‌اند.

ASTM-C 233 استاندارد.

در این پژوهش برای تهیه خاکستر مورد نیاز، پس از بررسی گوناگونی، اقدام به طراحی و ساخت کوره گردید. کوره گازی طراحی شده مشابه یک محفظه فولادی به طول 90 و عرض 80 و ارتفاع 100 سانتی‌متر است. به منظور تأمین اکسید مور خاکستر از سطح پوسته شلتوک و زدوده شدن دی اکسید کربن می‌توان از افراد شرکت می‌تواند تحت اکسید حاوی خاکستر تا کل این شرکت یا مقدار 0.3 میلی‌متر ریز شده باشد. در این مورد به فاصله 30 سانتی‌متر از یک کوره، و در درجه به پوسته شلتوک وارد کوره شد و خاکستر حاصل پس از دو ساعت سوختن در دمای 650-700 درجه سانتی‌گراد از طریق درجهی که در کاف کوره قرار دارد، خارج گردید. درجه حرارت کوره به سرعت روتاتوری و از طریق شکاف کوچکی که در طرف کوره ایجاد شده است به طور مستمر تحت کنترل قرار گرفت. به منظور اندازه‌گیری از کیفیت و ترکیبات تشکیل دهنده خاکستر تریل شده مدیریت از بوسته شلتوک و خاکستر تریل شده از آن با آزمایش‌های میکرو‌وسکوپیک الکترونی (X radiation diffractometry) و برای سنگی ریز اکسیر تجربی و تحلیل گردید. که نتایج مربوط به این آزمایش‌ها در

شکل 3 و جدول 2 آمده است.

BRABER استاندارد 218 مجموع ردص روزی
اکسیژن و سیلیسیم نیاید کمتر از 70 ردص بالاست. با توجه به جدول 2 ملاحظه می‌گردد که خاکستر پوسته شلتوک تولید شده با مشخصات استاندارد هم‌رخی اداری. نتایج حاصل از آزمایش پراش سنسی تریل اکسیژن میکرو‌وسکوپیک الکترونی روي خاکستر تهیه شده نشان می‌دهد که سیلیسیم و آکسیژن، عناصر غالب در ساختار خاکستر تولید شده بیشتر. مقدار بسیار جزئی (در حدود پنج ردص) از سیلیس و کاربید پتاسیم به

16
جدول 1. ویژگی‌های بن‌های ساختمانی شده

<table>
<thead>
<tr>
<th>شماره</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>میزان خاکستر پوسته شامل کاوش‌های گذشته</td>
<td>50</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>حجم سیمان نسبت به بن‌های کنترل (٪)</td>
<td>30</td>
<td>20</td>
<td>0</td>
</tr>
</tbody>
</table>

شکل 1. منحنی دانه‌بندی مصالح درشت دانه

شکل 2. منحنی دانه‌بندی مصالح رایگان
جدول 2. نتایج تجزیه خاکستر پوسته شلیک به وسیله میکروسکوپ الکترونی

<table>
<thead>
<tr>
<th>درصد اتمی</th>
<th>درصد وزنی</th>
<th>عناصر تشکیل دهنده</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/804</td>
<td>34/764</td>
<td>اکسیژن</td>
</tr>
<tr>
<td>8/804</td>
<td>71/000</td>
<td>سدیم</td>
</tr>
<tr>
<td>8/804</td>
<td>57/000</td>
<td>منیزیم</td>
</tr>
<tr>
<td>8/804</td>
<td>46/345</td>
<td>سیلیسیم</td>
</tr>
<tr>
<td>8/804</td>
<td>0/800</td>
<td>کل</td>
</tr>
<tr>
<td>8/804</td>
<td>3/800</td>
<td>کلسیم</td>
</tr>
<tr>
<td>8/804</td>
<td>0/800</td>
<td>پتاسیم</td>
</tr>
<tr>
<td>8/804</td>
<td>0/800</td>
<td>کل</td>
</tr>
</tbody>
</table>

شکل 3. نقطه اوج مربوط به خاکستر پوسته شلیک، استخراج شده به وسیله میکروسکوپ الکترونی

با در نظر گرفتن کارایی و اسلام‌بند ۵-۷/۵ سانتی‌متر، مقیاس آب و در نهایت طرح اختلالات در این کلیه تیمارها پس از تصمیمات‌گیری لازم به صورت کامل در جدول ۲ آمده است (۴، ۵، ۱۰ و ۱۱). برای بررسی مقایسه از مقدار، کششی و فاصله و رنگ نمونه‌های آزمایشگاهی نگهداری شده در داخل آب و محلول سلولار، ۵۰ نمونه با استفاده از قالب‌های ساخته شده به سرعت ۵۰/۰ و ارتفاع ۱۱/۶ میلی‌متر و قالب‌های استانداردی به سرعت ۵۰/۰ و ارتفاع ۱۱/۶ میلی‌متر در شرایط آزمایشگاهی ساخته شد. از کل نمونه‌ها، ۲۰ نمونه به ساختمان شده از سه تیمار، در صورت تغییر، و یا بهتر می‌رود موجود در خاکستر (پیش از ۸۵ درصد) به صورت غیر قابلیت و یا پس از تشکیل می‌دهد. هنون به صورت کامل در جدول ۲ آمده است (۴، ۵). افزایش ترمیم ذرات، سطح مخصوص و در نتیجه افزایش فعالیت پرولانی، لازم است که خاکستر تا رسیدن به حد مطلوب ترمیم و سطح مخصوص، آسیب گردد. این عمل به کمک گلوله‌های فولادی (آسیاب لویس آنجلی) و در مدت یک ساعت انجام گردیده. پس از آسیاب کردن، تمامی خاکستر حاصل از الک تا ۵۰/۰ میلی‌متر گذارده شد. ۱۸
جدول ۳. طرح اختلاف بین تیمارهای مختلف با کارایی ثابت پای بار حجم واحد بین (بر حسب کیلوگرم) 

<table>
<thead>
<tr>
<th>مصالح</th>
<th>شمار</th>
<th>آب</th>
<th>شن</th>
<th>ماسه</th>
</tr>
</thead>
<tbody>
<tr>
<td>تیمار</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>۱۰۶۴/۸</td>
<td>۸۸۸/۵</td>
<td>۱۹۲</td>
<td>۳۰۰</td>
</tr>
<tr>
<td>B</td>
<td>۱۰۴۸/۸</td>
<td>۸۸۸/۵</td>
<td>۲۲۲</td>
<td>۴۲۰</td>
</tr>
<tr>
<td>C</td>
<td>۱۰۶۴/۸</td>
<td>۸۸۸/۵</td>
<td>۲۳۷</td>
<td>۲۱۰</td>
</tr>
</tbody>
</table>

جدول ۴. مشخصات نمونه‌های آزمایشگاهی برای کل تیمارهای بین 

<table>
<thead>
<tr>
<th>مشخصات نمونه‌های آزمایشگاهی</th>
<th>شمار کل</th>
<th>شمار داخل محلول سولفات</th>
<th>شمار کل</th>
<th>شمار داخل محلول سولفات</th>
</tr>
</thead>
<tbody>
<tr>
<td>مکمی</td>
<td>استاندارد</td>
<td>مکمی</td>
<td>استاندارد</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>۴۵</td>
<td>۱۳۵</td>
<td>۱۳۵</td>
<td>۴۵</td>
</tr>
<tr>
<td>B</td>
<td>۱۰۱</td>
<td>۱۰۱</td>
<td>۱۰۱</td>
<td>۱۰۱</td>
</tr>
<tr>
<td>C</td>
<td>۱۰۱</td>
<td>۱۰۱</td>
<td>۱۰۱</td>
<td>۱۰۱</td>
</tr>
</tbody>
</table>

مشخصات نمونه‌های آزمایشگاهی برای کل تیمارهای بین 

در این پژوهش به منظور ثابت نگه داشتن pH محیط سولفات‌دار، یک اثر محسوس در داخل محلول‌های سولفات مخلوط دارد. تیمارهای A و B و C (۴۵ نمونه مکمی از هر تیمار) به منظور تغییرات در محیط‌های سولفات‌های نمونه‌های باربری که در محلول‌های سولفات‌های تیمارهای A و B و C به لحاظ، البته در زمان بهره‌مندی و کارایی آنها متفاوت است. 

نتایج و بحث 

با توجه به شکل‌های ۵ و ۶ مشاهده می‌گردد که مقاومت فشاری نمونه‌ها در هر سه محیط سولفات‌های با زمان افزایش می‌یاد. از این افزایش در نمونه‌های دیگر تأثیر پوسته شلوک بیش از بین کنترل‌ها می‌باشد. همچنین نتایج به دست آمده نشان می‌دهد که روند افزایش مقاومت در هر سه محیط سولفات‌یی می‌باشد (بدون حاکستر پوسته شلوک) بیش از
شکل ۴. تأثیر زمان بر روند مقاومت فشاری لنین ساخته شده با درصد‌های مختلف خاکستر پوسته در محلول سولفات مسیم

شکل ۵. تأثیر زمان بر روند مقاومت فشاری لنین ساخته شده با درصد‌های مختلف خاکستر پوسته در محلول سولفات سدیم
طبق مقادیر اکتشافی پژوهش‌های آماری در دسترس‌های مختلف خاک‌سازی پوسته شلوک‌های جایگزین، بین‌هایی است که در ترکیبات آن‌ها از خاک‌سازی پوسته شلوک استفاده شده است. کسب مقداری از مقادیر فشاری مربوط به نمونه‌های بین حاوی ۲۰ درصد خاک‌سازی پوسته شلوک می‌باشد. میزان تأثیر سیلوتاک‌های مختلف بر این مقادیر فشاری تعامل نمونه‌ها را از نظر تأثیر سیلوتاک‌های مختلف و سیلوتاک (W/C) قابل دریافت دارد. علت این امر وجود اکتشافی پژوهش‌های شدید در این نوع بین‌های است. نتایج حاصل از آزمایشات این نوع نمونه‌ها برای هر یک در سن ۵۰ اوزه در جدول ۵ آمده است.

با توجه به این نتایج، ملاحظه می‌گردد که در هر سه محیط سئول، بین کننده بیش از سایر بین‌هایی که در آنها از خاک‌سازی پوسته شلوک استفاده شده، کاهش وزن پیدا کرده است. به طوری که در هر سه محیط سئول، بین کننده بیش از سایر بین‌هایی که در آنها از خاک‌سازی پوسته شلوک استفاده شده، کاهش وزن پیدا کرده است. به طوری که در هر سه محیط سئول، بین کننده بیش از سایر بین‌هایی که در آنها از خاک‌سازی پوسته شلوک استفاده شده، کاهش وزن پیدا کرده است. به طوری که در هر سه محیط سئول، بین کننده بیش از سایر بین‌هایی که در آنها از خاک‌سازی پوسته شلوک استفاده شده، کاهش وزن پیدا کرده است. به طوری که در هر سه محیط سئول، بین کننده بیش از سایر بین‌هایی که در آنها از خاک‌سازی پوسته شلوک استفاده شده، کاهش وزن پیدا کرده است. به طوری که در هر سه محیط سئول، بین کننده بیش از سایر بین‌هایی که در آنها از خاک‌سازی پوسته شلوک استفاده شده، کاهش وزن پیدا کرده است. به طوری که در هر سه محیط سئول، بین کننده بیش از سایر بین‌هایی که در آنها از خاک‌سازی پوسته شلوک استفاده شده، کاهش وزن پیدا کرده است. به طوری که در هر سه محیط سئول، بین کننده بیش از سایر بین‌هایی که در آنها از خاک‌سازی پوسته شلوک استفاده شده، کاهش وزن پیدا کرده است. به طوری که در هر سه محیط سئول، بین کننده بیش از سایر بین‌هایی که در آنها از خاک‌سازی پوسته شلوک استفاده شده، کاهش وزن پیدا کرده است. به طوری که در هر سه محیط سئول، بین کننده بیش از سایر بین‌هایی که در آنها از خاک‌سازی پوسته شلوک استفاده شده، کاهش وزن پیدا کرده است. به طوری که در هر سه محیط سئول، بین کننده بیش از سایر بین‌هایی که در آنها از خاک‌سازی پوسته شلوک استفاده شده، کاهش وزن پیدا کرده است. به طوری که در هر سه محیط سئول، بین کننده بیش از سایر بین‌هایی که در آنها از خاک‌سازی پوسته شلوک استفاده شده، کاهش وزن پیدا کرده است. به طوری که در هر سه محیط سئول، بین کننده بیش از سایر بین‌هایی که در آنها از خاک‌سازی پوسته شلوک استفاده شده، کاهش وزن پیدا کرده است. به طوری که در هر سه محیط سئول، بین کننده بیش از سایر بین‌هایی که در آنها از خاک‌سازی پوسته شلوک استفاده شده، کاهش وزن پیدا کرده است. به طوری که در هر سه محیط سئول، بین کننده بیش از سایر بین‌هایی که در آنها از خاک‌سازی پوسته شلوک استفاده شده، کاهش وزن پیدا کرده است. به طوری که در هر سه محیط سئول، بین کننده بیش از سایر بین‌هایی که در آنها از خاک‌سازی پوسته شلوک استفاده شده، کاهش وزن پیدا کرده است.
شکل ۷: تأثیر زمان بر روند مقاومت کشی، تن ساختمان، با درصدهای مختلف خاکستر بوسته شنیک در محلول سولفات سدیم

شکل ۸: تأثیر زمان بر روند مقاومت کشی، تن ساختمان، با درصدهای مختلف خاکستر بوسته شنیک در محلول سولفات سدیم
شکل 9. تأثیر زمان بر روند مقاومت کشنگی بتن ساخته شده با درصد‌های مختلف خاکستر پوسه شلنگی در محلول‌های سلیم.

جدول 5. کاهش وزن بتن ساخته شده با درصد‌های مختلف خاکستر پوسه شلنگی در محلول‌های سلیم.

<table>
<thead>
<tr>
<th>کاهش وزن (گرم)</th>
<th>درصد خاکستر پوسه شلنگی</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقدار سلیم</td>
<td>0% RHA</td>
<td>20% RHA</td>
<td>30% RHA</td>
</tr>
<tr>
<td>180 روز</td>
<td>0.12</td>
<td>0.18</td>
<td>0.24</td>
</tr>
<tr>
<td>180 روز</td>
<td>0.18</td>
<td>0.23</td>
<td>0.29</td>
</tr>
<tr>
<td>180 روز</td>
<td>0.24</td>
<td>0.30</td>
<td>0.36</td>
</tr>
</tbody>
</table>

1. میانگین ها که به ترتیب در هر سوئین در یک حرفر مشترک هستند بر اساس آزمون LSD در سطح 0.05 درصد معنی‌دار نیستند.

2. درصد خاکستر پوسه شلنگی بر اساس Post Hoc جایگزینی محل تفاوت آماری نمونه‌ها با (Least significant difference) LSD اجرای آزمون از میانگین‌های نمونه‌ها برای مقایسه جمعیت‌های مشخص شده نشان می‌دهد که در سن 180 روز در محدوده سلیم، اختلاف مقاومت فشاری بین بتن حاوی 20 درصد خاکستر پوسه شلنگی معنی‌دار است (P = 0.05).

3. میانگین ها که به ترتیب در هر سوئین در یک حرفر مشترک هستند بر اساس آزمون LSD در سطح 0.05 درصد معنی‌دار نیستند.

4. درصد خاکستر پوسه شلنگی بر اساس Post Hoc جایگزینی محل تفاوت آماری نمونه‌ها با (Least significant difference) LSD اجرای آزمون از میانگین‌های نمونه‌ها برای مقایسه جمعیت‌های مشخص شده نشان می‌دهد که در سن 180 روز در محدوده سلیم، اختلاف مقاومت فشاری بین بتن حاوی 20 درصد خاکستر پوسه شلنگی معنی‌دار است (P = 0.05).
خوبی فعالیت زیاد پوزولنی خاکستر پوسته شلنکو را در مقایسه با سایر پوزولن‌ها نشان می‌دهد.

۲. مقاومت فشاری و کششی نمونه‌های بنی گنج‌داری شده در محیط‌های سولفاتی، با گذشت زمان افزایش می‌یابد.

۳. نمونه‌های بنی حاوی خاکستر پوسته شلنکو در زمان‌های مختلف از نمونه‌های بنی کنترل است.

۴. خاکستر پوسته شلنکو نقص مهمی در کاهش نفوذپذیری بنی دارد. با توجه به این که پس از سخت شدن سیمان پوزولنی، خاکستر پوسته شلنکو به دلیل حفره‌های بی‌حیاتی به جای می‌ماند.

۵. نمونه‌های بنی به ترتیب مربوط به سولفاتی نمونه‌های بنی به ترتیب در حمله سولفاتی در زمان‌های مختلف، حفره‌های بی‌حیاتی در کاهش آب و خواص مختلف خود به خوبی افزایش می‌یابد.

۶. ویژگی‌های مکانیکی و دوام بنی حاوی خاکستر پوسته شلنکو نشان می‌دهد که این نوع بنی بنی‌سان در بسیاری از کارهای عمرانی از فاصله پوشش بنی کالهای آلیاژی که در محیط‌های سولفاتی قرار دارد، استفاده می‌کند.

۷. میزان تأثیر سولفاتی نسبت به تأثیر مقاومت فشاری و کششی بنی کاهش وزن بنی به ترتیب بیشتر از

نتیجه‌گیری

۱. آزمایش‌هایی به عمل آمده روی خاکستر پوسته شلنکو نشان می‌دهد که در حدود ۱۰۰ تا ۳۰ درصد ترکیبات آن را اکسید سیلیسیم نیز به‌طور مرتب تشکیل می‌دهد. این موضوع به

۲۴
سیاسگرایی
از سازمان مدیریت و برنامه‌ریزی استان اصفهان، دانشکده کشاورزی و دانشگاه عمران دانشگاه صنعتی اصفهان، که امکانات مالی و اجرایی این پژوهش را فراهم ساختند، سیاسگرایی می‌گردد.

متابع مورد استفاده
1. بیان، ق. ر. همیه و ع. ر. رمضانیان پور. ۱۳۷۹. نقطه خاکستر پوسته برنج در ساخت فلزات ساختمانی مسکن، نوح فرشید، مجموعه مقالات سومین کنفرانس اپلودیت، ۱۲-۱۴ اردیبهشت ۱۳۷۹، دانشگاه صنعتی امیرکبیر.
2. جعفری‌پور، ف. ۱۳۷۸. ساخت سیمان بنابراین برنج مرکز تحصیلات ساختمان و مسکن، نشریه شماره ۲۱۸، تهران.
3. رمضانیان پور، ع. ا. بررسی خواص مهندسی و پایایی بنای ساختمان برنج درپروژه‌ای دوپذیره شهرداری تبریز. امکانات ساختمانی مسکن، مشگین‌شهر.
4. رمضانیان پور، ع. ا. ۱۳۷۸. قرارداد مهندسی و پایایی بنای ساختمان برنج درپروژه‌ای دوپذیره شهرداری تبریز. امکانات ساختمانی مسکن، مشگین‌شهر.
5. رمضانیان پور، ع. ا. ۱۳۷۸. قرارداد مهندسی و پایایی بنای ساختمان برنج درپروژه‌ای دوپذیره شهرداری تبریز. امکانات ساختمانی مسکن، مشگین‌شهر.
6. رمضانیان پور، ع. ا. ۱۳۷۸. قرارداد مهندسی و پایایی بنای ساختمان برنج درپروژه‌ای دوپذیره شهرداری تبریز. امکانات ساختمانی مسکن، مشگین‌شهر.
7. رمضانیان پور، ع. ا. ۱۳۷۸. قرارداد مهندسی و پایایی بنای ساختمان برنج درپروژه‌ای دوپذیره شهرداری تبریز. امکانات ساختمانی مسکن، مشگین‌شهر.
8. رمضانیان پور، ع. ا. ۱۳۷۸. قرارداد مهندسی و پایایی بنای ساختمان برنج درپروژه‌ای دوپذیره شهرداری تبریز. امکانات ساختمانی مسکن، مشگین‌شهر.
9. رمضانیان پور، ع. ا. ۱۳۷۸. قرارداد مهندسی و پایایی بنای ساختمان برنج درپروژه‌ای دوپذیره شهرداری تبریز. امکانات ساختمانی مسکن، مشگین‌شهر.
10. رمضانیان پور، ع. ا. ۱۳۷۸. قرارداد مهندسی و پایایی بنای ساختمان برنج درپروژه‌ای دوپذیره شهرداری تبریز. امکانات ساختمانی مسکن، مشگین‌شهر.
11. رمضانیان پور، ع. ا. ۱۳۷۸. قرارداد مهندسی و پایایی بنای ساختمان برنج درپروژه‌ای دوپذیره شهرداری تبریز. امکانات ساختمانی مسکن، مشگین‌شهر.