بررسی جامع رگبار ۱۶ خرداد ۱۳۷۱ مشهد

بیژن فهرمان

چکیده
رگبار شدید مورخ ۱۳۷۱/۱۲/۱۶ در شهر مشهد باعث وقوع سیلاب در سطح شهر و سه منطقه مسکونی نجات، چهارچشمه و نوردوز شد. در جریان سیل ایجاد شده از این رگبار، که در نهایت خود را از دست داده و خسارت‌های فراوانی وارد گردید. سه عوامل ناشی از فرودگاه، دانشگاه کشاورزی و مسازمان آب در داخل شهر مشهد، و یک ایستگاه ترافیک طرف در حومه این شهر توزیع زمانی و روانی فرق می‌کردند، باعث افزایش تعداد الگوها و تعداد محدودیت‌های زمانی گردید. تحقیقاتی به‌نام درمانی، با مشارکت شرکت‌های زمانی و با شرکت‌های تجاری، ایجاد شد که در نهایت این رگبار را به شکلی روان بسازند. در این مطالعه میزان و توزیع زمانی برای شاخص‌های مختلف با استفاده از نرم‌افزارهای مختلف به‌دست آمده است. نتایج بررسی‌ها به‌نحوی می‌باشد که به‌طور کلی میزان توزیع زمانی برای مطالعه‌های قبلی در این شرایط بهتر بوده است.

واژه‌های کلیدی: رگبار، مشهد، ایران، توزیع زمانی باران، توزیع نیروی باران

مقدمه
در حال حاضر فعالیت‌های صنعتی و کشاورزی ناشی از افزونی جمعیت کره زمین موجب تعداد شدید بیش از حد گازهای گلخانه‌ای شده است. کریس افری ناشی از بیش از حد گازهای به میزان حفظ دمای زمین یک پدیده حیاتی است (۴). شناخته‌تن تأثیر مستقیم

1. استادیار آماری، دانشگاه کشاورزی، دانشگاه فردوسی مشهد

۲۹
مواد و روش‌ها

اساس انگیز این بررسی، آمار و اطلاعات، باران‌دیگی در استان خوزستان و بارشهای این استانکاری در استفاده‌های باران‌ناتای است. همچنین، موفقیت نسبی قرارگیری استادگاه‌های نقشه به منظور بررسی تغییر مکانی بارش مورد نیاز است. زمان آغاز و پایان و تقویم امسال‌داری، برای یک کاسه کردن آمار باران‌دیگی در استادگاه‌های باران‌ناتایی، که در نَن‌سیر رابطه‌ها مختلف می‌باشد، ضروری است. به منظور تهیه نقشه بررسی بعد بارش، بایستی مقادیر جمعی قرارگیری بارش باوندیگی در فواصل زمانی مختلف استخراج کردد. سپس زمان بدست‌آید به صورت زمان واقعی از اغذی راکبار تقسیم بر کل مدت باران‌دیگی، و انتخاب بارش بدون بعد نیز به صورت حاصل تقسیم بارش در هر خاک بر کل انتخاب باران‌دیگی در نظر می‌گیرد. مقایسه بین نهایی، به شکتی، در نتیجه بارش‌ها بر خاص در استادگاه‌ها مختلف، و با بارشهای باری به‌دست‌آید تطبیق با یک باران‌دیگی مفروض را تعیین می‌کند. پس از تقسیم مدت‌تاناب بارش به چهاربخش مساوی، تقسیم‌بندی بارش در هر یک از بخش‌ها می‌شود. بر حسب این که مقادیر بارش در کدام بخش، حداکثر بارش، بارش را چارگر ای می‌گویند (۲۷).

توجه توزیع احتمال مختلف را می‌توان روی یک سری هیدرولوژی برای‌دست داد (۲۲). واقعاً از دو روش آزمون‌کاید و کومگروف (اسیستس) برای انتخاب بهترین تابع توزیع‌یابی استفاده می‌کنند (۲۵). پژوهشگران مختلف از تابع توزیع‌یابی اصلی برای توصیف روند بارش از مشاهدات هیدرولوژی استفاده کرده‌اند. برای یک مورد یک نمود نگاه کنید. به: سورةک و گاگر (۳۶)، و یک ضرب جولانگی و کشیدگی در این تابع توزیع محاسبه به‌فرم و به‌دست‌آورده با ۱/۳/۵۴ و ۵/۵ می‌باشد (۲۹). اشک و بارش (۲۱) و بارش و کشیدگی (۲۲) و بارش نشان داده به‌نظر توزیع مختلف می‌باشد. استفاده در این دیک‌گیر از دیاگرام مناسب تغییرات در گرمایی‌ها با کمک MRD (میرکردنی) نسبت گونه‌ها و این دیاگرام (صفحه ۱۱۶) به‌واسطه اشک و بارش (۲۲) و محور معادل
درد، که محور افقی آن (B1) توان دوم ضریب چوگنی و محور عمودی آن (B2) ضریب غیر چوگنی است. هر توزیع احتمالی کاری (ضریب شکل) خاصی بیشتری داشته باشد.

انعطاف بیشتری در توان ورودی های فراوانی داشته، MRD اشغال می‌کند. به این ترتیب، تابع توزیع احتمال کامل، که بدون ضریب شکل است، یک تخته، تابع توزیع احتمال کاما، که در ضریب شکل دارد، یک ترتیب را روی دیگرگان MRD اشغال می‌کند.

نتایج و بحث

آمار بارندگی

یبت و نامی نیسته باران سنجی در سطح شهر مشهد و حومه بعد از باران در تاریخ 16 خرداد 1371 ثبت گردیده است. این میان، 10 ایستگاه از زیر نظر کمیته سه‌ضایی آب مناطق مرکز خراسان و به‌طور گسترده‌ای سازمان هوشمندسازی کل شهران قرار دارند. جدول 1 این آمار را بر اساس تحقیق مشترک مینه‌دهد. در سنتی این داده‌ها پیش‌تر در فهرست (31) گزارش شده است. داده‌های این جدول تغییرات باران‌گذاری بین صفر تا 50 میلی‌متر را نشان می‌دهد. دلیل این تفاوت‌ها به طور کلی مربوط به این است که این بارندگی از تشدید نیابایداری سیستمی در تابع صعود‌های کوه‌های بیتولو ناشی شده و در تابع سلول طوفانی آن که به صورت محلی و گسترش پیدا کرده است. معمولاً بک سلول طوفانی ناشی از گسترش ابرهای کومولونیومیس محدوده‌ای از حدود 15 تا 30 کیلومتر را پوشش می‌دهد. که قادئاً بیشترین بارندگی در طرف مزدک طوفان گزارش دارند. این نکته باران‌های صفر در پارازان از ایستگاه‌های اطراف را توجه می‌کند.

بررسی تداوم رگیار در ایستگاه‌های نیات

بررسی اثر اینهای باران سنجی بیان‌های رگیاری در ایستگاه‌های نیات 71/3/16 در ایستگاه‌های تحت بررسی مشخص می‌شود که رگیار مورد
جدول 1. آمار یاربندگی زمانی در استان‌های موجود بر اساس تقسیم‌بندی

<table>
<thead>
<tr>
<th>رده‌بندی</th>
<th>استانها</th>
<th>یاربندگی (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>آب و برق</td>
<td>۴۱</td>
</tr>
<tr>
<td>۲</td>
<td>شهر طوس</td>
<td>۱۹/۱</td>
</tr>
<tr>
<td>۳</td>
<td>شهرک طاقنی</td>
<td>۳۴/۶</td>
</tr>
<tr>
<td>۴</td>
<td>طرح کریطان</td>
<td>۳۳</td>
</tr>
<tr>
<td>۵</td>
<td>غار مغان</td>
<td>۱۱/۵</td>
</tr>
<tr>
<td>۶</td>
<td>فرامرز</td>
<td>۷</td>
</tr>
<tr>
<td>۷</td>
<td>امام نقی</td>
<td>۹</td>
</tr>
<tr>
<td>۸</td>
<td>امیرآباد مسجد</td>
<td>۴۸/۳</td>
</tr>
<tr>
<td>۹</td>
<td>پارک و باغ</td>
<td>۵۰</td>
</tr>
<tr>
<td>۱۰</td>
<td>دامپروری عباس‌آباد</td>
<td>۲۸</td>
</tr>
<tr>
<td>۱۱</td>
<td>دانشگاه کشاورزی</td>
<td>۱۰</td>
</tr>
<tr>
<td>۱۲</td>
<td>دهنه احمد</td>
<td>۱۲</td>
</tr>
<tr>
<td>۱۳</td>
<td>کوپن</td>
<td>۱۳</td>
</tr>
<tr>
<td>۱۴</td>
<td>گلشن (شهر جدید)</td>
<td>۱۴</td>
</tr>
<tr>
<td>۱۵</td>
<td>گلستان</td>
<td>۱۵</td>
</tr>
</tbody>
</table>

*به‌طور تقریبی در یک زمان در دو استان‌های دانشگاه کشاورزی و سازمان آب آب‌زیست می‌باشد، و شکل‌کل آن‌ها نیز به ترتیب خویس می‌شود که در شهرستان (۱۲) مراحل و گلستان (۱۴) مراحل است. ولی پایان آن مقداری تفاوت را نشان می‌دهد، و در کل نیز مقدار کمتری بدین است. سازمان آب آب‌زیست در دانشگاه کشاورزی ۱۳۵۷ در سازمان آب آب‌زیست در ۱۳۶۶ و در سطح ۵۳۰ می‌باشد.

*به‌طور مشابه مخاطبین دیگر استان‌های دیگر می‌باشند.

بازارگان نگاره‌ها باران کارک اوپو را تولید کرده‌اند. زمان ۶ خرداد ۱۳۷۱ را می‌توان جزو کودک باران نوع ۱ دانست (۲۶).

مقایسه الگوی یاربندگی باران 
۱۳۷۱/۳/۱۶

به دلیل نبودن کامل رگبار در استان‌های دیگر، بررسی‌ها در سه استانگاه دیگر متمرکز شد. استان‌های دانشگاه کشاورزی از سال ۱۳۵۴ و دیگر استان‌های دیگر در ماه‌های مختلف سال انتخاب گردیدند. مشخصات این رگبارها شامل تاریخ بارش، ساعت آغاز و پایان، مقصد باران و درصد زمان برای ریزش ۵۰ درصد اولیه مقصر یاربندگی قبلاً درگزارش فهرمان (۱۲) ارائه شده است. رگبارها انتخابی در ماه‌های مختلف سال دسته‌بندی، و منحني‌های تجمعی بدون بعد.
بررسی جامع رگیار ۱۶ خرداد ۱۳۷۱ مشهد

شکل ۱ منحنی‌های تجمعی بدون بارندگی ۱۶ خرداد ۱۳۷۱ در سه استیگاه نبات

در میلی‌متر در ساعت است. ولی شدت‌پیچیدن بخش ریزش باران
انه در ۱۵ دقیقه ریز داده است. شدت حداکثر باران در یک
مدت ۱۲:۱۱ و ۱۲:۱۱/۲۴ میلی‌متر در ساعت در استیگاه‌های
دشتکه‌های ذوبی، سازمان‌های آب و سرد طرح محتوای گردید.
تعیین دوره بارگذاری بارندگی فوق از مقایسه این اعداد با دسته
منحنی‌های شدت - مدت - تناوب بارندگی (IDF)
دقت‌های استیگاه‌های مرکز میزبان خواهید بود:
الف) استیگاه بیانگر نیست سد طرح را سازمان آب منطقه‌ای
خراسان در مدت ۱۳۷۷ تأسیس کرده است. بنابراین، طول دوره
آماری برای استخراج منحنی شدت - مدت - تناوب
بارندگی کافی نیست.
ب) استیگاه سازمان آب که در گزارش‌های آب منطقه‌ای
خراسان به نام ‗محصول اداره شهرداری ماهور‘ در مدت
۱۳۷۵ تأسیس شده است. گرچه این استیگاه تا به حال سه مدت
تغییر مکان داده و در خلال سال‌های ۱۳۷۲ تا ۱۳۷۴/۰۳ دارای آمار
نیز در حد نیست، ولی وزیری (۱۳۷۸/۰۱) آمار قابل استخراج از را نانش
۱۳۷۷ تازه و تحلیل کرده است. نامبرده منحنی‌های شدت -
مدت - تناوب رگیارهای استیگاه را بدون ارائه هیچ دليل
تنهای منحنی است. 

دوره بارگذاری بارندگی ۷۱/۳۱/۱۶ مشهد
مدت تبادل بارندگی ۱۶ خرداد در استیگاه‌های دانشکده
کشاورزی، سازمان آب و سرطاق، که موفق به تبادل کامل آن
شدید نموده، به ترتیب ۴:۵۴:۰۵ و ۱۹:۳۲ ساعت می‌باشد.
شکل میانگین بارندگی استیگاه‌ها به ترتیب ۸/۲۷ و ۳/۸ و
بیشتر فاکتور استخراج گردید. استیگاه سازمان آب در سالن
۱۳۷۵ تأسیس شده (۱۳)، ولی نشان‌دهنده از رگیارهای آن را
امور مطالعات منابع آب بخش سه‌اهامی آب خراسان تجربه و
تجلیل و در فواصل زمانی ۱۵ دقیقه‌ای گزارش کرده است.
(۱) با این وجود، کیفیت استخراج باران‌ها ناپایدار است. استیگاه سد
طرق در سالن ۱۳۷۵ تأسیس شده، و تنها شمار کمی از
رگیارهای آن تجربه و تحلیل و گزارش شده است.

منحنی‌های تجمعی بدون کلمه رگیارهای انتخابی
مشخص می‌کند که با رگیارهای ماهه‌ای ارتباط با و خرداد
عمدتاً چارک‌های چتری، در حالی که رگیارهای ماهه‌ای محور تا
استفاده عمده‌ای از توسعه زمینه پیکسار برخورد اند. و به
سختی می‌توان آنها را به چارک خاصی نسبت داد. بارش‌های ماه
فروردین مخلوطی از این دو نوع غالب است (۱۳).

33
تفصیل کامل به بارش ایستگاه‌های معابر خود است. پس می‌توان اگر گرفت که این تجربه به‌دست‌آید به الین ایستگاه نیز باید در تبیین بازه ایستگاه‌های مناسب بنا شود. از این رو حداقل بارش باران 15 دقیقه‌ای ایستگاه سینوپیک فروندگاه برابر 50/4 می‌باشد. مقایسه این مقدار با دسته منحصرو می‌سازد که در فرودگاه بزرگسته بارش فوق برابر 7/9 سال است.

(1) ایستگاه بارش ناپای تانسان‌کودکی کشاورزی از سال 1354 دارای آمار است (20) علی‌رضا (2) رگ‌های این ایستگاه را در خلال سال‌های 1354-1371 تحلیل کرده و دسته منحصرو های شدت - مدت - تناوای آن را پی‌از انجام آزمون آماری کاپو و کولمن‌گروپ - از پرهیزگری به کمک تابع احتمال کامپ ار، ارزیابی و محاصره کرده است. گرچه مدت تداوم 15 دقیقه در پژوهش علی‌رضا (10) بررسی نشده است، ولی وجود شدت باران در تداوم‌های مختلف را برای محدوده سال‌های 1390-1397 (13) نشان داده‌های این ارائه کرده بارش بزرگ است. در سال‌های 7/9 ساله دیده شدند.

در توجه اعداد به دست آمده با دانه‌ای بین 7/9 سال تا 8/0 سال، بین 1371 مشه‌د بارش فوق برابر 7/9 سال به دست آمده است. (د) ایستگاه سینوپیک فروندگاه مشه‌د بارش فوق برابر 7/9 سال از سال 1354 (میلادی) مجهز به بارش ناپای شده است. نتایج تجزیه و تحلیل میدان را در آمار این ایستگاه ویرا (17) انجام داده است. وی شدت‌های حداکثر باران در تداوم‌های مختلف را برای محدوده سال‌های 1349-1371 (13) نشان داده‌های است. برای مثال، شدت بارش بالای 7/9 سال با توجه به نتایج را باید توجه داشته باشیم. دیگر شدت‌هایی که در تداوم‌های مختلف برای هر یک از سال‌های آماری استوایی و گزارش کرده است (3). برای قابل مقایسه بودن با تابع توزیع، نتایج تابع توزیع احتمال کامپ اعداد مربوط به هر مدت تداوم طبقه‌بندی داده شد. گرچه بهمان و رضا (14) توزیع مکانی بارش 7/9/1386 را بدون تابع‌بندی فرودگاه رسم کرده، ولی بهمان در نظر گرفته این

(16) شیان داد که به منظور کنترل مقادیر فرآیند بارش در این ایستگاه، به دنبال خطوط همبسته فوق توزیع دنیا نمی‌کنیم. البته در

نتیجه گرفت که بارش ناپای شده در ایستگاه فرودگاه مشه‌د

34
است. ولی در گزارش تا کنون مشخص نیست که آیا آمار این سالا با روش دیگری تخمین شده است یا خیر. تخمین تکنیک این کمپر ماری باعث خشونت در شدن تطبیق یک تابع توزیع احتمال می‌گردد. در محال تا کمک کردن این کمپر و سیستم روشهای مشکوک و غیر اصولی سبب یک مسئله بروز ورد. همچنین، معلام نیست که یک مزدیسن تغییر مکانی این ایستگاه چگونه بر خورد شده است.

3. به رغم این که رگیبرهای ایستگاه دانشکده تکراری در IDIF محدوده سالهای 1375-1376 در تهیه منحنی‌های این ایستگاه به کار رفته است (10). ولی استفاده از رگیبر 12 خرداد 1376 در سری درآمدهای مورد تحقیق و تحلیل به‌طور صریح مورد نیست. لیست اصلی این گفتار، دوره بارگیری‌های زیست‌شناختی است. به هر حال، این اشاره به احتمال وجود یک مشاهده است. ثبت‌گذاری در سری داده‌های این ایستگاه نکرده است.

4. داده‌گیری شت در 20 و 20 دی پیشینه در ایستگاه فرودگاه مربوط به سال 1376 (79%-22% و 12% میلادی) است. گرچه به‌طور عددی ثبت نشده کامل رگیبر 16 خرداد 1376 از ایستگاه فرودگاه مشهد (13). نگاهی زیست‌شناسی به این مطلب که این رگیبر شدیدترین رگیبر دانشکده بار (1392 میلادی) در عرصه بار و شیمی بوده و داده‌هایی 0/04 میلیمتر در ساعت برای حداکثر شدت باران 15 دقیقه‌ای این ایستگاه به‌طور آمده است. ولی این مقادیر با اعداد گزارش‌شده 13/2 و 12/9 میلی‌متر (31 یک نمایی در 16 دی) متفاوت هم‌اکنون ندارد.

5. پارامترهای B1 و B2 با برای سری 25 ساله‌ای 15 دی پیشینه ایستگاه فرودگاه مشهد به ترتیب 10/8 و 3/74 است. مقایسه این مشخصات با محلهای فیزیولوژیک تابع توزیع احتمال مختلف در دیدگاه MRD نشان می‌دهد که تابع توزیع احتمال کامپر کل این سری داده‌های مناسب نیست (13). به همین دلیل ممکن است که تابع توزیع احتمال کامپر در

نوسانات دوره بارگیرش باران‌های کوتاه مدت در ایستگاه فرودگاه مشهد

تنها سری در پارامترهای سالانه شدت باران‌های کوتاه مدت مشهد مربوط به این ایستگاه فرودگاه است. (3) تابع توزیع احتمال کامپر 12/12 میلی‌متر در ساعت برای حداکثر شدت باران 15 دقیقه‌ای این ایستگاه به‌طور آمده است. ولی این مقادیر با اعداد گزارش‌شده 13/2 و 12/9 میلی‌متر (31 یک نمایی در 16 دی) متفاوت هم‌اکنون ندارد.

نوسانات دوره بارگیرش باران‌های کوتاه مدت در ایستگاه فرودگاه مشهد

تنها سری زمانی در دسترس حداکثرهای سالانه شدت باران‌های کوتاه مدت مشهد مربوط به این ایستگاه فرودگاه است. (3) تابع توزیع احتمال کامپر 12/12 میلی‌متر در ساعت برای حداکثر شدت باران 15 دقیقه‌ای این ایستگاه به‌طور آمده است. ولی این مقادیر با اعداد گزارش‌شده 13/2 و 12/9 میلی‌متر (31 یک نمایی در 16 دی) متفاوت هم‌اکنون ندارد.
یوش روي حداکثرهای تداوم در پارامتر حداکثر بارش روزانه و
حداکثر شدت بارش 10 دقیقه‌ای استفاده فردودها مشهد برازش
داده شده است. به‌طور می‌رسد که باید تصمیم‌گیری در صورت
بارش‌های کوتاه مدت با استفاده از منحنی پوش باید به
شرط فراهم‌آوردن اطلاعات بارش در مورد نظر حداکثر بدون
پوش‌آوری، خود واقع در سال هر 10 دقیقه و 10 شرط نظر
(حداکثر به دست آمده در پشت بارش بایستد، بر) در سالهای
دهیگر امکان یک حداکثر واقعی که
پیش‌بینی از حداکثر ثبت شده باید و جو از دانش‌های بان‌دیچ) هر ساله
با فراهم‌گذاری داده‌های افزوده شده، این منحنی پوش به روز
شد. از جمله منحنی شکل‌های 3 و 4 نیم درصد استفاده
کرد، در زیر با تغییر طول دوره آماری، میانگین، انحراف
میانگین، در نتیجه پرازش ثبت شده تغییر احتمال تغییر
ðکردا (48). نظریه استفاده از منحنی پوش برای تصمیم‌گیری حداکثر
بارش‌های کوتاه مدت از حداکثرهای بارش روزانه، برای
نگستنی بار در جهان در مورد پیش‌بینی گردید. آیا این
نظریه کارآمد است؟ امید است که پوش‌های آینده به
درستی (هیا) یا نادرستی (های) آن را نشان دهد.

نتیجه‌گیری
1. گل‌کیل توزیع زمان بارش در سه استفاده به نشان داده
کشاورزی، سازمان آب و برق سطح بکسان است (شكل 1).
2. رگ‌های تغییراتی این سه استفاده با رگ‌های
انگلیز توزیع زمان بارش دارد.
3. دوره بارش در شدت‌ترین بخش بارش در استفاده
مختلف بکسان نسبت به بارش نسبت به بارش
گردید. عدد 280 سال برای دوره بارش بکسان این بارش پذیرفت
شده و لیا تغییرات می‌کند. 16/3 28/9 16/3 9/6 سال می‌دهد که
آمار و اطلاعات رگ‌های کوتاه مدت در حذف نتیجه که بتوان
یک تغییر گیری و احتمال رضایت
با جمع‌بندی موارد فوق می‌توان نتیجه گرفت که بارش
شیده 7/3 1/6، 3/16 اخلاق مبنا طبیعی بارش روزانه که می‌توان
ثبت رسدید نشانه، و تفاوت‌ها ناشی از نوسانات طبیعی است.

است. به‌طور بررسی تغییرات بارشی رطوبت‌های بررسی نشان داد که صورت
سالیانه بارش 10 دقیقه‌ای سری‌های بارش حداکثر بارش روزانه
ایستاده‌های فردودها مشهد در طی دوره مشاهده کرده‌اند آن از
1348 تا 1373 (1979-1983) شکل‌بندی، و نتیجه ثابت احتمال
گامای 2 پارامتری بر اثر بارش داده شد. کلیه نقاط در داخل
محیطی 95 درصدی قرار گرفتند. که میراد درستی
انتقال این تابع تغییرات احتمال است. نوسانات دوره بارشکت
بارش‌های حداکثر بارش روزانه در سال‌های مختلف نیز در شکل
ارائه شده است. گرچه در بسیاری از مواقع تغییرات دوره
بارشکت بارش‌های حداکثرهای مختلف پژوهش روندی پیک‌ساز
دارند، ولی در بسیاری از مواقع نیز تغییرات مختلف است. به
این توجیه به هنگام که به نظر می‌رسد طول دوره آماری 15 ساله
برای تغییرات هزموان دوره بارشکت را برای در
پارامتر حداکثر بارش روزانه و حداکثر شدت بارش 10 دقیقه‌ای
ایستاده‌های فردودها مشهد نشان می‌دهد. با این که بین این دور
بارش پیوسته بیشتر در سه خورده، 11 سپر‌ردیس شیب است. بر اساس کاشتار
خطر بارشکت بارش در این استفاده را دو شده‌دار
می‌زند. شکل 3 تغییرات هزموان دوره بارشکت را برای در
بارشکت بارش در سه استفاده به نشان داده (1). به نظر می‌رسد طول دوره آماری 15 ساله
برای تغییرات هزموان دوره بارشکت را برای در

1382 تابستان 1382

نمونه کشاورزی و متابولیسم طبیعی / سال هفتم / شماره دوم / تابستان 1382
شکل ۲ توزیع نرخ پایان بازگشت حداکثر پاران در بوشهر و شدت های پاره‌های ۱۰ دقیقه‌ای ایستگاه فرودگاه مشهد در سال‌های مختلف

شکل ۳ تغییرات توان دورو بازگشت پاره‌های حداکثر روزانه و شدت های پاره‌های ۱۰ دقیقه‌ای ایستگاه فرودگاه مشهد

سپاسگزاری

از معاونت پژوهشی دانشگاه فردوسی مشهد به خاطر تأمین بخشی از هزینه‌های این پژوهش، و از آفای دکتر نیاپیت زاد برای نظریات سوم‌دردانش‌وسپاسگزاری می‌شود.

۴- با توجه به این که غالباً ثبت رگبردها با محدودیت‌های جدید مانند نیروی کافی، خرایری قطعات مکانیکی دستگاه‌های ثابت، عدم مراقبت کامل از دستگاه‌ها به ویژه در مناطق دورافتاده، و واکنش نامناسب به رگباره‌های نسبی رو به رو است، تفسیرهای مطرح شده که شاید بتوان با توجه به مقادیر پاره‌های حداکثر روزانه، نسبت به ترمیم تکمیل و با تطویل آمار پاره‌های کوتاه‌مدت اقدام کرد.
مباحث مورد استفاده

1. بی نام. ۱۳۷۰. تجزیه و تحلیل گراف‌های نیت باران سنج. امور مطالعات منابع آب، شرکت سهامی آب منطقه‌ای خراسان، وزارت نیرو.

2. بی نام. ۱۳۷۲. بارندگی‌های شدید و گرگاره‌ای بولن و وضعیت منابع آب کشور (سال آبی ۷۱-۷۰). سازمان تحقیقات منابع آب، وزارت نیرو. ۷/۲-۳۲.

3. بی نام. ۱۳۷۳. پروژه رقیم کردن رگبارهای ایران. سازمان هواشناسی کل کشور، گزارش منتشر نشده.
مرحباً، ص: 1375. تغییرات آب و باران در ایران. جلسه‌های مطالعات اولین کنفرانس منطقه‌ای تغییرات پیشبینی، مرکز ملی اقیم‌شناسی، سازمان هواشناسی کشور، تهران، 1-3 خرداد 1375.

5. خلیلی، ع. 1375. تغییرات پیشبینی اقیم‌شناسی در ایران. جلسه‌های مطالعات اولین کنفرانس منطقه‌ای تغییرات پیشبینی، مرکز ملی اقیم‌شناسی، سازمان هواشناسی کشور، تهران، 1-3 خرداد 1375.

6. رحمزاده، ف. و ف. سمیعی. 1376. آشکارسازی تغییرات پیشبینی اقیم‌شناسی در ایران. جلسه‌های مطالعات اولین کنفرانس منطقه‌ای تغییرات پیشبینی، مرکز ملی اقیم‌شناسی، سازمان هواشناسی کشور، تهران، 1-3 خرداد 1376.

7. رستم افشار، ن. و ه. فهمی. 1375. تحلیل سیل خزی کشور. جلسه‌های مطالعات اولین کنفرانس منطقه‌ای تغییرات پیشبینی، مرکز ملی اقیم‌شناسی، سازمان هواشناسی کشور، تهران، 1-3 خرداد 1375.

8. سیاسخانه، ع. و د. قهرمان. 1376. توجه مشاهدات استان‌های در سری داده‌های هیدرولوژیکی. نشریه فنی شماره 12، دانشکده کشاورزی، دانشگاه تربیت مدرس.

9. شریفیان، ح. 1376. بررسی ضریب فرسایش‌زایی باران در مشهد. پایان‌نامه کارشناسی ارشد، دانشکده کشاورزی، دانشگاه تربیت مدرس.

10. علی‌زاده، ا. 1373. روابط شدت-مدت-تناوب بارانگی در مشهد. دانشگاه شهید بهشتی مشهد.

11. علی‌زاده، ا. و د. قهرمان. 1375. تغییرات پیشبینی اقیم‌شناسی در ایران. جلسه‌های مطالعات اولین کنفرانس منطقه‌ای تغییرات پیشبینی، مرکز ملی اقیم‌شناسی، سازمان هواشناسی کشور، تهران، 1-3 خرداد 1375.


13. قهرمان، ب. 1374. تغییرات محیط زیست از طریق رگبارهای 16 خرداد 1361 مشهد. گزارش نهایی طرح پژوهشی، دانشگاه فردوسی مشهد.

14. قهرمان، ب. و د. قهرمان. 1374. تغییرات محیط زیست از طریق رگبارهای 16 خرداد 1361 مشهد. دسته منحنی‌های داده‌های شهیداری مشهد.


16. کاویانی، م. و د. قهرمان. 1375. تغییرات محیط زیست از طریق رگبارهای 16 خرداد 1361 مشهد. دسته منحنی‌های داده‌های شهیداری مشهد.

17. وزرایی، ف. و د. قهرمان. 1375. تغییرات محیط زیست از طریق رگبارهای 16 خرداد 1361 مشهد. دسته منحنی‌های داده‌های شهیداری مشهد.

18. وزرایی، ف. و د. قهرمان. 1375. تغییرات محیط زیست از طریق رگبارهای 16 خرداد 1361 مشهد. دسته منحنی‌های داده‌های شهیداری مشهد.
