ارزیابی بازده کاربرد آب در بین جزایر تحت شبکه‌های آبیاری گیلان و فومنات

چکیده
هدف از این تحقیق تیم سرایی و هوافل خوش‌خواه

در حال اجرا بوده که بازده کاربرد آب در بین جزایر تحت شبکه‌های آبیاری گیلان و فومنات در نظر گرفته شده است. در این تحقیق موارد بررسی افزایش آب در بین جزایر، تیم سرایی و هوافل خوش‌خواه مورد بررسی قرار گرفته که بازده کاربرد آب در بین جزایر تحت شبکه‌های آبیاری گیلان و فومنات در نظر گرفته شده است.

واژه‌کلیدی - بازده کاربرد آب، گیلان، ارزیابی شبکه آبیاری، برنج

مقدمه
کاهش تلفات آب و افزایش بازده آبیاری یکی از اهداف اساسی در توسعه کشاورزی به حساب می‌آید. فراهم کردن منابع آب به مناسبات و افزایش بازده آبیاری به مناسبات کشاورزی در این مورد

سطح زیر کشت که منجر به تولید محصول بیشتر می‌شود مورد

به ترتیب استفاده و دانشجوی سایر کارشناسی ارشد آبیاری، دانشکده کشاورزی، دانشگاه تهران

1
جدول 1 - حدود بارزندی کاربرد آب در شبکه‌های آبیاری

<table>
<thead>
<tr>
<th>وسعت بارزندی آب (میلیون متر مکعب)</th>
<th>شبکه‌های آبیاری</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 تا 0.49</td>
<td>کشت و صنعت هفت ته</td>
</tr>
<tr>
<td>0.5 تا 0.69</td>
<td>کشت و صنعت کارون</td>
</tr>
<tr>
<td>0.7 تا 0.89</td>
<td>کشت و صنعت مغان</td>
</tr>
<tr>
<td>0.9 تا 1.09</td>
<td>کشت و صنعت راهبی و شهید بهشتی</td>
</tr>
<tr>
<td>1.1 تا 1.29</td>
<td>دشت قورین</td>
</tr>
<tr>
<td>1.3 تا 1.49</td>
<td>دشت ورزند</td>
</tr>
<tr>
<td>1.5 تا 1.69</td>
<td>دشت زادگان تبریز و کامشان</td>
</tr>
<tr>
<td>1.7 تا 1.89</td>
<td>دشت مازندان</td>
</tr>
<tr>
<td>1.90 تا 2.09</td>
<td>سنتم</td>
</tr>
</tbody>
</table>

در تعیین کل مصرف آب با توجه به سطح استفاده از مصرف آب در مراحل سازنده، سرمایه‌گذاری و مصرف آب در رشته‌های صنعتی منطقه، استفاده از مکانیک تصمیم‌گیری در مورد مقادیر بارزندگی آب با توجه به استراتژیهای محاسباتی به کار گرفته شود. مورد نیاز خاصی پایه‌ای در مورد این موضوع وجود ندارد، به این دلیل که مقدار بارزندگی را از نظر آبیاری تحت مقدار استنتاج و با تخمین زده ومی‌شود. به‌طوری‌که است بایستی که به‌دین ترتیب به‌دست می‌آید. مناسب شرایط منطقه طرح در وضعیت آن‌های نمایشی بی‌بی‌بی شود. عدم وجود دانش اساسی در مورد بارزندگی آب برای آبیاری، می‌تواند نشانگری جدی به‌همراه داشته باشد. در برناهای ریزی و طراحی شبکه‌های آبیاری اجباراً با پیش‌بینی اطمینان برگری به کار گرفته که در نتیجه آن تأثیرات آبیاری مانند کانال‌ها، استحکام‌های هیدرولوژیک و مخازن با طبیعت‌های خیلی زیاد ساخته می‌شود. بدین ترتیب سرمایه‌گذاری به مقدار قابل ملاحظه‌ای زیادی از میزان مورد نیاز واقعی خواهد بود. در ضمن منابع آب محدود، به طور منطقه‌ای توزیع و استفاده بهینه می‌شود. در نتیجه مقدار زیادی آب به‌همراه می‌رود و اراضی کمتری تحت آبیاری قرار می‌گیرد (9).

میزان مصرف آب بر اساس شاخص‌های زیر توصیف می‌گردد:

- پوشش‌های زراعی در مورد اثرات بارزندگی آبیاری، توسط کمیسیون پیش‌نگاری اتاق‌های آبیاری و زراعت (ICID) در بهترین محققان جهان صورت گرفته و مقدار بارزندگی آبیاری مزرعه برای برنج با آب‌های متناوب برای 27 درصد و با آب‌های غرفه‌ای 25
شرکت پژوهشی و مهندسی آبیاری تهران

یک درنیاز به شکاف‌ها و پیچش‌های آبیاری آبیاری

شکل 1- پلان مزرعه‌بندی در شیکه آبیاری فنمنات

ارزیابی پازده کاربرد آب در پیچش‌های آبیاری و شکاف‌های آبیاری...
این انتخاب مواردی هستند که نمادهای پیام‌های ورودی و خروجی را بهبود و همچنین انتخاب مناسبی از قسمت‌های فرمول و تکنیک پیام‌دهی دارد.

در این نمونه، تعداد انتخابات ورودی و خروجی از ۱۲ تا ۲۴ روز می‌باشد. نتایج مربوط به مقایسه توزیع و تجزیه زمان‌بندی خاکا و کیفیت آب از نظر میزان و ترکیب در جدول ۲ و ۳ درج شده است. نتایج پذیری خاک موارد نیز به وسیله استوانه مراقبت اندازه‌گیری گردیده (جدول ۴).

به منظور تعیین مساحت مزاحم انتخابی از کنترل نشته برداری شده که جدول ۲ مشخصات کلی موارد مناسب آن را نشان می‌دهد.

شکل ۲- روند بازده کاربرد آب در شالیزارهای منتهبی در زمینه دانش‌های در طول فصل آبیاری، در منطقه فومن
جدول ۲- تجزیه نمونه‌های خاک مزارع منتخب

<table>
<thead>
<tr>
<th>نام کشاورز و محل نمونه برداری</th>
<th>عمق درصد هدایت</th>
<th>pH</th>
<th>اشباع الكربنیک</th>
<th>عصاره</th>
<th>اشباع</th>
<th>dS/m</th>
<th>(cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>داداش زاده - فومن</td>
<td>۶/۰۸</td>
<td>۷/۳</td>
<td>۱۳/۶۸</td>
<td>۷/۸۴</td>
<td>۷۸/۰۵</td>
<td>۸۵</td>
<td>۶۰</td>
</tr>
<tr>
<td>پور جواد خویه - فومن</td>
<td>۴/۰۸</td>
<td>۷/۹</td>
<td>۱۴/۰۸</td>
<td>۷/۰۴</td>
<td>۷۸/۰۳</td>
<td>۶۲</td>
<td>۶۰</td>
</tr>
<tr>
<td>بازار جمعه</td>
<td>۲/۴۱</td>
<td>۸/۴</td>
<td>۱۸/۵۰</td>
<td>۸/۴۰</td>
<td>۷۲/۰۶</td>
<td>۶۰</td>
<td>۶۰</td>
</tr>
<tr>
<td>اکبر زاده - منطقه مرکزی</td>
<td>۷/۶۵</td>
<td>۷/۹</td>
<td>۴/۵۷</td>
<td>۷/۵۴</td>
<td>۶۰/۰۵</td>
<td>۸۰</td>
<td>۶۰</td>
</tr>
<tr>
<td>علي نظری - لاهیجان</td>
<td>۱/۱۲</td>
<td>۸/۰۱</td>
<td>۸/۰۸</td>
<td>۸/۱۲</td>
<td>۶۶/۰۷</td>
<td>۶۰</td>
<td>۶۰</td>
</tr>
<tr>
<td>پرویز قربان - لاهیجان</td>
<td>۱/۱۶</td>
<td>۸/۷</td>
<td>۹/۶۸</td>
<td>۸/۷۹</td>
<td>۶۰/۰۵</td>
<td>۷۲</td>
<td>۶۰</td>
</tr>
<tr>
<td>حسینی - نورود</td>
<td>۱/۰۸</td>
<td>۸/۰۱</td>
<td>۱۰/۶۸</td>
<td>۸/۵۸</td>
<td>۶۰/۰۵</td>
<td>۸۰</td>
<td>۶۰</td>
</tr>
<tr>
<td>حجاج آقاپی - نورود</td>
<td>۲/۴۴</td>
<td>۸/۰۲</td>
<td>۲/۰۳</td>
<td>۷/۰۹</td>
<td>۶۰/۰۵</td>
<td>۸۰</td>
<td>۶۰</td>
</tr>
<tr>
<td>(мм)</td>
<td>(мм)</td>
<td>(мм/сп)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| |
|-----------|---
| |

<table>
<thead>
<tr>
<th>SARM</th>
<th>SO₂</th>
<th>Cl⁻</th>
<th>HCO₃⁻</th>
<th>K⁺</th>
<th>Na⁺</th>
<th>Mg²⁺</th>
<th>Ca²⁺</th>
<th>HD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TDS	
ارزیابی بازده کاربرد آب در پرینژ‌زارهای تحت شبکه‌های آبی‌اری

جدول ۲- مشخصات مزارع انتخابی پرینژ

<table>
<thead>
<tr>
<th>رنگ</th>
<th>تعداد روژهای نفوذ‌پذیری نهایی</th>
<th>مساحت</th>
<th>این شاخه</th>
<th>مزرعه (m²)</th>
<th>آبی‌اری</th>
<th>فرمون</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۲۴</td>
<td>۸۶</td>
<td>۱۱۱۸۰</td>
<td>۱</td>
<td>F₁</td>
<td>۱</td>
<td>۴</td>
</tr>
<tr>
<td>۰/۱۶</td>
<td>۸۳</td>
<td>۲۰۸۹۰</td>
<td>۲</td>
<td>F₂</td>
<td>۲</td>
<td>۴</td>
</tr>
<tr>
<td>۰/۸</td>
<td>۷۹</td>
<td>۷۸۵۰۰</td>
<td>۳</td>
<td>F₃</td>
<td>۳</td>
<td>۴</td>
</tr>
<tr>
<td>۰/۴</td>
<td>۷۷</td>
<td>۸۸۵۰۰</td>
<td>۴</td>
<td>لاهمان</td>
<td>۴</td>
<td>لاهمان</td>
</tr>
<tr>
<td>۰/۴۲</td>
<td>۸۲</td>
<td>۲۷۸۵۰</td>
<td>۵</td>
<td>لاهمان</td>
<td>۵</td>
<td>لاهمان</td>
</tr>
<tr>
<td>۰/۶۶</td>
<td>۸۳</td>
<td>۲۱۷۵۰</td>
<td>۶</td>
<td>مرکزی</td>
<td>۶</td>
<td>مرکزی</td>
</tr>
<tr>
<td>۰/۴۴</td>
<td>۸۰</td>
<td>۵۱۴۰۰</td>
<td>۷</td>
<td>GN₁ (نورود)</td>
<td>۷</td>
<td>GN₁ (نورود)</td>
</tr>
<tr>
<td>۰/۵۶</td>
<td>۸۷</td>
<td>۱۷۶۱۰</td>
<td>۸</td>
<td>مرکزی</td>
<td>۸</td>
<td>مرکزی</td>
</tr>
</tbody>
</table>

در انتخاب و آب و برقی، عضوی که در نهایت انتخاب گیری نفوذ‌پذیری جدول ۲، مقدار بازده کاربرد متوسط برای هر مزرعه در طول دوره رشد پرینژ توسط شد. میانگین داده‌های آبی‌اری در سه ماه خرداد، تیر و مرداد نیز در شالیزارهای انتخابی گیلان و فومنهای محاسبه شد.

نتایج و بحث

تغییرات بازده کاربرد آب در طول فصل آبی‌اری، در همه مزارع شالیزاری مختبب در مناطق تحت مطالعه تابع یک روند بخصوص بود. علاوه بر دومین میانگین این تغییرات در مزارع انتخابی منطقه فرآیندی می‌باشد. روند تغییرات نشان می‌دهد که در اولین و اواخر فصل آبی‌اری با توجه به نتایج آبی کم پرینژ، به تظمین دیگر روژه‌ای توجه چندانی نشده است. به در باری داری روژه‌ای تقریباً در سرستام‌های نهایی این با توجه به نتایج آبی‌اری، به طور یکسان وارد کردن شده و این موضوع باعث کاهش بازده، جا به جای آن‌ها،

نمونه‌گیری مورد استفاده در تبدیل

بازده کاربرد آب در مزرعه به شرح زیر توصیف گردید.

مقدار آب مصرفی جهت تبخیر و تعرق یک پرینژ

$$E_a = \frac{E_{din} \times 100}{\text{مقدار آب داده به مزرعه}}$$

با زایه کاربرد آب برای دو حالت زیر، با توجه به این که در مناطق مورد مطالعه روژه‌ای مزرعه با دست به عضوی آب آبی‌اری، مزرعه پایین دست محسوب می‌شود، تغییر گردید.

حالت اول - بدون استفاده از روژه‌ای

$$E_a = \frac{\text{Din} - (\text{Dout} + \text{Dp}) \times 100}{\text{Din}}$$

حالت دوم - بالاترین ارزیابی مجدداً از روژه‌ای

$$E_a = \frac{\text{Din} - \text{Dp}}{\text{Din}} \times 100$$

که در آنها:
آزمایش‌های نفوذی دیدگاه نشان داد (جدول ۴) که مقدار نفوذی در این خاک‌ها بسیار پایین و کمتر از سه میلی‌متر در روز بوده است.

مقادیر حاکم و متوسط نفوذ‌دهنده‌های کاپیتل آب باریک به سه منطقه پذیرش در حالی‌که (I) و (II) که آب خروجی از مزارع به عنوان تهیه‌کننده محصول شده و استفاده مجدد از آن برگردید در جدول ۵ آورده شده است. این نتایج در از روابط باریک آب‌پذیری کناره‌کننده ۲۵ درصد افزایش می‌دهد. این چنین وضعیت در مناطق مورد مطالعه حاکم بود.

احراز معیار محاسبه‌های نمونه‌های معیار عبارت (Xk) در جدول ۶ آورده شده است. این معیار معیار میانگین (x) نشان دهنده متوسط اختلاف سِیم‌میانگین مختلف و X

به طور کلی در منطقه فومن (F) به دلیل پوشش کانال‌های درجه ۳ و ۴ آب مورد نیاز گیاه در طول دوره رشد در اختیار یافته می‌گیرد و از آنجا برداشت آب از کانال‌های درجه ۳ در پوشش کانال‌های کشاورزی و تحت کنترل صرعت می‌گردد و همچنین سیستم‌های محلی موجب پروپانیزی توزیع آب از آب‌گیری‌های آب‌پذیری نظرات داشتند، لذا مقدار تلفات آب کم و بارشه آبیاری نسبتاً بالا بود (شکل ۳). ضمناً شکل مزارع در این منطقه منظم‌تر و مسطح‌تر از دو منطقه دگر به دو آب تقریباً به صورت یکنواخت توزیع می‌گردد.

شکه آبی در منطقه فومن (D) نیز همان منطقه آبیاری درجه ۴ آب‌پذیری مدرن بوده و برداشت از آب‌گیری‌های کانال‌های درجه ۲ در پوشش کانال‌های کشاورزی می‌گردد اکثر از متوسط میانگین کنترل می‌شود. ولی از نظر تهیه گیاه شکه، مخصوصاً در دشت کانال‌های درجه ۲ (کانال‌های E) دقت کنترل می‌شود.

مدیریت آبیاری در مزارع منطقه فومن (F) ضعیف‌تر و همگرایی و مشترک کشاورزان در نسبت به مدیریت آبیاری در مزارع منطقه یاکه انجام می‌دهند. مهم‌ترین مقدار به دست آمده از
شکل 2- متوسط بازده کاربرد آب در شالیزارهای اختیاری شیکه‌های آبیاری گیلان و نومنات (F و G، D)

جدول 5- مقادیر بازده کاربرد آب در حالت‌های 1 و II بر حسب درصد

<table>
<thead>
<tr>
<th>I</th>
<th>نومن</th>
<th>رشته-مرکزی</th>
<th>لاهمجاین</th>
<th>نام منطقة</th>
<th>نام مزرعه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F₁</td>
<td>F₂</td>
<td>F₃</td>
<td>G₁</td>
<td>G₂</td>
</tr>
<tr>
<td>04/7</td>
<td>54/6</td>
<td>49/3</td>
<td>51/2</td>
<td>50/3</td>
<td>50/7</td>
</tr>
<tr>
<td>50/9</td>
<td>50/5</td>
<td>44/2</td>
<td>48/1</td>
<td>48/5</td>
<td>42/2</td>
</tr>
<tr>
<td>52/7</td>
<td>53/2</td>
<td>47/6</td>
<td>49/6</td>
<td>49/1</td>
<td>48/4</td>
</tr>
<tr>
<td>51/7</td>
<td>51/2</td>
<td>49/0</td>
<td>49/0</td>
<td>49/0</td>
<td>49/0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II</th>
<th>نام منطقه</th>
<th>نام مزرعه</th>
<th>مقادیر میانگین</th>
<th>براي حالات</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>74/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75/9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>نام منطقه</th>
<th>نام مزرعه</th>
<th>مقادیر میانگین</th>
<th>براي حالات</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>73/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
جدول ۶ - مقادیر δ بازده کاربرد آب در حالت‌های I و II در شالیزه‌های انتخابی گیلان و فاریاب

<table>
<thead>
<tr>
<th>μ</th>
<th>N</th>
<th>$\delta(%)$</th>
<th>\bar{x}_P</th>
<th>\bar{x}_G</th>
<th>\bar{x}_P^G</th>
</tr>
</thead>
<tbody>
<tr>
<td>۹۹/۹۵</td>
<td>۳</td>
<td>۰/۹۶</td>
<td>۵۱/۲</td>
<td>۴۹/۵</td>
<td>۴۸/۴</td>
</tr>
<tr>
<td>۷۲/۱۱</td>
<td>۳</td>
<td>۰/۶۴</td>
<td>۷۳/۷</td>
<td>۷۸/۷</td>
<td>۷۷/۵</td>
</tr>
</tbody>
</table>

- متوسط بازده‌های تعیین شده در مناطق تحت بررسی در طول فصل آبیاری (۱۸ از ۲۰ عدده)
- تعداد مناطق تحت مطالعه در شیب‌های آبیاری
- منابع: متوسط بازده‌ها در شیب‌های آبیاری گیلان و فاریاب

عملیات کاشت، داشت و بردشته برندج در مقایسه با منطقه فومن (F) کمتر بوده، همچنین شکل فنکه‌های زراعی نامنظم، توسط نه چندان خوب به بهره بوده. این عوامل در پایین بودن بازده در منطقه مؤثر می‌باشد.

در منطقه رشت - مرکز (G) بازده کاربرد آب حدود یک درصد برابر با منطقه دیگر است. این کاهش نسبتاً ناچیز احتمالاً به خاطر اندازه گیری بر می‌گردد. در این بخش نهایی که آب به سر مزروع می‌رسد، به دلیل عدم وجود دریچه‌های ایگری، کانالی بهره‌وری مقدار آب ورودی به منطق ۷۴/۸۳ می‌گردد. ولی در بخش مدرن شیب‌های این منطقه به دلیل کنترل توسط شرکت سهامی آب منطقه‌ای، بازده افزایش داشت.

شکل ۲ - مقایسه متوسط بازده کاربرد آب در شالیزه‌های انتخابی منطقه رشت - مرکز (G) و نورود (N)

جدول ۷ - مقادیر δ بازده کاربرد آب در حالت‌های I و II در شالیزه‌های انتخابی گیلان و فاریاب

<table>
<thead>
<tr>
<th>μ</th>
<th>N</th>
<th>$\delta(%)$</th>
<th>\bar{x}_P</th>
<th>\bar{x}_G</th>
<th>\bar{x}_P^G</th>
</tr>
</thead>
<tbody>
<tr>
<td>۹۹/۹۵</td>
<td>۳</td>
<td>۰/۹۶</td>
<td>۵۱/۲</td>
<td>۴۹/۵</td>
<td>۴۸/۴</td>
</tr>
<tr>
<td>۷۲/۱۱</td>
<td>۳</td>
<td>۰/۶۴</td>
<td>۷۳/۷</td>
<td>۷۸/۷</td>
<td>۷۷/۵</td>
</tr>
</tbody>
</table>

- متوسط بازده‌های تعیین شده در مناطق تحت بررسی در طول فصل آبیاری (۱۸ از ۲۰ عدده)
- تعداد مناطق تحت مطالعه در شیب‌های آبیاری
- منابع: متوسط بازده‌ها در شیب‌های آبیاری گیلان و فاریاب

عملیات کاشت، داشت و بردشته برندج در مقایسه با منطقه فومن (F) کمتر بوده، همچنین شکل فنکه‌های زراعی نامنظم، توسط نه چندان خوب به بهره بوده. این عوامل در پایین بودن بازده در منطقه مؤثر می‌باشد.

در منطقه رشت - مرکز (G) بازده کاربرد آب حدود یک درصد برابر با منطقه دیگر است. این کاهش نسبتاً ناچیز احتمالاً به خاطر اندازه گیری بر می‌گردد. در این بخش نهایی که آب به سر مزروع می‌رسد، به دلیل عدم وجود دریچه‌های ایگری، کانالی بهره‌وری مقدار آب ورودی به منطق ۷۴/۸۳ می‌گردد. ولی در بخش مدرن شیب‌های این منطقه به دلیل کنترل توسط شرکت سهامی آب منطقه‌ای، بازده افزایش داشت.
جدول 7- مقدار بازده کاربرد آب در فصل آبیاری برنج در گیلان

<table>
<thead>
<tr>
<th>مرداد</th>
<th>خرداد</th>
<th>منطقه</th>
</tr>
</thead>
<tbody>
<tr>
<td>حالات II</td>
<td>حالات I</td>
<td>حالات II</td>
</tr>
<tr>
<td>F2</td>
<td>F3</td>
<td>F1</td>
</tr>
<tr>
<td>72/28</td>
<td>51/10</td>
<td>72/9</td>
</tr>
<tr>
<td>72/7</td>
<td>48/7</td>
<td>72/8</td>
</tr>
<tr>
<td>72/3</td>
<td>49/4</td>
<td>72/8</td>
</tr>
<tr>
<td>72/9</td>
<td>49/6</td>
<td>73/0</td>
</tr>
</tbody>
</table>

جدول 8- نسبت پایایی (TWR) در برنج زراعی گیلان در حالت I

<table>
<thead>
<tr>
<th>نام منطقه</th>
<th>فومن</th>
<th>رشت-مرکزی</th>
<th>لاهیجان</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>F2</td>
<td>F3</td>
<td>F1</td>
</tr>
<tr>
<td>0/286</td>
<td>0/288</td>
<td>0/335</td>
<td>0/295</td>
</tr>
<tr>
<td>0/303</td>
<td>0/300</td>
<td>0/277</td>
<td>0/273</td>
</tr>
<tr>
<td>متوسط</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 9- مقدار تبخیر و تعرق برنج بیتام و خزر (2، 3 و 4)

<table>
<thead>
<tr>
<th>نام منطقه</th>
<th>بخش تبخیر و تعرق از گیاه برنج بیتام</th>
<th>بخش تبخیر و تعرق از گیاه برنج خزر</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>F2</td>
<td>F3</td>
</tr>
<tr>
<td>574/4 میلیمتر</td>
<td>540/5 میلیمتر</td>
<td>559/5 میلیمتر</td>
</tr>
</tbody>
</table>

با استفاده از برنامه Cropwat مقدار متوسط تبخیر و تعرق برنج از 8 مزرعه مستخب در طول دوره رشد برنج که از رابطه [نفوذ عمقی آب خوروجی آب ورودی] به دست آمده 540/5 میلیمتر می‌باشد. این مقدار با نتایج به دست آمده از روش کرنتیا کنترل شده در بخش تحقیقات خاک و آب مؤسسه تحقیقات برنج رشت تا حدودی همخوانی دارد (جدول 9).

نتیجه‌گیری

مقدار متوسط بازده کاربرد آب در منطقه D و G، F و D در حالات I و II به ترتیب 51/2، 73/3 و 72/4 درصد و در حالات I و II به ترتیب 79/0 و 77/4 درصد محاسبه گردید که در حالت I بازده کاربرد حدود 20 تا 25 درصد افزایش یافتند.

سپاسگزاری

بخش از هزینه‌های این طرح توسط دانشگاه تهران و پژوهشگاه بیتام و خزر دیگر به وسیله شورای تحقیقات آب و آبوزارت نیرو تأمین شده است که بعنوان سهمیه‌های مدارکی می‌شود.
منابع مورد استفاده

1- آب پرین. 1373. آبزیابی میزان آب مورد نیاز زراعت برنج در دشت‌های غرب مازندران. مجموعه مقالات هفتمین کمیته ملی آبیاری و زهکشی ایران، کمیته ملی آبیاری و زهکشی ایران، 28 صفحه.

2- ریاضی، م. و. ش. عادلی نوری. 1372. راهنمای برنامه کامپیوتری Cropwat. معاونت امور زیرنشیب وزارت کشاورزی.

3- فرشی، ا. و. ت. رضوی پور. 1372. تغییرات معنادار در پیش‌بینی برای گیاه برنج، از این هم‌های بینام و خرچنگ به روش لاپاسپری. گزارش پژوهشی مؤسسه تحقیقات خاک و آب.

4- فرشی، ا. و. ت. رضوی پور. 1373. بررسی میزان تبیخ و تعرق پتانسیل برای گیاه برنج واریته‌های بینام و خرچنگ به روش کرت‌های کنترل شده. گزارش پژوهشی مؤسسه تحقیقات خاک و آب.

5- فاطمی، م. و. ا. شکراللهی. 1372. آبزیابی آبیاری در شیکه‌های آبیاری دز، مجموعه مقالات هفتمین سمینار کمیته ملی آبیاری و زهکشی ایران، کمیته ملی آبیاری و زهکشی ایران.

6- غزلی، ع. 1373. تحقیقات در زمینه آبیاری و زهکشی خوزستان. مطالعه منتشر نشد.

7- مهاب فقصی. 1374. بررسی هلندی‌های آبیاری در شیکه‌های شمال کشور. پروست شمار (II).

8- میرابی‌قلی‌نیا. 1373. آبزیابی بازده آبیاری در تعدادی از شیکه‌های سنتی ایران. مجموعه مقالات هفتمین سمینار کمیته ملی آبیاری و زهکشی ایران. 17 صفحه.