تجزیه ماده خشک و الایاف بنج نوع ماده خوراکی به وسیله فارچه‌ی پی‌هوازی شکم‌های گوسفند

نقی فورچی، شعبان رحیمی، محمد رضانیان و غلامرضا قربانی

چکیده
برای بررسی توان فارچه‌ی پی‌هوازی شکم‌های در تجزیه ماده خشک و الایاف از پونچه سیروس گندم، کنجاله نان، پاکاس و سیلوی ذرت
برای کشت فارچه‌ی پی‌هوازی جدا شده از شکم‌های گوسفند نزدیک تا استفاده شد. فارچه‌ها به مدت صفر، ۳ و ۶ روز در مایع خوراکی
مذکور کشت داده شدند. تغییرات تجزیه‌ی ماده خشک، pH، دیویوره سولولی بدون همی سلولوز (ADF)، دیویوره سولولی (NDF) و همی سلولوز و لیگیین (ADL) از نظر میزان متغیر بود. که به‌صورت کمترین
در مدت ۶ روز کشت، کاهش ماده خشک و به‌طور کلی به‌طور متوسط در پونچه با دقت آمار روند‌هایی بود. به‌طور کلی کمترین
تغییرات میزان pH و دیویوره سولولی بدون همی سلولوز، همی سلولوز و لیگیین در پونچه با دقت آمار روند‌هایی بود. داده‌ها و اطلاعات حاضر که با کمک توانایی کارایی فارچه‌ی شکم‌های گوسفند در تجزیه و کاهش ماده خشک، دیویوره سولولی بدون همی سلولوز و سلولوز در انواع خوراک‌هاهای مورد استفاده است.

واژه‌های کلیدی: فارچه‌ی پی‌هوازی، شکم‌های، دیویوره سولولی، دیویوره سولولی بدون همی سلولوز، لیگیین

1. دانشجوی سابق دکتری علوم دام. دانشگاه تربیت مدرس. تهران
2. استاد دانشگاهی دانشگاه تربیت مدرس. تهران
3. استاد دانشگاه دانشگاه دانشگاه تربیت مدرس. تهران
4. دانشیار علوم دام. دانشگاه کشاورزی، دانشگاه صنعتی اصفهان

141
آنتها در فرآیند هضم در شکمیه ناشناخته است. همچنین، ارتباط ترکیبات دیواره سلولی با فعالیت قارچ به خونه مشخص نشده است. با توجه به این که اثرات حفظ‌کننده در نظر گرفته شده است، قارچ‌های بی‌هوای و دیگر عوامل تجربی یافته در شکمیه پدید می‌آید (49، 19، 24).

پذیرش‌گذاری بین باور بودن که زنویوس قارچ‌های بی‌هوای شکمیه در همه نشخوارکننده‌ها وجود دارد، در هر حال، بزرگ‌ترین آنها در مخلوط هضم که در محیط درون این زمان و در دسترس قرار گرفته است. با افزایش زنویوس به میزان بازگشت شکمیه در داخل و آغاز و تولید آزاد زنویوس، جنگل‌های این دسته از اسپوراتوژن‌ها، ادامه می‌یابد (15، 17).

مواد و روش‌ها

در این پژوهش از گوسفند نر نزدیک بالانس شد. در طول مدت آزمایش، بیک گوسفند در نفس شناپلیکی انفرادی در کاهش و فستوی کاذبی شد. جبر روزانه بیونجه (1000 گرم) و جو (200 گرم) بود. برای جنگل‌هایی که علائم زودگیری و زیر نشخوارکننده وجود دارد، معمول نشان دهنده فعالیت قارچ‌های بی‌هوای شکمیه و هضم رویومะ وجود دارد.

مهمترین نشان این قارچ‌های بی‌هوایی در شکمیه، هضم و تجزیه مواد اشباع است. در پژوهش ویندهام و اکین (25) کاهش ماده حساس گیاه بیونجه پس از رشد قارچ‌های بی‌هوایی شکمیه به مدت هفت روز بین 19/2/تا 21/7 بود. در پژوهش گاوگانه و کامات (17) سویسری تروآ سیبیس گندم، باگات نگهداری و کاهن پری به کار رفت. نتایج نشان داد که به تجربی و نتایج هسی کار凤 گسترش‌یافته در کاهش و تبدیل فعالیت سیبیس گندم به یکی از قارچ‌های بی‌هوایی شکمیه، به سبب خوزیک دیگر پس از 70 ساعت اکسپرسیون نیست است، که این مواد به دلیل مقدار لیکن در کربن دی اکسید به سویسریا دیگری باید.

سیاست‌های دیگر

از هفتم‌گام که قارچ‌های شکمیه کشف شدند، پژوهش‌های بسیاری در زمینه اکسوژنیکی، فعالیت‌های بیوشیمیایی و فیزيولوژی آنها صورت گرفته. ولی هنوز تحقیقی دقیق و سهم
تجزئة ماده خشک و الایف بنج نوع ماده خوراکی به وسیله قارچ‌های به‌ویژه شکمیه گوسفند

زمین‌های ۶ و ۹ روز کشت قارچ‌های به‌ویژه شکمیه روز ۷ متوسط سیستم‌های مختلف است. قارچ‌های شکمیه با توجه به نبات نفوذ به دیوراز سولوک‌گیاه (۱۱ و ۱۷) و پوشکی‌‌سازی و P-complementary استراز علیه ترسریع هضم کربوهیدرات‌های ساختاری مانند مونوساکاریدها می‌شوند.

مانسوی و همکاران (۱۷) امواج گونه‌های قارچ‌های شکمیه را روی علف تیموتوی (Phleum pratense) به مدت هفت روز کشت دادند. مقدار کاهش ماده خشک از ۱۸ تا ۱۰/۱۷ بر روی کشت داده را ترتیب کمتری مقدار را جنس Pirromyces و پیشرفت مقدار را Neocallossima است. باینها پرتوهای کاهش نشان داده است که به دلیل امکانات در هزینه مختلف، به‌ویژه در واریته‌های مختلف یک گونه در طول مدت تجزیه کاهش با هم اختلاف دارند. این به‌ویژه در حالت دیوراز سولوک مانند ترکیبات شیمیایی بیونهایان را یافت که این امر توسط ویژگی‌های دارودی مقدار تاثیر زیادی بر هضم مقدار ساقه در نمونه خوراک بیشتری گزارش شده است. با لحاظ فضاهای خشک ماکم‌های آن نمونه کمتر است (۱۹ و ۲۴).

مقدار تجزیه و کاهش ماده خشک کننده پنهان در کم‌بود (جدول ۱) و مقدار تجزیه و کاهش ماده خشک با کاهش مقدار بعد از خوراک‌های دیگر بیشتر است. با توجه به مقدار بودن مقدار پروتوک خام کننده پنهانه انرژی میرفت که کاهش ماده خشک بیشتری نمایش می‌دهد. هرچه مقدار ساقه در نمونه خوراک بیشتری بود، کاهش هضم ماده خشک آن نمونه کمتر است (۴۹ و ۲۴).

درصد کاهش مقدار NDF L Enables: ADL و ADF درصد کاهش NDF L麗گنین، همی سولوک و Sولوک از فرمول زیر محاسبه شد (۷).

\[L = \frac{(WP \times Wt \times Pt)}{WP \times 100} \]

که در آن L درصد کاهش Wt و مقدار ماده خشک نسبت به سیستم‌های NDF در گروه مادر و پایان تجزیه بر حسب Wt و P در نمونه از نظر SAS با آماری با تجزیه آماری داده‌ها با استفاده از ترم نیور آماری کاربرد مدل آماری طرح کاملاً تصادفی در مدل تکرار، و مقایسه میانگین‌ها با استفاده از آزمون چند دامنه دانک انجام شد.

نتایج و بحث

کاهش ماده خشک داده‌های جدول ۱ و ۳ می‌توانست کاهش ماده خشک در
جدول 1. ترکیب شیمیایی پنج نوع خوراک مورد آزمایش بر اساس ماده خشک

<table>
<thead>
<tr>
<th>خوراک</th>
<th>پروتئین خام (درصد)</th>
<th>جریبی</th>
<th>دوباره سلولی</th>
<th>لیگنین</th>
<th>همی سلولز</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19.9 ± 1.8</td>
<td>0.7</td>
<td>0.3 ± 0.2</td>
<td>20.5</td>
<td>0.9 ± 0.1</td>
</tr>
<tr>
<td>2</td>
<td>19.1 ± 2.4</td>
<td>0.8</td>
<td>0.3 ± 0.1</td>
<td>21.7</td>
<td>1.1 ± 0.1</td>
</tr>
<tr>
<td>3</td>
<td>20.7 ± 2.1</td>
<td>0.6</td>
<td>0.3 ± 0.1</td>
<td>23.9</td>
<td>1.3 ± 0.2</td>
</tr>
<tr>
<td>4</td>
<td>20.4 ± 2.9</td>
<td>0.7</td>
<td>0.3 ± 0.1</td>
<td>24.5</td>
<td>1.5 ± 0.3</td>
</tr>
<tr>
<td>5</td>
<td>21.3 ± 2.1</td>
<td>0.8</td>
<td>0.3 ± 0.1</td>
<td>25.1</td>
<td>1.7 ± 0.4</td>
</tr>
</tbody>
</table>

جدول 2. درصد کاهش ماده خشک و ترکیبات الیافی و تغییرات pH انواع خوراک کپسپ 3 از 3 روش رشد قارچ‌های بی‌هوایی شکم‌گوسفند

<table>
<thead>
<tr>
<th>صفات</th>
<th>ماده خشک</th>
<th>دوباره سلولی</th>
<th>لیگنین</th>
<th>همی سلولز</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20.0 ± 2.1</td>
<td>0.8 ± 0.1</td>
<td>0.3 ± 0.2</td>
<td>20.5 ± 0.1</td>
</tr>
<tr>
<td>2</td>
<td>20.2 ± 2.2</td>
<td>0.7 ± 0.1</td>
<td>0.3 ± 0.2</td>
<td>21.7 ± 0.1</td>
</tr>
<tr>
<td>3</td>
<td>20.4 ± 2.3</td>
<td>0.6 ± 0.1</td>
<td>0.3 ± 0.2</td>
<td>22.9 ± 0.1</td>
</tr>
<tr>
<td>4</td>
<td>20.6 ± 2.4</td>
<td>0.5 ± 0.1</td>
<td>0.3 ± 0.2</td>
<td>24.1 ± 0.1</td>
</tr>
<tr>
<td>5</td>
<td>21.0 ± 2.5</td>
<td>0.4 ± 0.1</td>
<td>0.3 ± 0.2</td>
<td>25.3 ± 0.1</td>
</tr>
</tbody>
</table>

میانگین‌های دارای حروف غیر مشابه در ستون، اختلاف معنادار در سطح احتمال 0.05 درصد دارد (آزمون دانک).
جدول 4. درصد کاهش ماده خشک و ترکیبات الیافی و تغییرات pH انواع خوراک پس از 9 روز رشد قارچ‌های یوکوهاری سیگمی

<table>
<thead>
<tr>
<th>صفات</th>
<th>دیواره سولیل همی سولیل</th>
<th>دیواره سولیل به‌دلیل لیگین</th>
<th>دیواره سولیل بدون لیگین</th>
<th>pH ماده خشک خوراک</th>
</tr>
</thead>
<tbody>
<tr>
<td>پونچه</td>
<td>70 ± 10/8</td>
<td>15 ± 10/8</td>
<td>12 ± 10/8</td>
<td>8 ± 10/8</td>
</tr>
<tr>
<td>سوسن گندم</td>
<td>87 ± 10/8</td>
<td>78 ± 10/8</td>
<td>11 ± 10/8</td>
<td>23 ± 10/8</td>
</tr>
<tr>
<td>کاجال پنهانه</td>
<td>15 ± 10/8</td>
<td>12 ± 10/8</td>
<td>9 ± 10/8</td>
<td>20 ± 10/8</td>
</tr>
<tr>
<td>گریزلی درت</td>
<td>84 ± 10/8</td>
<td>11 ± 10/8</td>
<td>9 ± 10/8</td>
<td>18 ± 10/8</td>
</tr>
<tr>
<td>یوکوهاری سیگمی</td>
<td>94 ± 10/8</td>
<td>13 ± 10/8</td>
<td>9 ± 10/8</td>
<td>10 ± 10/8</td>
</tr>
</tbody>
</table>

میانگین‌های دارای جراح غیر مشابه در ستون‌ها. اختلاف معنادار در سطح احتمال 0.05 درصد دارند (آزمون تانکس). مقدار را یوکوهاری سیگمی مقدار با یوکوهاری داشته. بین سوسن گندم و پونچه اختلاف معنادار وجود نداشت (جدول 6). بین پونچه و سوسن گندم مقدار کاهش ماده خشک را در مدت 9 روز کشت با قارچ‌های یوکوهاری شکمی دارا بودند (جدول 4). نتایج این مورد مقدار پتروپزیک و کروپزیک‌هر رالی‌های غیر ساختاری و ترشح انواع آزمایشگاهی تجربه‌کننده پتروپزیک و نشانه‌نامه به وسیله قارچ‌های یوکوهاری شکمی یونه گنجایش. عدم هضم و تجزیه بهبود ماده شکمی بود که این شاپید به سطح اختلاف در نوآوری وروده و مدت زمان رشد قارچ و مرحله رویش گیاه است. پونچه نسبت به دیگر ماده خوراکی مورد بررسی، کمترین مقدار کاهش ماده خشک داشت (جدول 6). به دلیل زیاد بودن لیگین پونچه، قابلیت جامد آن کم است (21 و 22).

نتایج در محیط pH

کاهش pH محیط کشت با طولانیت شدن زمان کشت (جدول 2). با گزارش مک آلیستر و همکاران (18) و رضایتیان (22) هم‌خوانی دارد. تغییر در pH محیط کشت که کسی از نشانه‌های رشد قارچ است. تولید اسیدهای جریب فار و دی اکسید کریم و تولید گاز هیدروژن می‌تواند باعث کاهش pH محیط کشت کرد (18).

کاهش دیواره سولیل (NDF) می‌تواند در جدول 3 و 4 گویایی کاهش و تجزیه دیواره مک آلیستر و همکاران (18) نشان دادند که قارچ‌های یوکوهاری سیگمی
همکاران (8) بیان کردن که موجودات در محیط به‌وزن قدر
به تجزیه لیگن‌نبود و برای تجزیه لیگن‌نبو دیگر به وجود اکسیژن
نیاز است. لیگن‌نبو معمولاً یک ماده غیر قابل حل در گیاه می‌باشد.
ولی برخی آزمایش‌هایی که در این زمینه انجام شده، نشان
می‌دهد که گاهی لیگن‌نبو از فرآیند تجزیه لیگن نیاز
دارند (22). این
و دری از نویگر (4) کاهش لیگن‌نبو در انواع مختلف از لیگن‌نبو
در محیط کشت به وسیله قارچ‌های به‌وزن قدرکه نسبت به گونه
و رشته‌های قارچ کربنیک، ترکیب ساختاری و زمان تخریب است. (4.)

13، 14، 15 و 21.)

اختلاف در تجزیه و کاهش لیگن‌نبو در خوراک‌های مورد
بررسی (جدول 3 و 4) احتمالاً به علت وجود انواع لیگن‌نبو
می‌باشد (3). لیگن‌نبو از نظر نوع یک بسیار متنوع است و انواع
مختل لیگن در خوراک‌های مختلف گیاه می‌باشد. حتی در
یک گونه یک نوع از مخلوط یک لیگن‌نبو ممکن است وجود
dafاش باشد (3). مولکول لیگن‌نبو از یک بسیار بی‌چیده
تشکل شده می‌باشد و مولکی‌سازی مونومراتی آن یافته
می‌گردد. (3)

به رغم یافته‌های فوق و نتایج حاصل از این پژوهش در پات
کاهش مقدار لیگن‌نبو در انواع خوراک‌های مورد استفاده پس از
رشد قارچ‌های به‌وزن قدرکه بی‌نتیجه بوده به این که برخی از
پژوهشگران جهت درک رشته‌های به‌وزن قدرکه ضروری
می‌دانند (8). و بنابراین امکان‌پذیری در روشهای سولفوراتیک
(7) وجود دارد (12). نیاز توان به طور خام کاهش مذکور را به
معنی تجزیه لیگن‌نبو که به‌وزن قدرکه به

مقدار (NDF) (9) در طول مدت ۳، ۶، ۹ و ۱۲ روز کشت قارچ
به‌وزن قدرکه است، که گزارش‌های پژوهشگران دیگر
هم خوانی دارد (۴ و ۲۲).

یونجه و سپس گندم درایی بیشترین مقدار کاهش
در طول مدت ۹ روز کشت قارچ بوئن. با نتایج به مقدار کم
لیگن‌نبو در یونجه و سپس گندم (جدول ۴)، اندازه‌گیری این
کاهش مقدار چنین که باشد. شیب لینیتی که عامل
پادارندگی در فضای و کاهش دیواره‌های سلولی است. (4.)

داختم سلولی بدون هم سلول (ADF)

نتایج جدول ۴ نشان می‌دهد که طور کلی ADF به وسیله
قارچ‌های به‌وزن قدرکه تهجیر شده و مقدار آن کاهش یافته
است. بیشترین مقدار تجزیه ADF از این بیشتر
پژوهش مشخص شده که در مدت یک ماه بیشتر
نتیجه احتمال تجزیه بیشتر ADF نسبت به سایر خوراک‌های داده
می‌شود. (24).

کاهش لیگن‌نبو

در مدت ۹ روز کشت قارچ‌های به‌وزن قدرکه در کل
سوسیس‌های مورد بررسی کاهش مقدار لیگن‌نبو وجود داشت
(جدول ۴).

آرین وزیری (۲۱) بیان کرده‌است که حدود ۱۶٪ از لیگن‌نبو خوراک در اثر
رشد قارچ‌های به‌وزن قدرکه کاهش یافته. و نسبت (۴۴)
گزارش کرده‌اند که استفاده از لیگن‌نبو به عنوان مارکر داخلی
برای استفاده در تعیین قابلیت هضم بایستی احیا کردن. چون
مقداری از لیگن‌نبو در شکم به کاهش هضم می‌شود. همچنین، بیان
کرده‌اند که امکان دارد لیگن‌نبو به مواد دیگری تبدیل شود
(۷).

برخی از پژوهشگران گزارش کرده‌اند که باکتری‌های به‌وزن
می‌توانند لیگن‌نبو را در شکم گزارش به شکم‌های فنولیک و
الکوئید تبدیل، و بعد از جذب به روش
(۷، ۱۲)
ابین و ریسیکی (4) گزارش کرده‌اند که قارچ‌های به‌وزن
احتمالاً نماینده جزئی ترکیبات فنولیک را ندارند. جنون و

۱۴۶
کاهش هم سلول

در مدت سه روز کشت قارچ به‌هوازی شکمکه، بین باگاس، سیلوی دز و کنناله به‌رنگی اختلاف معنی‌دار وجود نداشت (P>0.05). در مدت 6 و 9 روز کشت قارچ به‌هوازی شکمکه گسپاند، براک جدول 3 بیشترین مقادیر کاهش هم سلول را داشت.

هم سلول همراه با سالول و نزدیک به آن در دیواره سلول گیاه وجود دارند. ولی به صورت کووالانسی به آن متصل نمی‌شود. و پیوند آنها از نوع هیدروزی است (14 و 17). تجزیه هم سلول در این آزمایش از 16 نیم در کاهش خوراک‌های مختلف متوقف بود. در حیوانات نخوراک کنندگان در حدود 50% از گریبان جریه تجزیه هم سلول (21). پژوهشگان دیگر نیز گزارش کرده‌اند که قارچ‌های به‌هوازی موجود در دستگاه گریبان نخوراک کنندگان و غیر نخوراک کنندگان نفس مهی در هم سلول و هم سلول دارند (21 و 25). در پژوهش گاوانته و کامی (22) به سیستم سبزی استفاده گردید، با کاهش تشکیل و ناپایداری آزمایش شد. نتایج نشان داد که تجزیه و تبدیل هم سلول سوس گندم به وسیله قارچ‌های به‌هوازی شکمکه با سبب نسبت به دوختره که در کاهش خوراک‌های پیران دارند به 70 ساعت اکتوپاسیون بیشتر است. که این مقدار به دلیل مقادیر لیپید پس از گردیده است. در میزان سلول سبزی در قارچ‌ها با سیستم‌های دیگری بایست. با توجه به جدول 1 گزارش فووقی، مشخص شده که سبزی به‌رد هم سلول و کمترین درصد لیپید را دارد. جدول 1 و 4 این آزمایش نشان می‌دهد که هرچند مقادیر تجزیه هم سلول در سبزی کمتر از یونجه است، ولی مقادیر هم سلول تجزیه شده در سبزی گندم بیشتر از یونجه می‌باشد.

برای جدول 1، تجزیه و کاهش هم سلول در بیشتر خوراک‌ها در مدت 9 روز کشت قارچ بیشتر از سالول بود. پژوهشگان گزارش کرده‌اند که در مواد گیاهی غیر لیپیدی مشاهدات زیر میکروسکوپی نوری، رشد قارچ‌های به‌هوازی شکمکه روی انواع خوراک‌های دام مورد آزمایش را تأیید کردند. داده‌های حاصله که در سایت توانایی قارچ‌های باشند (7).

مشاهده‌های فوقی در میکروسکوپی نوری، رشد قارچ‌های به‌هوازی شکمکه روی انواع خوراک‌های دام مورد آزمایش را تأیید کردند. داده‌های حاصله که در سایت توانایی قارچ‌های باشند (7).

تشخیص شدن این موضوع مورد نیاز است.
سیاستگرایی

بدين وسیله از گروه تغذیه و اصول تزود دانشکده دامپزشکی دانشگاه تهران که امکانات آزمایشگاهی را فراهم كرده با بسیاری معاونت محتوم پژوهش دانشگاه تربیت مدرس كه در تامین اعتبار لازم برای انجام این پژوهش همکاری در اجرای مبادله داشته‌اند و همچنین از همکاری آقایان دکتر قصیری در فیزیولگداری گوسفنده و مهندس پورحمیدی کارشناس آزمایشگاه دانشکده دامپزشکی در کمک به انجام آزمایش‌های تجزیه‌خوراک سیاستگرایی می‌شود.

ی‌پیرامیزی شکم‌گوسفنده در تجزیه و کاهش ماده خشک، NDF،ADF، pH است. می‌توان به طور یقین کاهش میزان pH را به معنی تجزیه لیپیدن دانست. نتایج نشان می‌دهد که بیشترین تجزیه و کاهش ماده خشک، NDF،ADF، pH سلولز را بیشتر در مدت 9 روز پس از کشت قارچ داشته است.

تعداد مورد استفاده

1. قرچی، ت. م، رضاییان، ش. رحمی و غ. فریابی. 1380. تجزیه ماده خشک و مواد فیبری کاهش غلات توسط قارچ‌های NDF،ADF، pH
2. فرآیندی، ن. ش. رحمی و غ. فریابی. 1371. تولید آنزیم تاپلاناز بر روی ده نوع خوراک توسط قارچ‌های NDF،ADF، pH