تجزیه ماده خشک و الیاف بتن نوع ماده خوراکی به وسیله فارچه‌ای بی‌هوازی شکم‌های گوسفند

پیچیده
برای بررسی توان فارچه‌ای بی‌هوازی شکم‌های در تجزیه ماده خشک و الیاف، از پنجه، سپس گندم، کنجاله پنده‌دانه، پاکاس و سیلوری درخت
برای کشف فارچه‌ای بی‌هوازی جدا شده از شکم‌های گوسفند را به شکل استفاده شد. فارچه‌ها به مدت صرف 3، 5 و 9 روز روی مواد خوراکی تولید کننده شدند و تغییرات تجزیه ماده خشک، pH، دیوایره سولولی بدون مسولول، (ADP)، DNF، نیکلوئئ، سلولولار، همی‌سولول و لیکنین.

در مدت 9 روز کشت، کاهش ماده خشک از 1/72% تا 1/74% و دیوایره سولولی از 1/77% تا 1/77% مبتنی بر داده تریب کپسیلیون
پنجه در گینگی و ویشترین مقدار در پنجه به دست آمد. نیکلوئئی خوراکی دیوایره سولولی بدون مسولولار، همی‌سولول و سولولی در
پنجه به ترتیب 3/4، 10/7 و 0/50 بود. داده‌ها و اطلاعات اصلاح به‌عنوان تنها تفاوت‌های شکم‌های گوسفند در تجزیه و کاهش ماده
خشک، دیوایره سولولی، دیوایره سولولی بدون مسولول و سولولز در انواع خوراکهای مورد استفاده است.

واژه‌های کلیدی: فارچه‌ای بی‌هوازی، شکم‌های، دیوایره سولولی، دیوایره سولولی بدون مسولولار، منشین

1. دانشجوی سابق دکتری علوم دامی، دانشگاه تربیت مدرس، تهران
2. استاد دامپزشکی دانشگاه تربیت مدرس، تهران
3. استاد دانشکده دامپزشکی، دانشگاه تربیت مدرس
4. دانشیار علوم دامی، دانشگاه آزاد اسلامی، اصفهان
مقدمه

فرایند اصلی هضم خوراک در نشخوارکننده‌ها تجزیه و هضم دیواره سلولی است. که در نتیجه فرابندی تخمیری باکتری‌ها، فارج‌های بی‌هوایی و دیگر عوامل تجزیه یافته‌های در شکمه به‌دست می‌آید. (20)

پژوهش‌ها نشان داده‌اند که تست نشخوارکننده‌ها که به تغذیه فیبری عادت دارند، بهترین نوع این تست را برای رشد و نشخوارکننده‌ها وجود دارد. و به عنوان نشانی از تحقیق قرار‌دهنده بی‌هوایی شکم‌های به‌همراه هضم فلز‌های فیبری است.

مواد و روش‌ها

در این پژوهش از گوسفند مدل آزمایشی استفاده شد. در طول مدت آزمایش، یک گوسفند در معیارهای آنتی‌بانکه‌ای، در بستر کاری، و در صحنه ویژه آزمایشی تغذیه شد. به‌طور کلی، میکروگکانسپرسی بی‌هوایی در شکم‌های به‌همراه هضم فلز‌های فیبری بهترین نتیجه‌ای را داشت.

بعضی از نتایج پژوهش به این نشان داد که بی‌هوایی شکم‌های به‌همراه هضم فلز‌های فیبری بهترین نتیجه‌ای را داشت. این نتایج نشان می‌دهد که به‌طور کلی، میکروگکانسپرسی بی‌هوایی در بستر کاری، و در صحنه ویژه آزمایشی تغذیه شد. به‌طور کلی، میکروگکانسپرسی بی‌هوایی در شکم‌های به‌همراه هضم فلز‌های فیبری بهترین نتیجه‌ای را داشت.

بعضی از نتایج پژوهش به این نشان داد که بی‌هوایی شکم‌های به‌همراه هضم فلز‌های فیبری بهترین نتیجه‌ای را داشت. این نتایج نشان می‌دهد که به‌طور کلی، میکروگکانسپرسی بی‌هوایی در بستر کاری، و در صحنه ویژه آزمایشی تغذیه شد. به‌طور کلی، میکروگکانسپرسی بی‌هوایی در شکم‌های به‌همراه هضم فلز‌های فیبری بهترین نتیجه‌ای را داشت.
تجزیه ماده خشک و آب فنجن نوع ماده خوراکی به وسیله قارچ‌های بی‌هوایی شکم‌های گوسفند

زمان‌های ۶ و ۹ روز کشت قارچ‌های بی‌هوایی شکم‌های روی پنج نوع سویسترای مختلف است. قارچ‌های شکم‌های با توجه به توان ۱۰۸ غربال سالی سبز و ۱۲ و ۱۳ روز تولید آزمایش سلول‌دانی، پروتئز، پکینگی، و کروم‌یازی است. علاوه بر تسریع هضم کربوهیدرات‌های ساختاری مانند مونوساخارید‌های غیر است.

مانسوبی و همکاران (۱۷) اتنو غونه‌های قارچ‌های شکم‌های روی وحشی به مدت فست روز کشت داده. مقدار کاهش ماده خشک از ۱۵/۷% با توجه به Setari و پیشتر مقدار را Pirmoviesi و Neocallimastix به فاقد نمایانگر دجله مخلوط بنا به گونه‌های مختلف کرده و در میزان تجزیه شدن با مه‌فست قرار دارد. نوع ویژگی‌های مختلف دیوار سلول‌دان مانند ترکیبات شیمیایی پوندهای بین ترکیبات بستگی دارد به قابلیت هضم ماده خشک تأثیر می‌گذارد. هرچه مقدار سلول‌دان نماینده خوراک پیشرفت، قابلیت هضم ماده خشک آن نموده کمتر است (۲۴).

مقدار تجزیه و کاهش ماده خشک کننده پنهان نسبت به دیگر خوراک‌ها کم‌بود (جدول ۳. و ۴). جدول ۱ نشان می‌دهد که مقدار پروتئز و جریبی خام کننده پنهان از خوراک‌های دیگر پیشرفت است. با توجه به ریزان بودن مقدار پروتئز خام کننده پنهان انتظار می‌رود که کاهش ماده خشک آن پیشرفت (۱۹ و ۲۴). ولی احتمالاً با علت ریزان بودن مقدار لیپیدیک، که یک مستانعند کننده در هضم و تجزیه ماده خشک از می‌توان نتیجه گرفت که کمی تجزیه احتمالاً به علت لیپیدیک زیاد خوراک بوده است (۷ و ۱۹ و ۲۴). همچنین، کننده پنهان دارای گوسپین است (۱۹)، که احتمالاً یافته کاهش تجزیه ماده خشک آن می‌شود.

مقدار کاهش ماده خشک پس از ۹ روز به بی‌هوایی شکم‌های از ۱۰۵/۶% تا ۲۹/۴% می‌بادد که کاملاً متفاوت با قارچ‌های بی‌هوایی شکم‌های روی درجه سانتی‌گراد به مدت ۱۵ دقیقه استفاده شد (۱۲ و ۲۴). به این محدود مقدار کمی نمونه گرفته شده از محیط‌های شکم‌های تقویمی و به تعداد ۴۸ ساعتم در آن ۳۹ درجه سانتی‌گراد قرار گرفت. در طول این مدت قارچ‌های در محیط کشت رشد می‌کردند. تأیید کننده آنها با مشاهده مقیاسی میکروسکوپی انجام شد. از محدود میکروسکوپی برداشت و تجربیات کشت شده، سپس از قارچ‌های جدا شده به عنوان منبع برای رشد در محیط‌های کشت با سویسترای مختلف استفاده شد.

خوراک‌های مورد استفاده عبارت بود از پنج‌گونه سبز، گندم، سیلوی، زرد، کنجد پهن‌دانه و پایان نشکر. از هر سویستری به مقدار ۱/۲ گرم به تعداد سه تکرار نموده و برای مدت مصرف ۳ و ۹ روز کشت داده شد. ترکیب شیمیایی ماده خوراک در جدول ۱ نوشته شده است.

تغییرات محیط کشت به وسیله pH تغییر می‌کند. pH گونه خشک، دیواره‌های سلولی دیواره‌های بدون هم سلولز و لیپید، از محیط‌های بی‌هوایی شکم‌های مختلف به دستگاه فیبروزک و آن اندازه‌گیری شد (۵). همه سلولز از تفاوت‌ها ADF و NDF می‌باشد. ADF و NDF درصد کاهش مقدار سلولز و لیپیدیک، همه سلولز و سلولز به فرمول زیر محاسبه شد (۷).

$$L = \left[\frac{(WP - \text{Wt Pt})}{\text{WP}}\right] \times 100$$

که در آن L درصد کاهش، W بودن مقدار خشک و W پروتئز مقدار ماده خشک و Pt با توجه به ریزان از آغاز و پایان تجزیه بررسی کرده و به محاسبه به معنی از SAS تجزیه آماری داده‌ها با استفاده از نرم‌افزار آماری کاربردی مدل آماری طرح کمک‌الاکتیو در سه تکرار و مقایسه میانگین‌ها با استفاده از آزمون چند دامنه دانک انگش. نتایج و بحث

کاهش ماده خشک داده‌های جدول ۳.۲ و ۴ نمایانگر کاهش ماده خشک در
جدول ۱. ترکیب شیمیایی پنج نوع خوراک مورد آزمایش بر اساس ماده خشک

<table>
<thead>
<tr>
<th>خوراک</th>
<th>دیورا سلولی</th>
<th>دیورا سلولی بدون</th>
<th>دیورا سلولی بدن</th>
<th>گسترش</th>
<th>پروتئین خام</th>
<th>همی سلول</th>
<th>لیگین</th>
<th>همی سلول</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۹/۹ ± ۰/۲</td>
<td>۸/۱ ± ۰/۷</td>
<td>۰/۳ ± ۰/۲</td>
<td>۲۰/۶ ± ۰/۴</td>
<td>۲۱/۳ ± ۰/۴</td>
<td>۱۹/۶ ± ۰/۴</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۳/۱ ± ۰/۱</td>
<td>۴/۲ ± ۰/۲</td>
<td>۲/۹ ± ۰/۷</td>
<td>۱۸/۸ ± ۰/۲</td>
<td>۲۳/۴ ± ۰/۴</td>
<td>۲۰/۸ ± ۰/۲</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴/۵ ± ۰/۵</td>
<td>۳/۷ ± ۰/۴</td>
<td>۵/۵ ± ۰/۷</td>
<td>۲/۹ ± ۰/۷</td>
<td>۲۸/۸ ± ۰/۲</td>
<td>۲۰/۸ ± ۰/۲</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۵/۱ ± ۰/۹</td>
<td>۳/۷ ± ۰/۷</td>
<td>۵/۵ ± ۰/۷</td>
<td>۲/۹ ± ۰/۷</td>
<td>۱۸/۸ ± ۰/۲</td>
<td>۲۰/۸ ± ۰/۲</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۷/۶ ± ۰/۶</td>
<td>۵/۵ ± ۰/۷</td>
<td>۵/۵ ± ۰/۷</td>
<td>۲/۹ ± ۰/۷</td>
<td>۱۸/۸ ± ۰/۲</td>
<td>۲۰/۸ ± ۰/۲</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

پایگاه: یونجه سوپس گندم کنجال پنهان
سیلویی ذرت
پپی
پاکاس

میانگین‌های ماده خشک و ترکیبات الیافی و تغییرات pH انواع خوراک که پس از سه روز رشد قارچ‌های پی‌هوازی شکم‌های گوشفن

جدول ۲. درصد کاهش ماده خشک و ترکیبات الیافی و تغییرات pH انواع خوراک پس از ۴ روز رشد قارچ‌های پی‌هوازی شکم‌های گوشفن

<table>
<thead>
<tr>
<th>خوراک</th>
<th>دیورا سلولی</th>
<th>دیورا سلولی بدون</th>
<th>دیورا سلولی بدن</th>
<th>گسترش</th>
<th>پروتئین خام</th>
<th>همی سلول</th>
<th>لیگین</th>
<th>همی سلول</th>
<th>pH</th>
<th>صفات</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۹/۹ ± ۰/۲</td>
<td>۸/۱ ± ۰/۷</td>
<td>۰/۳ ± ۰/۲</td>
<td>۲۰/۶ ± ۰/۴</td>
<td>۲۱/۳ ± ۰/۴</td>
<td>۱۹/۶ ± ۰/۴</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۳/۱ ± ۰/۱</td>
<td>۴/۲ ± ۰/۲</td>
<td>۲/۹ ± ۰/۷</td>
<td>۱۸/۸ ± ۰/۲</td>
<td>۲۳/۴ ± ۰/۴</td>
<td>۲۰/۸ ± ۰/۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴/۵ ± ۰/۵</td>
<td>۳/۷ ± ۰/۴</td>
<td>۵/۵ ± ۰/۷</td>
<td>۲/۹ ± ۰/۷</td>
<td>۲۸/۸ ± ۰/۲</td>
<td>۲۰/۸ ± ۰/۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۵/۱ ± ۰/۹</td>
<td>۳/۷ ± ۰/۷</td>
<td>۵/۵ ± ۰/۷</td>
<td>۲/۹ ± ۰/۷</td>
<td>۱۸/۸ ± ۰/۲</td>
<td>۲۰/۸ ± ۰/۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۷/۶ ± ۰/۶</td>
<td>۵/۵ ± ۰/۷</td>
<td>۵/۵ ± ۰/۷</td>
<td>۲/۹ ± ۰/۷</td>
<td>۱۸/۸ ± ۰/۲</td>
<td>۲۰/۸ ± ۰/۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

پایگاه: یونجه سوپس گندم کنجال پنهان
سیلویی ذرت
پپی
پاکاس

میانگین‌های دارای حروف غیر مشابه در ستون، اختلاف معنی‌دار در سطح احتمال ۵ درصد دارند (آزمون دانکن).
تجربه‌ی ماده نحت و البان پنج نوع ماده خوراکی به روش قارچ‌های بی‌ریزی شکم‌های غوشتی

جدول ۴: درصد کاهش ماده نحت، ترکیبات الاین و تغییرات pH انواع غوشت کپس ۹ روز رشد قارچ‌های بی‌ریزی شکم‌های غوشتی

<table>
<thead>
<tr>
<th>صفت</th>
<th>دیوایه سولولی</th>
<th>دیوایه سولولی</th>
<th>pH</th>
<th>خوراکی</th>
</tr>
</thead>
<tbody>
<tr>
<td>پنج‌شکم</td>
<td>همی سولولی</td>
<td>پنج‌شکم</td>
<td>همی سولولی</td>
<td>۳۰/۱±۸۰</td>
</tr>
<tr>
<td>پنج‌شکم</td>
<td>بدون لیگنین</td>
<td>همی سولولی</td>
<td>۵۵/۱±۸۰</td>
<td>۸۸/۱±۸۰</td>
</tr>
<tr>
<td>پنج‌شکم</td>
<td>همی سولولی</td>
<td>پنج‌شکم</td>
<td>همی سولولی</td>
<td>۴۶/۵±۸۰</td>
</tr>
<tr>
<td>پنج‌شکم</td>
<td>بدون لیگنین</td>
<td>همی سولولی</td>
<td>۷۰/۱±۸۰</td>
<td>۸۸/۱±۸۰</td>
</tr>
<tr>
<td>پنج‌شکم</td>
<td>همی سولولی</td>
<td>پنج‌شکم</td>
<td>همی سولولی</td>
<td>۷۵/۱±۸۰</td>
</tr>
<tr>
<td>پنج‌شکم</td>
<td>بدون لیگنین</td>
<td>همی سولولی</td>
<td>۷۵/۱±۸۰</td>
<td>۸۸/۱±۸۰</td>
</tr>
<tr>
<td>پنج‌شکم</td>
<td>همی سولولی</td>
<td>پنج‌شکم</td>
<td>همی سولولی</td>
<td>۷۵/۱±۸۰</td>
</tr>
<tr>
<td>پنج‌شکم</td>
<td>بدون لیگنین</td>
<td>همی سولولی</td>
<td>۷۵/۱±۸۰</td>
<td>۸۸/۱±۸۰</td>
</tr>
</tbody>
</table>

میانگین‌های برای حروف غیر مشابه در ستون، اختلاف معنادار در سطح اختلال ۵ درصد دارند (آنالیز‌های آزمون دانیلکان).
مهمکاران (8) بیان کرده‌اند که موجودات در محیط به‌هوایی قادر به تجزیه لیگنن و برای تجزیه لیگنن به وجود اکسیژن نیاز است. لیگنن معمولاً یک ماده غیرقابل هضم پذیره می‌شود.

ولی برخی آزمایش‌هایی که در این زمینه انجام شده‌اند می‌دهد که گاهی لیگنن به مقدار کم تجزیه می‌شود (22). آن‌ها و ریگنیک (4) کاهش لیگنن را در نویز از غلظت از 20 درصد گزارش کرده‌اند. تخمیر تجزیه بوته‌های مختلف نفوذک در آزمایشگاهی به وسیله پزوهشگان مختلف گزارش شده است (7).

پوردن و ویلپن (13) در پژوهش های‌هیچ کاهشی در لیگنن نتیجه‌اند. در این زمینه برخی از پزوهشگان گزارش کرده‌اند که روش استفاده از استاد سولفورایک (1/2) برای احراز کیفیت کاهش لیگنن روش مناسبی است، و با پایان از روش های لیگنن نشان داد (14) و تولیدات هنیه حاصل از تجزیه لیگنن در اندازه‌گیری این ماده استفاده کرده‌اند. در محققی تجزیه لیگنن در محیط کشت به وسیله قارچ‌های به‌هوایی شکمی می‌شود. عدد نفوذک است و شرایط رشد قارچ، ترکیب سامتائیزه و زمان تخریب است (4، 13، 14 و 21).

اختلاف در تجزیه و کاهش لیگنن در خروآره‌های مورد بررسی (جدول 4 و 5) احتمالاً به علت وجود انواع مختلف لیگنن می‌باشد (3). لیگنن از نظر نوع بسیار متقارن است، و انواع مختلف لیگنن در خروآره‌های مختلف گاهی موجود به دنیا رسیده در یک گونه یا اغلب متعادلی از لیگنن ممکن است وجود داشته باشد (3). مولکول لیگنن از یک پلیمر به‌بیشتر تشکیل شده می‌باشد و مفیدیتی مونومرهای آن نیستند (3).

به رغم این‌که فواید و نتایج حاصل از این پژوهش در بازه کاهش مقدار لیگنن در انواع خروآره‌های مورد استفاده بس از رشد قارچ‌های به‌هوایی، با توجه به این که برخی از پژوهشگان وجود آکسیژن را برای تجربه لیگنن ضروری می‌دانند (8) و نیز اشکالاتی در روش استفاده سولفورایک (22) وجود دارد (12). نیز نظام به طور حتمی کاهش مذکور را با به معنی تجزیه لیگنن تلقی کرده و پژوهش‌های بیشتری برای مدل سلولی در طول مدت 6 و 9 روز کشت قارچ به‌هوایی شکمی است، که با گزارش‌های پژوهشگان دیگر همخوانی دارد (4 و 22).

یونجه و سیروس گنداری بیشتر مقدار کاهش در NDF سلولی در طول مدت 9 روز کشت قارچ مورد. با توجه به مقدار کم لیگنن در یونجه و سیروس (جدول 4)، اندازه می‌ریزد که کاهش مقدار NDF چشم‌گیر باشد. برخی لیگنن‌های کم عامل بازدارنده در هضم و کاهش دیواره سلولی است (4).

(ADF) سلولی بدون هم‌سولول (AD) نتایج جدول 4 نشان می‌دهد که به طور کلی ADF تا چهار کاهش‌های به‌هوایی شکمی تجربه شده و مقدار آن کاهش یافته است. بیشتر مقدار تجزیه ADF از آن یونجه است. در این پژوهش مشخص است که درصد لیگنن یونجه کم است: در نتیجه احتمال تجزیه بیشتر ADF نسبت به سایر خوراک‌ها داده می‌شود (24).

(۴) کاهش لیگنن

در مدت 9 روز کشت قارچ‌های به‌هوایی شکمی در کلیه سویسترها به‌هوایی مورد بررسی کاهش مقدار لیگنن وجود داشت (جدول 4).

(۴) آری (۲۱) بیان کرده‌اند که حدود ۷۰ درصد لیگنن خروآره در اثر رشد قارچ‌های به‌هوایی شکمی کاهش یافته‌اند. این سویست (۲۴) گزارش کرده‌اند که در استفاده از لیگنن به عنوان ماده کاهشی برای استفاده در تغییرات هضم پذیرایی احتمال کرد. قیمت مقداری از لیگنن در شکمیتی به‌هوایی می‌شود همچنین، بیان کرده‌اند که می‌توانید به‌هوایی مورد استفاده بس از رشد قارچ‌های به‌هوایی، با توجه به این که برخی از پژوهشگان وجود آکسیژن را برای تجربه مقدار ضروری می‌دانند (8) و نیز اشکالاتی در روش استفاده سولفورایک (22) وجود دارد (12). نیز نظام به طور حتمی کاهش مذکور را با به معنی تجزیه لیگنن تلقی کرده و پژوهش‌های بیشتری برای
مشخص شدن این موضوع مورد نیاز است.

کاهش هم سلول

در مدت سه روز کشت قارچ بی‌هوایی شکمی، بین باگاس، سیالوئی دزت و کنجاله به نظر احتمالی و وجود نداشت (P<0.05). در مدت ۷ و ۹ روز کشت قارچ بی‌هوایی شکمی گوسفن، برای جدول ۳ بیشترین مقدار کاهش هم سلول را ویژه داشت.

هم سلول همه‌ها با سلول و نزدیک به آن در دیواره سلول گیاه وجود دارد، ولی به صورت کووالانس شن نمی‌شوند. پوپوند آنها از نوع هیدروزی است (۱۴ و ۱۷) تجزیه هم سلول در این آزمایش از ۱۶% تا ۱۷% در خوراک‌های مختلف متافوت بود. در حیوانات نخوارندگان در حدود ۵۰٪ از گزیان‌پر تجزیه‌های می‌شود (۲۱). پژوهش‌گان، دیگر نیز گزارش کردند که قارچ‌های بی‌هوایی موجود در استخوان گزارش‌ها نشان دهند، البته نشان داد که تجزیه و نیروی هم سلول سوس گندم به وسیله قارچ‌های بی‌هوایی شکمی به نسبت خروجی دیگر پس از ۷۰ ساعت انکوباسیون نیست. که این نتایج برای دلیل مقدار بی‌گمین گیم سوس کُم‌نتوان که به دلیل مشخصی به دوم مقدار دادند که در پژوهش گاناند و کام (۲۱) به سوس‌بی‌یا و سب وگن و باگاس پیدا کرده بود (جدول ۱). برای جدول ۱ مشخصی در مقدار هم سلول و سلوپ، شکمی در ۳۱ و ۲۵ در این پژوهش مشخص گردید که قارچ‌های بی‌هوایی شکمی می‌تواند سلوپ شکمی مختلف را تجزیه کند. پایش‌گانهای پژوهش‌گان، در این طرح از یک مورد مشخص شده که مقدار می‌تواند به استحکام دادند و کاهش سلول خالص را در محیط کشت مشاهده کردند (۲۱). در کمترین مقدار کاهش سلول در مدت ۹ روز مربوط به کنجاله بی‌گمین، به دلیل مشخصی در این مقدار سلول، بی‌گمین، به دلیل مشخصی در این مقدار سلول ضرراً به کاهش گزارش شده است. با توجه به جدول ۱، گزارش‌های مشخصی شده در سوس، سیلوریبین در گزارش‌های بی‌گمین در گزارش‌های مقدار سلول تجزیه‌های شده در سوس، سیلوریبین از پژوهش‌گان، برای جدول ۳، تجزیه و کاهش هم سلول در پژوهش‌گان، که در موارد تا یک لیکتنی
سپاسگزاری

به دوی و سیله از گروه نگذشته و اصول نزدیک دانشگاه دامپروریکی دانشگاه تهران که اکتاس آزمایشگاهی شناخته شده‌اند، و از معاونت محترم پژوهش دانشگاه تربیت مدرس که در تأمین اعتبار لازم برای انجام این پژوهش همکاری کردند. می‌توان به طور یقین کاهش سیروز را به معنی تجربه لیکنی دانست. نتایج نشان می‌دهد که بیشترین مقدار کاهش میزان pH است.

منابع مورد استفاده

1. قورچی، ت. م. رضایی‌نژاد، ش. رحیمی و غ. قربانی. 1380. تجربه ماده خشک و مواد فیبری که غلات نساج قارچ نعیمی می‌باشد. 1-2.

2. قورچی، ت. م. رضایی‌نژاد، ش. رحیمی و غ. قربانی. 1381. تولید آنزیم زبلاناس بر روی ده نوع خوراک نساج قارچ نعیمی. 179-191.

