اثر مالچ پلیاتیلن سیاه و کلسیم نیترات بر رشد عملکرد و پوسیدگی گلگاه (Blossom end rot)

عبدالریمی کاشی، سید حسین زاده، مصباح بابلار و حسین لسانی

چکیده

هندرنگه رسم جارشیون گری نیکی از ارقام مهم هندرونه مورد کشت در ایران است که با دارا بودن صفات کمی و کمی مطلوب، نسبت به پوستی‌گی گلگاه که به دلیل ورود عامل تهیه‌شده بر رشد، عملکرد و پوستی‌گی گلگاه هندرونه، این بیماری در سال‌های ۱۳۷۲ و ۱۳۷۷ در مزار تحقیقات گروه علمی‌های دانشگاه کشاورزی دانشگاه تهران با ورود مالچ پلیاتیلن سیاه و بدون مالچ و تغذیه برگی با کلسیم نیترات در غلظت‌های ۰، ۱، ۲ در هزار انجم قریب آزمایش‌ها به‌صورت تکنولوژی در قالب طرح بلوریتی کامل تصادف در چهار تکرار بود.

نتایج بررسی نشان داد که مالچ پلی اتیلن سیاه با جلوگیری از روش علت‌های هرز و حفظ رطوبت خاک، مقدار عملکرد کل میوه با میزان قابل قبول ۵۰ درصد (متغینگی در سال) افزایش داده است، همچنین وزن اندام‌های مویی پوسته، تعادل و وزن متوسط میوه در هر بلوط میزان زودرسی محصول به‌طور علت‌های تحت تأثیر مالچ پلی اتیلن بافت. مالچ تعادل مویی در هر بلوط از ۱، ۲ در هزار انجم کاهش داد. نتایج تغذیه برگی با کلسیم نیترات در هر در سال آزمایش و در اکثر موارد اثر معنی‌داری روی صفات مورد اандاره‌گیری با پوستی‌گی گلگاه نداشت.

واژه‌های کلیدی: هندرونه، جارشیون گری، پوستی‌گی گلگاه، مالچ پلیاتیلن، کلسیم نیترات، رشد، عملکرد، زودرسی

مقدمه

هندرنگه (Citrullus lanatus) یکی از مهم‌ترین گیاهان جانوری است که با سطح زیر کشت قابل توجه ۱۲۰۰۰۰ هکتار در ایران بعد از چین در مقام دوم جهان قرار دارد (۱۵). در بین ارقام مختلف هندرونه مورد کشت در ایران، رقم جارشیون گری به‌دلیل سازگاری آن به شرایط آب و هوایی مختلف و

1. به ترتیب استاد، دانشجو سالی کارشناسی ارشد، دانشیار و استاد علم و باغبانی، دانشکده کشاورزی، دانشگاه تهران
پوستمان پتیشین وجود دارد. با پایین‌びادی بین کمیون کلسیم و پوسیدگی گل‌ها رابطه‌ای وجود داشته باشد. با وجود این در بررسی‌های کاشی و همکاران (۹۲) رژیم‌های آبیاری، افزودن کلسیم به خاک (سولفات کلسیم)، سرعت بخشیدن به تحرک درون گیاهی کلسیم از طریق کاهش شمار برگهای اولیه گیاه و با کاهش شمار میوه در هر بوته تأثیر جدیدی در کاهش درصد پوسیدگی گل‌ها نداشتند. تحقیقات محققین مختلف نشان می‌دهد که اثر تبیی کلسیم و یا پتیشی بر درصد گل‌های میوه بسیار کم هست است (۹۲).

به طور کلی تحقیقات انجام شده روی پوسیدگی گل‌ها با کاربرد مواد معدنی، از جمله کلسیم، نتایج روشی را نشان نمی‌دهد. با وجود این آب ملایم همین تحقیقات (۹۳، ۹۴) نشان می‌دهد که کلسیم ناشی از مشکل جذب و انتقال آن به اندامهای هواپیمایی اثرات ناخوشاینی روی آن‌ها دارد. در این ارتباط کاشی و همکاران (۹۵) با کاربرد مواد آنی مختلف مانند کاه و کلسیم، کود دامی، کود سبز و مواد سنبتیک مانند آکریلیک و هیپوکومول، کاهش درصد پوسیدگی گل‌ها را مشاهده کردند. مهم‌ترین از این‌ها دیگری که کاربرد ضایعات اکسیژن به عنوان عامل مهم رطوبت خاک، میزان مواد ملایم دارای پوسیدگی گل‌ها ۲۶ تا ۲۷ درصد کاهش پایه (۹۶).

عوامل بر این پژوهش‌ها، در دو دهه آخر تأثیر ماله‌های پلاستیکی روی رشد و نمو پوسیدگی گل‌های هندوانه مورد بررسی قرار گرفته است. سلطانی و همکاران (۹۷) با استفاده از سیستم‌های پلاستیکی مختلف در هندوانه، افزایش رشد محصول زودرس و عملکرد بزرگ‌تری را گزارش می‌کنند. این‌ها با کامپانی (۹۸) با کاربرد نتل‌های پلاستیکی کوتاه روی یک رقم هندوانه بر اثر میوه در هر فنجان زودرس، عملکردی برابر ۷۴ نت در هفته‌ها در تیمار بدلون پوشش تولید کردند. در پتیش یک ماله (۹) ماله قابلیت حمل و نقل و نگهداری مطلوب از ارزش اقتصادی زیادی بی‌خوردار است و بیشترین سطح زیر کشت و تولید را به خود اختصاص داده است. این رقم با وجود صفات مطلوب (Blossom end rot) سبب حساس است و در صورت پوسیدگی از ارزش کمی و کیفیت آن به شدت کاهش می‌شود. شاید به همین دلیل باشد که مانگی‌های عملکردی هندوانه را برای بیش از ۱۸۵۰ تا در هکتار می‌گزارند در حالی که مانگی‌های عملکردی هندوانه در چهاردهم در آسیا و آمریکا حدود ۲۱۰ تا در اروپا، ۱۴ در چین ۲۷۵ تا در هکتار ذکر شده است (۹۹).

در بررسی‌های انجام شده پوسیدگی گل‌های میوه به عنوان یک عارضه فیزیولوژیکی شناخته شده است (۱) برخی از محققین عامل پوسیدگی گل‌ها را تنش‌های رطوبتی هوا و خاک می‌دانند (۲) عده‌ای دیگر، کمیون کلسیم را به عنوان یک عامل مهم پوسیدگی گل‌ها می‌دانستند (۳، ۴۰). این عارضه به نتایج گاهی هندوانه، بلهک در فلز دلمه‌ای و گرده فرگنی نیز دیده می‌شود (۴۱، ۴۲) با عضیدی کروک (۴۳) علاوه کمیون کلسیم در گونه فرگنی حتی زمانی که با استفاده کفی کلسیم در محلول خاک وجود دارد نیز پذیرفته می‌شود. نامبرده علت این اختلال فیزیولوژیکی را در گونه فرگنی عده کمیون کلسیم کافی و پبخش آن در اندام‌گاهی می‌داند و اضافه می‌کند که علیای صورت می‌گیرد. ظاهر می‌شود زیرا کلسیم منحصراً در آوندهای میری بیشتری به طرف بالا منتقل می‌شود و فاقد تحولات در راه است. بیش از این ادامه‌ای که تعقیب کمی ماین (میوه)، در شرایط رشد سریع پیشتر دچار کمیون کلسیم می‌شود. سیلیه و همکاران (۴۴) با بررسی مواد شیمیایی تشکیل دهنده پوست میوه ۱۰ رقم هندوانه، مشاهده کردند که ارتباط بیش از ۱۸ درصد مواد معدنی محلول در مقابلی گل‌های مقاومه نشان می‌دهد. این و توجه به این کلسیم در ساختار پوستی شیمیایی بخی از مواد تشکیل دهنده
هرکدام با صورت سولفات پناسی دامد شد. پتیژوزن به صورت
اواره به میزان 150 کیلوگرم در هرکدام در سه ماه، در
کیلوگرم در هرکدام قبل از کاشتن و 100 کیلوگرم بقیه در
نویت به صورت سرک مصرف شد.

ایجاد کرم‌های آزمایشی از 1287 متر در نظر گرفته شد. هر
کرم شامل سه رنگ کاشت به عرض 2 متر بود که از رنگ
وسته می‌گردد کرم‌برای ایدادی و برداشت محصول
بوده‌گری شد و در رنگ کاری به عنوان حاشیه‌های سفارش شد. این
فخله بتوانید دارد روی رنگ 67 سانتی‌متر بود. پس از انجام
جویی و پشتی کم عمق (شیار) و همین کاری، بخر هندوانه
چارلسون گری در دو ماه در سال
377 در 1976 خرداد ماه در کنار پشت کاشتن شد. پی افت سال
مصرف استفاده که به عرض 150 سانتی‌متر بود، سال
پس از سی و سه شنده بتوانید در سرخ و جدید قرار گرفت
گیاهی‌ها در روز پشتی (رنگ کاشتن) و شیار آبیاری مربوط
به آن کشیده شد و لبه‌های آن با خاک پوشانید. پس از
کشنده ناپایین، در محل استقرار بتوانید شکافی به صورت
+ ایجاد تموم و گیاهان زیر پوشش از طریق این شکاف به برود
پوشش هم‌دراز و در روی آن قرار گرفته. در سال
1377 قبل از کاشتن بدر نخست ناپایین کشیده شد و بعد با بریدن ناپایین
به صورت دارابی به فطر حدود 8 سانتی‌متر کود لازم ایجاد و
بقدر در آن کاشتن شد. پس از سی و سه شنده بتوانید نک
پوشش، مبارزه با عفونت‌های هرز در تیمارهای بدون پوشش و
آب‌بری با طبیعی هنگام گرفت.

تغذیه برگی کلسبین ترپات پس از تکنیک نمک‌سازی میوه‌ها
در صبح زود و با استفاده از سبیستی انجام شد. محلول
پاشی در سه ماه و به عواصر 15 روز صورت گرفت.
هم‌چنین برای تنظیم pH باید محلول بتوانید 7 تا 7.4 مقدار 0.1
برای محلول پاشی است. از سود
pH دربرداشت میوه‌های سری هندوانه در ماه
280 متر و در سال
127 در سوا رنگ کشت در سه ماه نویت انجام شد. پس از
برداشت، میوه‌های هر کرم آزمایش شمارش و وزن شنیدن و

پلاستیکی سیمان در شرایط آبیاری فطری به تنهایی با بطری
توام، رشد طولی ساقه هندوانه را افزایش داد و با زودرسی و
افراش عمدتاً همدار بوده است. مالح‌های پلاستیکی نی نماینده
هندوانه، بلکه در گاهان دیگر و اجمل‌ها در بخار، طالب و فآف
تیز ضمین تسریع در جوانی روز و جاهی، باعث زودرسی و
افراش قابل توجه عمدکردن شده است. 27، 28، 29، 30، 31، 32، 33،
هم‌چنین از ملکه‌های پلاستیکی برای هدف دیگری
مانند افزایش بازده و المان‌های خاک و عفونت‌های هرز (17، 18، 19، 20، 21، 22،)
پناهنده، بازیابی عزم و تبلور و کاهش علامت‌های
خاک و تکنیک جمعیت حرارت بهره‌گیری شده است (16، 17،
و 18).

هدف از این پژوهش ارزیابی اثر پوشش پهلاهن سیمان و
تغذیه برگی به‌منظور افزایش بازده تولید و کاهش علامت
پوشیدگی کلگاه هندوانه بود.

مواد و روش‌ها
این بررسی در سال‌های 1376 و 1377 در مکرر تحقیقات
گرده گرفته بلعی از داشتهای کشاورزی دانشگاه تهران واقع در
کرج (عصر جغرافیایی 26 درجه و 88 دقیقه شمالی و طول
جغرافیایی 51 درجه شرقی) انجام گرفت. بنا به خاک زمین
محیط آزمایش لونی را در نظر گرفت. رسمی، سه‌نفر و 24%
شن و تیژوزن کل 1/8 درصد، سرعت و تانسیم قابل دسترسی
به‌شماری 24/75 و 257/74 به‌شماری 24/75 و 257/74 به‌شماری 24/75 و
pH=9/50 به‌شماری 24/75 و 257/74 به‌شماری 24/75 و

الکتریکی (EC) خاک 23 سیلی میتر بین سترات متر مربع بود.
تیمارهای آزمایش عبارت از مالح پهلاهن سیمان، بدون مالج
و تغذیه برگی با سه غلظت کلسیم نتیجات (4.1 و 6 در هزار)
بودند. برای اجرای این طرح در هر دو مال از آزمایش
فاکتور دو مرحله در قابل طرح برای کریک کابن تصدیق در چهار
تکنیک بهره‌گیری شد. زمین محل آزمایش که سال قبل آشی
بود باید یکی شناخت و میزان هر سال از
شکم سطحی و دیسک زدن مقدار 100 کیلوگرم فسفر در
هکتار به شکل سوزن فسفر ریزی، 150 کیلوگرم پلی‌پرو

3

Downloaded from ipcc.iut.ac.ir at 10:24 IRST on Saturday December 4th 2021
بررسی‌های دیگران نیز تغذیه برگی رشد رویشی را محدود یا کاهش داده است (۲۴ و ۳۱).

اثر مالج و کلسیم نیترات بر عملکرد و اجزای عملکرد هندوانه

مدغذ عاملکرد در همه تیمارهای مالج با تفاوت معنی‌دار بیشتری از تیمارهای بدون مالج بود (جدول ۲). به طوری که میانگین عملکرد به ترتیب سالهای آزمایش در تیمار مالج ۴۵ و ۵۵ درصد بودند. در هکتان و در تیمار بدون مالج ۲۰ و ۴۰ درصد بود. با محاسبه دو افزایش عاملکرد تیمار مالج در مقایسه با تیمار بدون مالج رقم بالاتری نسبت به سال هندوانه را داشت.

در توجه اثربخشی این نتایج، در تجربه‌های افزایش عاملکرد می‌توان به این نتیجه برسید که ظرفیت‌های بیماری مالج در افزایش عاملکرد عملکرد شامل می‌باشد.

نتایج و بحث

اثر مالج و تغذیه برگی بر رشد انداه‌های هوایی

مالج شمار کمک‌کننده و رشد طولی بونه‌های هندوانه را به شدت تقویت می‌کند. با همین دلیل بهبود اندازه‌گیری طول بونها از ووزن نت آنها جهت میزان رشد بهره‌گیری شد (جدول ۱).

همان‌طوری که داده‌های جدول ۱ نشان می‌دهند، میانگین وزن بونه در تیمار مالج میانگین‌های متقاپس با تیمارهای بدون مالج با تفاوت معنی‌دار با تیمار از این نتایج مشابهی در خیلی طالب و هندوانه (۲۴ و ۹) گزارش گردیده.

در افزایش رشد رویشی هندوانه، عوامل مختلفی دخالت داشته‌اند. از جمله سی‌توان به افزایش دما در عمق ۱۵ سانتی‌متری خاک اشاره کرد که در تیمار مالج حدود ۵ درجه سانتی‌گراد بیشتر از میانه خاک‌تیمار بدون مالج بود. این تفاوت دما در پوست‌های میوه‌های ۱۶ و ۱۷ درصد به افزایش وزن میوه‌های ۱۰ سانتی‌متری خاک بیشتر ۳۲ تا ۴ درجه سانتی‌گراد افزایش گردیده است. بر سرعت جوانه‌زایی و رشد سریع گیاه بسیار مؤثر بود. علاوه بر این افزایش رشد انداه‌های هوایی می‌تواند در اثر میکروکلیایی ایجاد مناسب متوسط مالج در محیط ریشه و اکوسیستم جذب آب و مواد غذایی باشد.

تغذیه برگی با کلسیم نیترات وری وزن انداه‌های هوایی

اثر معنی‌دار نداشت. افزایش تغذیه برگی در تیمار مالج (جدول ۱) وزن بونه‌ها را افزایش گرفت. افزایش دال در تیمار بدون مالج سبب چهارم موجب کاهش وزن بونه شد.
جدول ۱. تاثیر مالج پلی اتیلن و تغذیه برگی با کلسیم نیترات بر وزن نازار پنج بوته هندوانه (کیلوگرم) در سال

<table>
<thead>
<tr>
<th>سال</th>
<th>غلظت کلسیم نیترات (در هزار)</th>
<th>بحال</th>
<th>بدون مالج</th>
<th>بحال</th>
<th>بدون مالج</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۳۷۷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴/۸۹</td>
<td>a</td>
<td>۴/۳۳</td>
<td>a</td>
<td>۳/۰۵</td>
<td>a</td>
</tr>
<tr>
<td>۴/۸۹</td>
<td>a</td>
<td>۴/۳۳</td>
<td>a</td>
<td>۳/۰۵</td>
<td>a</td>
</tr>
<tr>
<td>۵/۰۰</td>
<td>a</td>
<td>۴/۳۳</td>
<td>a</td>
<td>۳/۰۵</td>
<td>a</td>
</tr>
<tr>
<td>۵/۰۰</td>
<td>a</td>
<td>۴/۳۳</td>
<td>a</td>
<td>۳/۰۵</td>
<td>a</td>
</tr>
</tbody>
</table>

شاید

میانگین‌هایی که برای هر سال دارای حروف مشترک هستند، از نظر آزمون دانکن تفاوت معنی‌داری در سطح یک درصد ندارند.

جدول ۲. تاثیر مالج پلی اتیلن و تغذیه برگی با کلسیم نیترات بر عملکرد هندوانه (تن در هکتار) در سال

<table>
<thead>
<tr>
<th>سال</th>
<th>غلظت کلسیم نیترات (در هزار)</th>
<th>بحال</th>
<th>بدون مالج</th>
<th>بحال</th>
<th>بدون مالج</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۳۷۷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴/۸۹</td>
<td>a</td>
<td>۴/۳۳</td>
<td>a</td>
<td>۳/۰۵</td>
<td>a</td>
</tr>
<tr>
<td>۴/۸۹</td>
<td>a</td>
<td>۴/۳۳</td>
<td>a</td>
<td>۳/۰۵</td>
<td>a</td>
</tr>
<tr>
<td>۵/۰۰</td>
<td>a</td>
<td>۴/۳۳</td>
<td>a</td>
<td>۳/۰۵</td>
<td>a</td>
</tr>
<tr>
<td>۵/۰۰</td>
<td>a</td>
<td>۴/۳۳</td>
<td>a</td>
<td>۳/۰۵</td>
<td>a</td>
</tr>
</tbody>
</table>

شاید

میانگین‌هایی که برای هر سال دارای حروف مشترک هستند، از نظر آزمون دانکن تفاوت معنی‌داری در سطح یک درصد ندارند.

جدول ۳. تاثیر مالج پلی اتیلن و تغذیه برگی با کلسیم نیترات بر تعداد و میانگین وزن میوه هندوانه (سال ۱۳۷۶)

<table>
<thead>
<tr>
<th>میانگین وزن میوه (کیلوگرم)</th>
<th>غلظت کلسیم نیترات (در هزار)</th>
<th>تعداد میوه در هر بوته</th>
<th>میانگین</th>
<th>بحال</th>
<th>بدون مالج</th>
<th>بحال</th>
<th>بدون مالج</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۳۳</td>
<td>a</td>
<td>۲/۵۸</td>
<td>a</td>
<td>۱/۲۹</td>
<td>a</td>
<td>۱/۲۹</td>
<td>a</td>
</tr>
<tr>
<td>۰/۳۳</td>
<td>a</td>
<td>۲/۵۸</td>
<td>a</td>
<td>۱/۲۹</td>
<td>a</td>
<td>۱/۲۹</td>
<td>a</td>
</tr>
<tr>
<td>۰/۲۵</td>
<td>a</td>
<td>۲/۵۸</td>
<td>a</td>
<td>۱/۲۹</td>
<td>a</td>
<td>۱/۲۹</td>
<td>a</td>
</tr>
<tr>
<td>۰/۲۵</td>
<td>a</td>
<td>۲/۵۸</td>
<td>a</td>
<td>۱/۲۹</td>
<td>a</td>
<td>۱/۲۹</td>
<td>a</td>
</tr>
</tbody>
</table>

شاید

میانگین‌هایی که برای هر سال دارای حروف مشترک هستند، از نظر آزمون دانکن تفاوت معنی‌داری در سطح یک درصد ندارند.

جدول ۴. تاثیر مالج پلی اتیلن و تغذیه برگی با کلسیم نیترات بر تعداد و میانگین وزن میوه هندوانه (سال ۱۳۷۷)

<table>
<thead>
<tr>
<th>میانگین وزن میوه (کیلوگرم)</th>
<th>غلظت کلسیم نیترات (در هزار)</th>
<th>تعداد میوه در هر بوته</th>
<th>میانگین</th>
<th>بحال</th>
<th>بدون مالج</th>
<th>بحال</th>
<th>بدون مالج</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۲۵</td>
<td>a</td>
<td>۲/۵۸</td>
<td>a</td>
<td>۱/۲۹</td>
<td>a</td>
<td>۱/۲۹</td>
<td>a</td>
</tr>
<tr>
<td>۰/۲۵</td>
<td>a</td>
<td>۲/۵۸</td>
<td>a</td>
<td>۱/۲۹</td>
<td>a</td>
<td>۱/۲۹</td>
<td>a</td>
</tr>
<tr>
<td>۰/۲۵</td>
<td>a</td>
<td>۲/۵۸</td>
<td>a</td>
<td>۱/۲۹</td>
<td>a</td>
<td>۱/۲۹</td>
<td>a</td>
</tr>
<tr>
<td>۰/۲۵</td>
<td>a</td>
<td>۲/۵۸</td>
<td>a</td>
<td>۱/۲۹</td>
<td>a</td>
<td>۱/۲۹</td>
<td>a</td>
</tr>
</tbody>
</table>

شاید

میانگین‌هایی که برای هر سال دارای حروف مشترک هستند، از نظر آزمون دانکن تفاوت معنی‌داری در سطح یک درصد ندارند.
در اینجا اضافه می‌دهم و در نتیجه بیشتری در انتخاب گیاهان قرار گرفته و موجب رشد و عملکرد بیشتر می‌شود. تغذیه برگی با کلسیم نیترات بر عملکرد هندوانه تاثیر و یا با اثر اندازه همراه بوده. همانطور که در داده‌های جدول ۷ دیده می‌شود، میانگین عملکرد تیمارهای کلسیم نیترات در هر دیه می‌شود، میانگین عملکرد تیمارهای کلسیم نیترات در هر دیه می‌شود، میانگین عملکرد مطلق هرگونه کمتر بود ولی تفاوت‌ها معنی‌دار نبودند. تغذیه برگی بر شمار و وزن میانگین میوه اثر مثبت و معنی‌دار داشته (جدول ۹ و ۴). ترسن و همکاران (۲۴) امر که تغذیه برگی بر اندازه‌ها و وزن میوه‌های درمانی اثرات افتراقی و از جمله امکان‌پذیری در درمان این اثر را در خیار گراش کرده است. به نظر می‌رسد که زمان دفعات مخلوط‌پاشی و غلظت کلسیم نیترات، همچنین اثر متقابلان یا سایر عناصر غذایی در بسیاری اندام نتیجه مذکور نقش داشته و پژوهش‌های بیشتری نیازمند است.

اثر مالج و کلسیم نیترات بر درصد میوه‌های زودرس

محاسبه درصد زودرس میوه فقط در سال ۱۳۷۹ برای عملکرد تخصصی برداشت نسبت به عملکرد کل انجام گرفته. داده‌های مندرج در جدول ۵ نشان می‌دهد که مالج اثر معنی‌داری بر زودرسی محصول کاشته و مقدار عملکرد مالج در تخصصی برداشت کل ۲/۷ درصد عملکرد کل بود. در حالی که در تیمار بدون مالج فقط ۱/۶ درصد عملکرد کل برداشت شد. اثر مالج بر زودرس شدن محصول توسط محققین دیگر از جمله سلطانی و همکاران (۳۳) لاسک و کامپرسنس (۳۳) روي هندوان، فاریس و همکاران (۱۶ و ۱۷) روی هندوان و خیابان جهانی (۲۸) و میرزاعلیان (۱۱) روی طالعی گراش شده است. گرچه تغذیه برگی با کلسیم نیترات نه تنها اثر مثبتی در کاهش شمار و وزن میوه‌های پسندیده نداشت، بلکه در سال ۱۳۷۹ حتی درصد میوه‌های درای پسندیده گر به طور معنی‌داری افزایش داد، روند مشابه درسال ۱۳۷۷ دیده شد (جدول ۹ و ۶ و ۷). ینتایی تأثیر تغذیه برگی با کلسیم نیترات با تغذیه که در گذشته با آزادی سولفات پتاسیم به خاک روی پسندیده

ازدست، اضافه می‌دهم و در نتیجه بیشتری در انتخاب گیاهان قرار گرفته، و موجب رشد و عملکرد بیشتر می‌شود. تغذیه برگی با کلسیم نیترات بر عملکرد هندوانه تأثیر و یا با اثر اندازه همراه بوده. همان‌طور که در داده‌های جدول ۷ دیده می‌شود، میانگین عملکرد تیمارهای کلسیم نیترات در هر دیه می‌شود، میانگین عملکرد تیمارهای کلسیم نیترات در هر دیه می‌شود، میانگین عملکرد مطلق هرگونه کمتر بود ولی تفاوت‌ها معنی‌دار نبودند. تغذیه برگی بر شمار و وزن میانگین میوه اثر مثبت و معنی‌دار داشته (جدول ۹ و ۴). ترسن و همکاران (۲۴) امر که تغذیه برگی بر اندازه‌ها و وزن میوه‌های درمانی اثرات افتراقی و از جمله امکان‌پذیری در درمان این اثر را در خیار گراش کرده است. به نظر می‌رسد که زمان دفعات مخلوط‌پاشی و غلظت کلسیم نیترات، همچنین اثر متقابلان یا سایر عناصر غذایی در بسیاری اندام نتیجه مذکور نقش داشته و پژوهش‌های بیشتری نیازمند است.

اثر مالج و کلسیم نیترات بر درصد میوه‌های زودرس

محاسبه درصد زودرس میوه فقط در سال ۱۳۷۹ برای عملکرد تخصصی برداشت نسبت به عملکرد کل انجام گرفته. داده‌های مندرج در جدول ۵ نشان می‌دهد که مالج اثر معنی‌داری بر زودرسی محصول کاشته و مقدار عملکرد مالج در تخصصی برداشت کل ۲/۷ درصد عملکرد کل بود. در حالی که در تیمار بدون مالج فقط ۱/۶ درصد عملکرد کل برداشت شد. اثر مالج بر زودرس شدن محصول توسط محققین دیگر از جمله سلطانی و همکاران (۳۳) لاسک و کامپرسنس (۳۳) روي هندوان، فاریس و همکاران (۱۶ و ۱۷) روی هندوان و خیابان جهانی (۲۸) و میرزاعلیان (۱۱) روی طالعی گراش شده است. گرچه تغذیه برگی با کلسیم نیترات نه تنها اثر مثبتی در کاهش شمار و وزن میوه‌های پسندیده نداشت، بلکه در سال ۱۳۷۹ حتی درصد میوه‌های درای پسندیده گر به طور معنی‌داری افزایش داد، روند مشابه درسال ۱۳۷۷ دیده شد (جدول ۹ و ۶ و ۷). ینتایی تأثیر تغذیه برگی با کلسیم نیترات با تغذیه که در گذشته با آزادی سولفات پتاسیم به خاک روی پسندیده
جدول ۵. تأثیر پلی اتیلن و تغذیه برج‌گا، با کلسلیم نیترات بر درصد زودرسی میوه هندوانه

<table>
<thead>
<tr>
<th></th>
<th>غله‌پزی کلسلیم نیترات در بهار</th>
<th>میانگین</th>
<th>بیانال</th>
<th>بدون مالج</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>شاهد</td>
<td>22/20 ab</td>
<td>0/00</td>
<td>11/b</td>
<td>ab</td>
</tr>
<tr>
<td></td>
<td>22/27 ab</td>
<td>6/43 bc</td>
<td>7/6 a</td>
<td>24/30 a</td>
<td>6/43 bc</td>
</tr>
<tr>
<td></td>
<td>25/07 a</td>
<td>12/56 bc</td>
<td>37/45 a</td>
<td>6/45 ab</td>
<td>12/56 bc</td>
</tr>
<tr>
<td></td>
<td>میانگین</td>
<td>24/35 a</td>
<td>17/20 b</td>
<td>26/32 a</td>
<td>17/20 b</td>
</tr>
</tbody>
</table>

میانگین‌هایی که بین‌های هر سال دارای حرف مشترک هستند، از نظر آزمون دانکن تفاوت معنی‌داری دارند.

جدول ۶. اثر مالج پلی اتیلن و تغذیه برج‌گا، با کلسلیم نیترات بر درصد تعداد میوه‌های دارای پوسیدگی گل‌های در سال

<table>
<thead>
<tr>
<th></th>
<th>غله‌پزی کلسلیم نیترات در بهار</th>
<th>میانگین</th>
<th>بیانال</th>
<th>بدون مالج</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>شاهد</td>
<td>29/79 ab</td>
<td>10/74 cd</td>
<td>20/11 b</td>
<td>cd*</td>
</tr>
<tr>
<td></td>
<td>24/16 a</td>
<td>14/50 d</td>
<td>26/04 a</td>
<td>34/13 a</td>
<td>cd</td>
</tr>
<tr>
<td></td>
<td>28/51 a</td>
<td>11/56 b</td>
<td>29/04 ab</td>
<td>19/45 cd</td>
<td>19/45 cd</td>
</tr>
<tr>
<td></td>
<td>میانگین</td>
<td>24/32 a</td>
<td>18/22 b</td>
<td>23/32 a</td>
<td>18/22 b</td>
</tr>
</tbody>
</table>

میانگین‌هایی که بین‌های هر سال دارای حرف مشترک هستند، از نظر آزمون دانکن تفاوت آماری معنی‌داری دارند.

جدول ۷. اثر مالج پلی اتیلن و تغذیه برج‌گا، با کلسلیم نیترات بر درصد وزن میوه‌های دارای پوسیدگی گل‌های در سال

<table>
<thead>
<tr>
<th></th>
<th>غله‌پزی کلسلیم نیترات در بهار</th>
<th>میانگین</th>
<th>بیانال</th>
<th>بدون مالج</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>شاهد</td>
<td>10/16 a</td>
<td>15/21 b</td>
<td>12/18 b</td>
<td>ab</td>
</tr>
<tr>
<td></td>
<td>10/23 a</td>
<td>14/68 a</td>
<td>8/6 b</td>
<td>18/56 a</td>
<td>8/6 b</td>
</tr>
<tr>
<td></td>
<td>10/08 a</td>
<td>15/24 ab</td>
<td>17/32 ab</td>
<td>20/12 c</td>
<td>17/32 ab</td>
</tr>
<tr>
<td></td>
<td>میانگین</td>
<td>15/22 a</td>
<td>14/20 b</td>
<td>15/22 a</td>
<td>14/20 b</td>
</tr>
</tbody>
</table>

میانگین‌هایی که بین‌های هر سال دارای حرف مشترک هستند، از نظر آزمون دانکن تفاوت آماری معنی‌داری دارند.

پوسیدگی گل‌های که به‌طور میانگین در سه ماهه به‌طور متوسط در روزی که کاربرد کلسلیم چه به‌صورت افزودن به خاک و یا به‌صورت تغذیه برجگر تأثیر زنانه روز کاهش پوسیدگی گل‌های هندوانه تفاوت (21) با واکنش کم داشت. است

در تأثیر نتایج این پژوهش، فیل و ویبریت (31) نیز با کاربرد کلسلیم نیترات از طریق خاک به اثر انگیز آن بر
گلگاه همبستگی نشان داده است، به طوری که افزایش میزان پتاسیم در محیط موجب کاهش جذب کلسیم شده و پودرگی گلگاه را در گوجه فرنگی افزایش می‌دهد. همچنین پژوهش‌های دکترایی (1) که با فلک شیرین در سیستم بیشتری، هیدروپپیونیک انجام شده است، نشان می‌دهد که در شرایط کم، غلظت بیلی سدیم و پتاسیم در محیط ریشه موجب کاهش عملکرد و افزایش درصد پودرگی گلگاه می‌شود. با توجه به نتایج این پژوهش و نتایج مشابه دیگران (2, 3) اگرچه نشان دهنده ایان سیاه در افزایش عملکرد و زودرس شدن محصول محسوس بوده و کاربرد آن قابل توصیه است، ولی در ارتباط با پودرگی گلگاه هندوانه، به نظر می‌رسد که تغذیه کیفی و عوامل مرتبط با آن دارای اهمیت می‌باشد.

مباحث مورد استفاده

1. استکاندرو، ف. و. اعتباران. 1348. بیماری سیاه شدن گلگاه (Blossom end rot) هندوانه چارلسون جنوبی. گزارش سالیانه طرح هندوانه چارلسون جنوبی، گزارش سالیانه طرح هندوانه چارلسون جنوبی.

2. بررسی بیماری‌های مهم نباتات، دانشگاه کشاورزی، دانشگاه تهران.

3. جهانی جلوگیری، ی. 1388. بررسی اثرات نیچه پلاستیک میل، تغذیه برگی روی کیفیت کتابی، پایان نامه کارشناسی ارشد باغبانی، واحد علوم و تحقیقات دانشگاه آزاد اسلامی.

4. علی‌اکبری، ا. 1350. بررسی پودرگی گلگاه هندوانه (Blossom end rot). نشانه‌بندی بیماری‌های گیاهی (7): 22-23.

6. مریزا علی‌اکبری، ع. 1379. بررسی اثرات دور آبیاری و میلگری ایال سیاه بر کیفیت و عملکرد طالبی، پایان نامه کارشناسی ارشد باغبانی، دانشگاه کشاورزی، دانشگاه تهران.

