پاسخ پایه‌های درختان پسته بادامی زرنده، سرخس و قزوینی به زیادی
بر و سیم کلراید در آب آبیاری

حسین حکم آبادی، کاظم ارزانی، یحیی دهقانی شورکی و بهمن پناه

چکیده

به‌منظور بررسی آثار شوری و زیادی بر در آب آبیاری برش نسبت، سرعت توسنت خالص نسبت وزن برگ و ریزگی‌های
فیزیولوژیکی پایه‌های درختان پسته، سرخس و قزوینی که از پایه‌های عمدی به‌ره‌گیری شده در یک‌اهان پسته‌اند،
انتخاب و در گلستان‌های 8 نمونه در خاک کاشته شدند. نیازهای شوری در غلظت‌های 0.05، 0.10 و 0.25 میلی‌مول سیدم کلراید و
بر‌پی‌نیو در این‌گونه در غلظت‌های 0.0، 0.2 و 0.4 میلی‌گرم در لیتر نسبت به بهم‌ای آب آبیاری روي نیازهای پکسال استعمل شد. در شرایط
تیماره و بعد از 0 و 20 روز از شروع تیماره، از هر واحد آزمایش نیازهای پرداشت شدند. و صفات مختلفی از جمله نیاز کل، برگ،
سطح برگ، ارتفاع ساقه و رشد وزن تیمار خالص نسبت وزن برگ، وزن تیمار خالص نسبت وزن نیازهای کنارگرفت.

نتایج نشان داد که سرعت برش نسبت به تیمار سطوح شوری و زمان شروع نیازهای پایه، به‌طور چشمگیر مخصوصاً در
غلظت‌های بالا میزان سرعت توسنت خالص را نیز کاهش داد. ولی در اثر این نسبت وزن برگ و اجرای انتخابات غلظت‌های
سرعت توسنت خالص با نسبت برگ، نسبت وزن برگ و نسبت وزن برگ به‌عنوان عامل ثانویه، از مهم‌تری برمی‌گردد.

میزان شرکت سه شانش در گستردگی طرح پنج پایه یا پایه، میزان نیازهای خالص نسبت وزن برگ، نیازهای خالص نسبت
غلظت‌های میزان وزن نیازهای در آب آبیاری برش نسبت به تیماره نسبت به بهم‌ای‌ها در درختان پسته، سرخس و قزوینی
بلوک‌سازی می‌باشد. میزان نیازهای برودن در برگ‌های انباشت کرده، به‌همین دلیل نسبت به تیمار سرخس و قزوینی نسبت به شوری می‌باشد، پیشرفت نشان داد. در
ارتشتیاب با نسبت نیازهای کلی به‌طور گسترده‌ای در برگ‌های انباشت برش دار، چرا که میزان نیازهای برودن در آب آبیاری
سیر نیازهای خالص نسبت به تیماره نسبت به بهم‌ای‌ها می‌باشد. میزان نیازهای خالص نسبت به تیماره نسبت به بهم‌ای‌ها

واژه‌های کلیدی: پسته، سرعت توده النهار، سرعت توسنت خالص، پایه، بر
مقدمه

بخش وسیعی از کشور ما را مناطق خشک و نیمه خشک تشکیل می‌دهد. در این مناطق روز به روز تبدیل‌شکاف و بارندگی‌های کمتر، به شورت خاک‌ها افزوده و خاک‌ها روز به روز شورت می‌شوند. بدین ترتیب هزاران هکتار از زمین‌ها قابل کشت و کار در اثر تجمیع بروز نگرانی‌ها یکانی کشت شده‌اند. بر اساس آمار موجود، سطح کلی خاک‌های شور در ایران حدود ۲۵ میلیون هکتار تخمین زده می‌شود که حدود ۳۰ درصد مساحت شده‌اند و متوسط ۲۰ درصد زمین‌های تحت کشت آبی کش و نیاز به تأمین بارندگی است. به‌طور کلی می‌توان گفت به استثنای زمین‌های استان‌های گیلان و مازندران، تقسیم‌بندی خاک‌های شاطئ و زمین‌های پست ایران، کم و بیش شورت بوده و بیشتر شوری در زمین‌های فوریار وجود دارد (۴). طبق آمار ایرانی‌ها، حدود ۷۰ درصد سطح زیر کشت پسته‌ها به خود نسبت داده‌اند، حاکم است. اکثر خاک‌های این منطقه بهتر نیز در این مناطق پیشگیری از کم‌آبی مطرح است. نباید برای این سبب در این منطقه بهتر نیز، که این منطقه مانند ناحیه رشته‌های کوهستانی و کوه‌های مافق یا روی و سریال سطح مادری بیشتر بوده و چنین کار کرده و همچنین تغییرات هدایت الکتریک، لاور، خاک و پودر، بهتر شده و تحقیق گرفته‌ها تأثیر سدیم کلاید را به‌مرور، افزایش داده و سیستم کاهش خشک خاک‌های پودری در کرد. و نتیجه گرفته، که این تغییرات هدایت الکتریک، جزء از خاک و میزان کلی به‌مرور به وسیله این‌ها و تشکیل بار است. برای نمونه، می‌تواند در این منطقه بیشتر شری‌های بارندگی و اصلی بی‌نیازی یا کاسته‌های مقاوم روزی شوری کارا در مقابله با شوری متوقف شود. در این راستا، یافت مکانیزم‌های مقاومت به شوری در جهت افزایش اهمیت می‌باشد. ارگام، بسیار مفید است. اگرچه در برخی‌ها این تغییر مناسبی خصوصی که به یک گیاهی متحمل به بارندگی است و نه تنها تحمل به شوری از تغییرات و کیفیت بسیار مقاوم تر است (۳۳، ۳۱، ۲۱، ۱۷، ۱۶) و البته میزان عملکرد در این گیاهی در شوری‌ها باید یک نشان نشان دهنده تأثیر قرار می‌گیرد. تحمل گیاهان در مقابل شوری‌ها بین خود رصد
آنها گزارش دادند که همزمان با افزایش غلظت کلر در خاک در برگ تیز میزان آن به صورت خطر انداز می‌پیامد. در این آزمایش هنچمیش مشخص شد که همزمان غلظت نانسی در برگ تحت تأثیر سطح مختلف غلظت کلر افزایش و نگرش می‌گردد. ولی نسبت Na به افزایش به میزان کلیسیم برگ تیز با افزایش سدیم خاک کاهش یافت. ولی افزایش سدیم خاک بر میزان جذب میزیم تأثیری نداشت. غلظت Na سدیم در ریشه با افزایش غلظت خاک افزایش زیادی ناپید. در سه هم غلظت سدیم با افزایش Na پیشرفت دیده شد ولی در پیوسته ساخته دیده نشد (12). در زمینه بر (13) یک آزمایش گلخانه‌ای سه پایه آبی از پایه‌های پسته شالی پایه (P. terebinthus), (P. atlantica) و (P. atlantica×atlantica) Gold II تحت تأثیر بر تا 15 میلی گرم در لتر به مقدار 100 میلی فرآیند و دیدند که با افزایش غلظت بر میزان خطر از رشد پایه‌های مورسی کاملاً شدند و در بین پایه‌های مورد بررسی مشخص شد که باعث ترکیب نسبت به بقیه پایه‌ها کنترل تحت تأثیر غلظت بردپیاز تقویت گرفت. از طرفی کنترل تحت تأثیر بر در آب آبیاری قرار گرفت، از طرفی این یک آزمایش جدایگانه، ایجاد در میان کیفی به اندازه 9 ماه تیب از غلظت 7/8 میلی گرم در لتر تأثیری در رشد و کاهش گل‌گفته از طرفی سیستم و نحوه عملیات آلیاژی در سال 1988 یک آزمایش گلخانه‌ای ارجاع پسته یادمان، فندقی و کله‌چی را بررسی کرد و در این کمصدر 61/2 به پیام توسط در خاک برای رشد بهبود امراتی و بادامی مناسب سوده و همچنین در این آزمایش مشخص شد که حد میزان بر یک ارقام بادامی، فندقی و کله‌چی را پیش به کمک از 8/8 مشکل می‌مومیت، به صورت در مناطق خشک و ۸/۲ بهره‌برداری به عنوان یکی از علاوهای کشاورزی منجر است از انجایی که بهترین منطقه پسته‌کاری در کشور در مناطق خشک و ۸/۲ بهره‌برداری به عنوان یکی از علاوهای کشاورزی منجر است از انجایی که بهترین منطقه پسته‌کاری
ول وزن برگ (Leaf Weight) (LW) این تست، در هر برداشت از طریق معادله زیر محاسبه شد (2 و 15).

\[NAR_w = \frac{LW \times \Delta W}{\Delta t} \]

که مشخص (LWR) (Leaf Weight Ratio) نسبت وزن برگ که مشخص کندنی نسبت وزن خشک کل برگها به وزن کل گیاه است، در هر برداشت از طریق فرمول زیر محاسبه شد: (2 و 15).

\[LWR = \frac{RGR}{NAR_w} \]

پس از شروع ثبتارما در طی آزمایش، هر 14 روز یک کیفر پنایل آب برگ به همراه گریز از دستگاه اندازه‌گیری فشار مدل 1400 ساخت شرکت BioMonitor، اسکای سیستم (Skye Industrial Skye Moisture System) و ادغام گری در هر برداشت با نمونه‌گیری تصادفی از برگ‌های Content. به محاسبه شد (21).

میزان اسید آمینه پروتئین در هر برداشت و در تمام ثبتارما با نمونه‌گیری یک نمونه از برگ‌های بلغ. اندازه‌گیری شد. بدین محدوده 0.5 گرم از بند نازه برگی به همراه 5 میلی لیتر اتانول/95 در داخل هوریان دوش به بسته آمد. در سانتی‌فیوز به دقت 10 دقیقه با دور 350 گر در داده و پس از جدایی فاز مایع و جامد، قسمت مایع در داخل یخچال در 4 درجه سانتی‌گراد نگهداری شد. برای تعیین غلظت پروتئین، یک میلی لیتر از عصاره الکلی فوق الذکر را با 10 میلی لیتر آب مصرف رفته کرده و 5 میلی لیتر مصرف نینیدرین (Ninhydrin) به آن اضافه شد. سپس از افزودن معرف نینیدرین 5 میلی لیتر اسید استیکلیامیل با آن افزوده شده و مخلوط به دست آمد، به عنوان 5 دقیقه در حمام آب جوش قرار داده شد. پس از خنک شدن نمونه‌ها، 10 میلی لیتر بینز به هر کدام از آنها افزوده شده و سدیم کلراید و 4 تکرار با صورت آزمایش فاکتوریل (3 پایه به علت عمده فاکتور اول و 4 تیمار ۲ تکرار به علت فاکتور دوم) و طرح یا به بلوک‌های کامل تصویب، انجام شد.

در آزمایش دوم، به منظور بررسی عکس عمل پایه‌ها درخواندن یا نخست بر 3 سطح با غلظت‌های (پیش از 20 و 40 میلی‌گرم در 10 گرم پودریک در 4 ثکار به صورت آزمایش فاکتوریل (3 پایه به علت عمده فاکتور اول و 3 تیمار اسید بروکسین به علت فاکتور دوم) و طرح یا به بلوک‌های کامل تصویب، انجام شد. محلول‌های (تیمارها) مختلف شوری و هر سرو به جای آب‌پزی به جای 1 لیتر به گلدانا مضافت می‌شود و توسط ۴۰ میلی‌لیتر از آن محلول محیط گلدانا خارج می‌شود.

قبل و بعد از شروع ثبتارما، در هر واحد آزمایشی (ثبتارما) ۴ گلدانا انجام و دانه‌ای به پخت برداشت می‌شود. این‌ها برگ، ساقه و ریشه از هم جدا شد و در مورد تمام ثبتارما برای هر تکرار شمار کل برگ، سطح برگ (توسط دستگاه سطح سبک)، ارتفاع ساقه و طول ریشه، وزن تراز و ریشه و برگ به طور جدایی اندازه‌گیری شد. به منظور تعیین وزن خشک برگ یک از این‌ها، ابتدا ریشه‌ها به آب شسته شدند و بعد از ۴۰ جادگان در آون با داماس ارجح می‌گردد به‌طور متوسط حدود ۱۵۰ میلی‌لیتر از آن محلول محیط گلدانا به روز شدند.

سرعت رشد نسبی (RGR) (Relative Growth Rate) نشان‌دهنده افزایش وزن گیاه در واحد زمان نسبی به واحد وزن گیاه (W) است. در هر برداشت از طریق معادله زیر محاسبه شد (2 و 15):

\[RGR = \frac{W_t - W_{t-1}}{\Delta t} \]

که به عنوان بهره‌وری (Net Assimilation Rate) (NAR) نشان‌دهنده افزایش وزن گیاه در واحد زمان نسبی به واحد
جدول 1. بررسی اثر فیزیکی-شیمیایی خاک استفاده شده در گلدان قیل از شروع آزمایش

<table>
<thead>
<tr>
<th>شاخص</th>
<th>کوارفیل کل</th>
<th>کوارفیل a</th>
<th>کوارفیل b</th>
<th>کوارفیل c</th>
<th>کوارفیل d</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>اترب (mg/kg)</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>چرب (ppm)</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>سطح (cm)</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
</tr>
</tbody>
</table>

نتایج و بحث

نتایج تجربه و بیانی نشان داد که مقادیر مختلف شوری آب آبیاری ۲۰ روز پس از شروع تیمارها در تمام پایه‌ها و در سطح ۵% بیوماس کل گیاه را کاهش داد (جدول ۲). تفاوت در رشد تیمارهای مختلف بعد از ۴۰ روز از تیمارهای شوری بین گیاهان تیمار شده و نشانه و ۲۵۵ میلی مول سدیم کلراید کاملاً مشهود بود، ۴۰ روز پس از شروع تیمارهای شوری همچنان گروه به طور ۲ روز داده شده است این تفاوت‌ها بیشتر منصف بود ولی در سطح پایین‌تر شوری، اختلاف

کمتر قابل مشاهده بود.

رشد ادامه که بیشتر تحت تأثیر شوری قرار می‌گرفت، در پایه‌های مختلف، متغیر بود و در انتهای آزمایش (۲۰۰ روز بعد از تیمار) میانگین وزن خشک برگ، ساقه و ریشه در پایه فوزنی در تیمار ۲۲۵ میلی‌مول سدیم کلراید مقابله با دیگر پایه‌ها کمتر تحت تأثیر شوری قرار گرفت که برای برگ ساقه و ریشه به‌ترتیب ۱۶ و ۴۸ درصد این مقدار در درختان شاهد بود (جدول ۳). همچنین نتایج نشان داد که کاهش رشد گیاه همرس با یکدیگر در طول رشته (شکل ۲) ارتقاء داتن‌هالار (شکل ۲) است. در بین پایه‌های صورت برسی هم‌طور که در شکل ۳ و ۴ مشاهده است، ارتقای و طول ریشه پایه فوزینی کمتر تحت تأثیر تیمار شوری قرار گرفته است.

با گذشت ۲۰ روز از تیمار شوری، در تیمار ۲۲۵ میلی‌مول سدیم کلراید، اغلب برگ‌های پایه‌های با دادن زرد و سرخ ریزش نمودند در حالی که در پایه فوزینی برگ و ریزش برگ‌ها کمتر دیده شد (شکل ۴).

نتایج اثر تیمارهای مختلف شوری روی سرعت رشد نسبی

به‌پایه تکان داده شد تا بررسی وارد بخش بخش شود. نمودنها به‌مدت ۳۰ دقیقه به حال سکون رها شدند و در نهایت میزان جذب نمودنها در طول موج ۶۵۰ نانومتر (۷۰۰ دیسک) با استفاده اسپکتروفوتومتر اندازه‌گیری شد (۷۰۰ دیسک). در هر مرحله از برداشت در کلیه تیمارها میزان کارفیل a و b نمودن‌های تصفیه از برگ‌های باغ اندازه‌گیری شد. بین منظور ۲۵۰ گرم برگ‌های را در میان برد و آن را در یک پنده جنین ۵ میلی‌لیتر آب مقطع ساده‌ای که به‌صورت توده یک‌تا دو تایی در آب قرار گرفته و هم‌حال نهایی و در یک پنده ۲۵ میلی‌لیتر ریخته و به حجم رسانیدند، سپس ۵ از میلی‌لیتر از مخلوط به‌مدت آب‌ها ۱/۴ میلی‌لیتر استون (۷۰۰ دیسک) و با توجه به‌دول مخلوط در دقیقه (۷۰۰ دیسک) شد. سپس میزان جذب نور معکوس با استفاده از استنگه اسپکتروفوتومتر در طول موج‌های ۴۵۵ و ۶۶۳ نانومتر قرار نهایی و نهایی غلظت کارفیل b به‌دراگرهای استانداردی روی معکوسهای زیر مخابه شد (۲۰۰ دیسک).

(۷۰۰ دیسک)

[۱۴] که در روابط فوق OD۶۶۳ و OD۴۵۵ بی‌تر میزان جذب در طول موج‌های ۶۶۳ و ۴۵۵ نانومتر می‌باشد. نتایج به‌مدت آزمایش توسط آزمایش تجزیه و تحلیل و برای مقایسه میانگین‌ها از آزمون دانک استفاده شد.
جدول 2. تجزیه و بررسی مقایسه بیانیه‌های ارگامی تیمارهای روز صاف مورد بررسی در دانه‌های پستان ۶۰ روز پس از شروع تیمار (ب، پادامی، زرنگ، سی، سرخس و ق، قریبی)

<table>
<thead>
<tr>
<th>میزان کلروفیل کل</th>
<th>وزن خشک ریشه در هر بونه (گرم)</th>
<th>وزن خشک ساقه در هر بونه (گرم)</th>
<th>وزن خشک برگ در هر بونه (گرم)</th>
<th>سری‌کلید (میلی‌مول)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fv: Fm</td>
<td>RWC</td>
<td>RWC</td>
<td>RWC</td>
<td></td>
</tr>
<tr>
<td>0.72 ± 0.02 a</td>
<td>1.3 ± 0.5 a</td>
<td>0.5 ± 0.1 a</td>
<td>0.3 ± 0.1 a</td>
<td>b</td>
</tr>
<tr>
<td>0.72 ± 0.02 a</td>
<td>1.3 ± 0.5 a</td>
<td>0.5 ± 0.1 a</td>
<td>0.3 ± 0.1 a</td>
<td>c</td>
</tr>
<tr>
<td>0.72 ± 0.02 a</td>
<td>1.3 ± 0.5 a</td>
<td>0.5 ± 0.1 a</td>
<td>0.3 ± 0.1 a</td>
<td>d</td>
</tr>
<tr>
<td>0.72 ± 0.02 a</td>
<td>1.3 ± 0.5 a</td>
<td>0.5 ± 0.1 a</td>
<td>0.3 ± 0.1 a</td>
<td>e</td>
</tr>
<tr>
<td>0.72 ± 0.02 a</td>
<td>1.3 ± 0.5 a</td>
<td>0.5 ± 0.1 a</td>
<td>0.3 ± 0.1 a</td>
<td>f</td>
</tr>
<tr>
<td>0.72 ± 0.02 a</td>
<td>1.3 ± 0.5 a</td>
<td>0.5 ± 0.1 a</td>
<td>0.3 ± 0.1 a</td>
<td>g</td>
</tr>
<tr>
<td>0.72 ± 0.02 a</td>
<td>1.3 ± 0.5 a</td>
<td>0.5 ± 0.1 a</td>
<td>0.3 ± 0.1 a</td>
<td>h</td>
</tr>
<tr>
<td>0.72 ± 0.02 a</td>
<td>1.3 ± 0.5 a</td>
<td>0.5 ± 0.1 a</td>
<td>0.3 ± 0.1 a</td>
<td>i</td>
</tr>
<tr>
<td>0.72 ± 0.02 a</td>
<td>1.3 ± 0.5 a</td>
<td>0.5 ± 0.1 a</td>
<td>0.3 ± 0.1 a</td>
<td>j</td>
</tr>
<tr>
<td>0.72 ± 0.02 a</td>
<td>1.3 ± 0.5 a</td>
<td>0.5 ± 0.1 a</td>
<td>0.3 ± 0.1 a</td>
<td>k</td>
</tr>
<tr>
<td>0.72 ± 0.02 a</td>
<td>1.3 ± 0.5 a</td>
<td>0.5 ± 0.1 a</td>
<td>0.3 ± 0.1 a</td>
<td>l</td>
</tr>
<tr>
<td>0.72 ± 0.02 a</td>
<td>1.3 ± 0.5 a</td>
<td>0.5 ± 0.1 a</td>
<td>0.3 ± 0.1 a</td>
<td>m</td>
</tr>
<tr>
<td>0.72 ± 0.02 a</td>
<td>1.3 ± 0.5 a</td>
<td>0.5 ± 0.1 a</td>
<td>0.3 ± 0.1 a</td>
<td>n</td>
</tr>
<tr>
<td>0.72 ± 0.02 a</td>
<td>1.3 ± 0.5 a</td>
<td>0.5 ± 0.1 a</td>
<td>0.3 ± 0.1 a</td>
<td>o</td>
</tr>
<tr>
<td>0.72 ± 0.02 a</td>
<td>1.3 ± 0.5 a</td>
<td>0.5 ± 0.1 a</td>
<td>0.3 ± 0.1 a</td>
<td>p</td>
</tr>
<tr>
<td>0.72 ± 0.02 a</td>
<td>1.3 ± 0.5 a</td>
<td>0.5 ± 0.1 a</td>
<td>0.3 ± 0.1 a</td>
<td>q</td>
</tr>
<tr>
<td>0.72 ± 0.02 a</td>
<td>1.3 ± 0.5 a</td>
<td>0.5 ± 0.1 a</td>
<td>0.3 ± 0.1 a</td>
<td>r</td>
</tr>
<tr>
<td>0.72 ± 0.02 a</td>
<td>1.3 ± 0.5 a</td>
<td>0.5 ± 0.1 a</td>
<td>0.3 ± 0.1 a</td>
<td>s</td>
</tr>
<tr>
<td>0.72 ± 0.02 a</td>
<td>1.3 ± 0.5 a</td>
<td>0.5 ± 0.1 a</td>
<td>0.3 ± 0.1 a</td>
<td>t</td>
</tr>
<tr>
<td>0.72 ± 0.02 a</td>
<td>1.3 ± 0.5 a</td>
<td>0.5 ± 0.1 a</td>
<td>0.3 ± 0.1 a</td>
<td>u</td>
</tr>
<tr>
<td>0.72 ± 0.02 a</td>
<td>1.3 ± 0.5 a</td>
<td>0.5 ± 0.1 a</td>
<td>0.3 ± 0.1 a</td>
<td>v</td>
</tr>
<tr>
<td>0.72 ± 0.02 a</td>
<td>1.3 ± 0.5 a</td>
<td>0.5 ± 0.1 a</td>
<td>0.3 ± 0.1 a</td>
<td>w</td>
</tr>
<tr>
<td>0.72 ± 0.02 a</td>
<td>1.3 ± 0.5 a</td>
<td>0.5 ± 0.1 a</td>
<td>0.3 ± 0.1 a</td>
<td>x</td>
</tr>
<tr>
<td>0.72 ± 0.02 a</td>
<td>1.3 ± 0.5 a</td>
<td>0.5 ± 0.1 a</td>
<td>0.3 ± 0.1 a</td>
<td>y</td>
</tr>
<tr>
<td>0.72 ± 0.02 a</td>
<td>1.3 ± 0.5 a</td>
<td>0.5 ± 0.1 a</td>
<td>0.3 ± 0.1 a</td>
<td>z</td>
</tr>
</tbody>
</table>

در هر ستون، بیانیه‌ها هم درون یک سری کلید مشترک هستند. در سطح 0.05 از هر دانه اگر داده‌های مختلف میانه‌ها تفاوت نداشته باشند، تفاوت معنی‌دار پستان. *، ** و *** میانگین در سطح 5 درصد، 2 درصد و 1 درصد. ترکیبی معنی‌دار در سطح 5 درصد و 2 درصد.
پاسخ پایه‌های درختان پسته بادامی زرد، سرخرس و قروپی به زیادی بر و ... نمود. اثر تیمارهای مختلف شوری روی طول ریشه دانه‌های سه پایه پسته بعد از ۶۰ روز تیمار می‌تواند قابل توجهی باشد. برای تحقیق بهتر در این زمینه، باید تحقیقات بیشتری صورت گیرد.
شکل ۵: تاثیر تیمار‌های مختلف شوری روی سرعت رشد نسبی دانه‌های پسته

شکل ۶: تاثیر تیمار‌های مختلف شوری روی سرعت فتوسنتز خالص دانه‌های پسته
تشانش شوری و دخالت، باعث خشکی شدن سمت آمونیاک آزاد تولید شده در برگهای گیاهان تحت تنش آب و شوری می‌شود. همچنین به عنوان عاملی برای تنفس و یک منبع انرژی برای بهبود گیاه در شرایط تنش استفاده می‌شود (10). انتباشت پرولین بیشتر در پایه قزوینی نشان می‌دهد که این پایه در مقایسه با پایه‌های دیگر در این بررسی، از پیده‌های تنشی بیشتر استفاده می‌کند و احتمالاً به مهیان علت در مقایسه با پایه‌های دیگر بیشتر از تنش شوری استخوانی می‌کند و در مقابل نشانه‌های مقاومت است. در ارتباط با تجمع پرولین در پایه‌های پهنه که در معیار شوری قرار دارند، هیچ گونه

شکل 8. نتایج آزمایش نشان داد که از 60 روز از شروع تیمار و با افزایش تنش شوری، مقدار پرولین در برگ‌های افزایش می‌یابد (شکل 8). بالاترین میزان تجمع پرولین در تیمار 225 میلی‌مول سدیم کلرید (12/7 میکروول در گرم وزن تر) و کمترین انتباشت آن در تیمار شاده (11/4 میکروول در گرم وزن تر) بود. انتباشت پرولین در بین پایه‌های مورد بررسی در پایه قزوینی بیشتر از پایه‌های دیگر بود. به عنوان مثال در تیمار 225 میلی‌مول سدیم کلرید، میزان تجمع پرولین در پایه قزوینی 1/1 برابر پایه سرخس و 3/1 برابر پایه بادامی زرد بود (شکل 8). پرولین علاوه بر تنظیم اسیدی است در گیاهان تحت
گزارشی انتشار نیافتته ولی آنچه مسلم است با توجه به نتایج تجزیه واریانس (جدول 2) که اختلاف معنی‌دار بین تیمارهای شوری اعمال شده و پایه از نظر میزان پئیشسل آب پرگ و میزان نسبی آب پرگ دیده نشد می‌توان به اهمیت پرولین و ابزاری آن در برگ و نقش آن در تنظیم اقلیمی بر برد بهبودیان و همکاران (7) نیز این چنین نتایجی را یافته که مشابه با نتایج بدست آمده در این پژوهش بود. آنها دریافتند که شوری تا میزان 225 میلی‌مول سه‌داییدیر کردن، هیچ اثر روی میزان پئیشسل آب پرگ، پئیشسل اسمری و پئیشسل نوروزسانس نداشت.
نتایج تجزیه واریانس در ارتباط با میزان کلروفیل (a) و b کلروفیل کل برگ نشان داد که هیچ اختلاف معنی‌داری بین دانه‌هایی که تحت تیمار شوری و پایه وجود دارد. با عبارت دیگر، تنفس شوری در میزان کلروفیل برگ تأثیر نداشت.
است که این نتایج با نتایج پژوهش بهبودیان و همکاران (5) که آثار تنفسی و آب در بررسی میزان فتوسنتز بررسی کرده، مشابه بود. آنها در آزمایش خود تأثیر سطوح مختلف شوری تا میزان 225 میلی‌مول سدیم کلروفیل را بر روی مقدار کلروفیل برگ پشتی بررسی کرده و نتیجه گرفتند که علی رغم بالا بودن غلظت یون‌های کلر و سیدم در برگ‌ها، مقدار کلروفیل تحت تنفس نشان حذف شوری قرار نگرفت.
نتایج آزمایش در ارتباط با میزان کلروفیل فلوروسنس نشان داد که اختلاف معنی‌داری در میزان Fv/Fm بین تیمارها و شاهد وجود نداشت (جدول 3). این شاخص طبق بررسی‌های انجام شده، میزان انرژی ارتعاشی و فولد از ورود انرژی و تبدیل فتوسیستم I به فتوسیستم II را بیان می‌کند که مشخص شده است که میزان انرژی ارتعاشی پایه از یک و اکثر همیکاراپلاسی بیا کاراپی فتوسنتز در گیاه دارد. از طرفی پژوهش‌های انجام شده ناکوش مشخص کرد که همیکاراپلاسی بیا کاراپی بین تونف فتوسنتز و کاهش میزان Fv/Fm وجود دارد (8). این پروانه این نتایج اعمال معنی‌داری با میزان کلروفیل نوری است. اگر تاکید فارآمد فتوسنتز از طریق برخی عوامل تنفس زا...
در ارتباط با وزن خشک ساقه در هر بوته، میانگین در شاهد و نیمی در لیزر گرم در لیزر بیترتیب قدرت و در تغییر میزان نکرده گیاه در داده‌های میزان و تغییر گیاه به نسبت منفی رشد آثار زمان و تجربه و میزان سرخشتی گیاه کمک کرد می‌باشد.

به دلیل حکمران بودن در گیاه غلظتهای کم در 2 ماه اول

مسومیتی در پوسته است. این نتیجه اجباری می‌باشد و با تغییر

زاویه می‌شود. در این نتایج در پوسته ای نتیجه‌گیری کرد (1) اگر چه

پسندیده‌های میان در این زمان‌ها یک میلی‌گرم در کیلو نمونه (2) می‌باشد. میزان

بررسی در این پروتئین که در معرض نشان داده شده آب

پاژامتر NARw معمول از (3) بیشتر از سرعت سبب بیشتر به این پارامتر برمی‌گردد. (4) بین

پوسته‌های میانه مورد بررسی، پیش‌ترین کمتر تأثیر نش

شروع گرفت و سرعت میزان نسبت به پوسته‌های دیگر داشت، از طرفی این پوسته با تغییر پرولین

در بخشهای از پیدا شدن تغییرات اسمی نسبت به دو پوسته دیگر از

تستان شوری بیشتر اجتناب کرد و همچنین مقدارهای بیشتری

شناس داد (5). نن میزان 40 میلی‌گرم در لیزر در آب ابزاری

تأثیری بر پوسته‌های رشدی پایه‌های پسته نمی‌گذارد.

نتایج و جمعیت این کشورهای داده که گیاه می‌باشد.

میزان کربنولفی در داده‌های شاهد و میزان 40

میلی‌گرم در لیزر بیترتیب 26/7 و 69/3 میلی‌گرم در

وزن گیاه بوده که اختلاف معنی‌دار نبود (2) میزان تجربه واریانس نشن داد که تیمار 10 میلی‌گرم در

نیاز اینه برخوی میزان پتانسیل آب گیاه و میزان نسب آب

برگ ناپاسند. میزان پتانسیل آب گیاه، 60 روز پس از شروع

تمایز، در تیمار شاهد و تیمار 40 میلی‌گرم در لیزر بیترتیب از آنها که پیچیده و

میزان آب آور روی پرولین‌های هر پایه هر تریوتون، PGII،

آتانتیکا و پسته‌های الیس (P. veria) را نشان دهنده خشکی ریشه.

برگ و ساقه، شماره برگ و سطح برگ گزاره کردند که با

منابع مورد استفاده

1. شیبانی، A.H. فیروزآبادی، و طلابی. 1373. پیشنهاد آن در ایران. انتشارات سازمان تحقیقات آموزش ترویج

کشاورزی تهران.

2. طلابی، A.H. فیروزآبادی درختان میوه منطقه معتمد. (تأثیر فاست میکلوز) جامع اول. انتشارات دانشگاه تهران.

3. محفوظی، ع. 1376. پیشنهاد انتشارات سازمان تحقیقات آموزش ترویج کشاورزی.

4. مهاجر، ن. و. 1375. چندگونگی بیورپیداری از زمینه‌های ترویج، پژوهش‌های برخورداری از آستانه خاک. نشر آموزش کشاورزی کرج.

22. Yeo, A. 1999. Predicting the interaction between the effects of salinity and climate change on crop plants. Scientia Hort. 78: 159-174.