تعیین شاخص‌های انتخاب در ارقام ذرت (Zea mays L.) به منظور افزایش عملکرد دانه

محمد مدرسی، محمدتقی آساد و موجهر خردنام

چکیده
عملکرد، صفتی کمی است و رسیدن به بهبود زننکی در آن از طریق گیاه‌شناسی مستقل است. کاربرد شاخص‌های انتخاب می‌تواند یکی از روش‌های مؤثر انتخاب کیفی می‌باشد. پژوهش در سال‌های 1377-1387 در کلیه بلوک‌های کامل تصادفی با سه تکرار در دو استان تحقیقات دانشگاه کشاورزی دانشگاه شیراز واقع در کوه‌بندی با پایگاه انجام گرفت. با نمونه برداری در مراحل مختلف ته از این ساله، ظهور کامل کل‌ناتج، نرخ نهایی، نرخ سخت و رشد و سیاست انجام‌شده در تهای صفت اندازه‌گیری و مهندسی و همچنین تجزیه و تحلیل با الگوی کوواریانس در ستونهای جدول مشخص شد. با کمک تجربه‌های 27 صفت برای تکامل شاخص‌های انتخاب گزینش شدند. در این پژوهش دو نوع شاخص انتخاب از نوع اولیم به کار برده شد. در هر دو نوع شاخص انتخاب، 27 ترکیب مختلف از 8 صفت به عنوان یکه‌های خلاصه (مدل خلیقی‌چند متغیره) به کار برده و ضرایب ویژه به هرکدام از صفات در این 8 صفت به میزان محسوب شد. ضرایب ویژه به هرکدام از شاخص‌های با استاندارد میانگین 0.4 بردار ضرایب ویژه شاخص در شاخص انتخاب نوع اول، وراثت پدری، صفات با علائم‌های پاسخ به عنوان ارزش‌های انتظاری راه‌اندازی گردید. برترین شاخص تعداد انتخاب نوع اول، صفات عملکرد دانه و میزان جذب و تحلیل خلاصه در مرحله دوم نمونه‌برداری بود. در شاخص انتخاب نوع دوم به وراثت پدری صفات به عنوان ارزش انتخابی، علائم برای علائم ضریب همبستگی زناشویی صفات مانکور با عملکرد داده شد. در نهایت برترین شاخص انتخاب نوع دوم، صفات عملکرد دانه و میزان جذب و تحلیل خلاصه در مرحله دوم نمونه‌برداری بود. همبستگی برترین شاخص در دو نوع شاخص انتخاب با ارزش اولیم برابر با یک بوده است که 14 درصد برتر از شاخص شماره یک که شامل عملکرد ته دانه، نرخ سخت و نرخ نهایی است. در هر دو نوع شاخص انتخاب، شاخص‌های لیپیدولوژیک شامل میزان جذب و تحلیل خلاصه، سرعت رشد گیاه زراعی و سرعت رشد نسبی گیاه زراعی از جمله صفات بسیار مهم شکل‌دهنده شاخص‌های برتر بودند.

واژه‌های کلیدی: ذرت، شاخص انتخاب، شاخص اولیم و وراثه پدری

1. بهترین دانشجوی سال کارشناسی ارشد، استاد و استادیار زراعت و اصلاح نباتات، دانشگاه شیراز
مقدمه

یک کارگری روش‌های نوین مزراعی و یزدراز در بالا بردن
عملاکرد در کشور و به تدریج امکان می‌دهد. این مسئله باید به‌ویژه به‌نفع صنعت‌های محصولی به بهره‌برداری از منجر
می‌شود. یکی از این امرها مزرعه‌ی نوین روندهای غیرمستقیم بی‌گیره‌گر
شناخت‌های انتخابی می‌باشد. (۲۱).

برای بهبود و یا چند صفت به‌طور همزمان، سه روش
انتخاب، شامل شاخص انتخاب، انتخاب مستقل و انتخاب
نویسی، در برنامه‌های اصلاحی مناسب تنظیم داده شده است.
شناخت انتخابی این روش که شایستگی صفات مختلف را
متعکس می‌کند و تحرکه‌ای خاصی از ارزش‌های فنوتیپی انتخاب
با ضرایب ورودی می‌شود. در انتخاب فنوتیپی می‌توان از
ارزش‌های انتخابی انتخاب انجام می‌شود. در انتخاب به دنبال
یک نویسی، به‌طور محدود در سل‌های سنتی مولفی گرین
می‌شود و تا حصول سطح مطلوب انتخاب انجام می‌شود.
در انتخاب مستقل برای هر صفت، سطح معنی‌دار نظر گرفته
می‌شود و افزایش ارزش فنوتیپی کمتر از سطح مورد نظر را
دارند از جمله محدود می‌شوند (۳ و ۷).

اصول بهترین روش انتخاب روش انتخابی است که برای
دامنه‌های قابل پیشرفت در چاپ از اصلاحی یک
فرداد (گیاه) یا پردازش داده‌شد. در این روش، برای هر صفت
بسیار به‌عنوان انتخابی نسبی، وارد پایه‌ای آن و همچنین
فنوتیپی و فنوتیپی از صفات مختلف انتخاب یا وزن مناسبی داده
می‌شود (۱۰).

افزایش عملاکرد ممکن است ناشی از آفزایش عملاکرد
بیولوژیک (کل حداکثر بیولوژیکی حاصل) با انتخاب
برداشت (گرفسکی عملاکرد انتخابی به عملاکرد بیولوژیک) و با
هر دوی آنها باشد. (۱۱) بوسیله (۲۴) در ازآمایشی که شامل
گروه مختلف از این‌میانی‌های حاصل از این‌میانی‌ها، چنین یک
مکان‌نهایی در نتیجه گرفت که برای بهبود عملاکرد
شناخت‌هایی که شامل صفت عملاکرد داشته‌اند، به‌هوری به‌سیستم

72
نعنای شاخ‌هایی انتخاب در ارقام ذرت (Zea mays L.)

مطالعه‌ای صفات به عنوان ضریب شاخ‌های بکار برده می‌شود. ولی شاخ‌هایی که به ورزش‌های اقتصادی نسبی مشخص باشند، احتمالاً کارایی است.

ملاهوترا و کوهرا (16) به پرورا و تجربه علیت و با بررسی روابط صفات در ذرت، اثرات فیزیک و ارتفاع بالا را در عملکرد مفلوتانه و نقش زمان ظهور اندازه ماده در گیاه را کم که اهمیت تلقی نموده است.

در آزمایشی در روسیه، 338 رکم ذرت بررسی و مشخص شد که طول بالال، وزن بالال، شمار دانه در ریف و شمار بالا در گیاه هم‌سطح می‌باشند ایا عملکرد دانه دارد و می‌تواند در اصلاح برای برای مفلوتانه بکار باید (200).

در آزمایشی که توسط جان‌بیلسکسکی و همکاران (14) انجام شد با همبستگی از تجربه علیت، به این ترتیب رسیده که شمار بالال در گیاه و قطر بالا اثر مستقیم بیشتری نسبت به سایر صفات روی عملکرد دانه دارد و انتخاب مستقیم از طریق این صفات مناسب است.

هدف از این پژوهش، انتخاب صفات شایسته برای رود به شاخ‌های برآورد ضریب شاخ‌هایها، محاسبه همبستگی ارزش ارثی با همبستگی از شاخ‌های اصلی به‌دست‌آمد و در نهایت برآورد بهترین شاخ‌های انتخاب بود.

مواد و روش‌ها

بر تکنیک ارزیابی شاخ‌هایی انتخاب در ذرت، آزمایشی در دو استگاهuty تحقیقاتی دانشکده زراعت و دانشگاه شیراز واقع در باغچه‌ها با ارتفاع 180 متر از سطح دریا، طول جغرافیایی 24 درجه و 36 دقیقه شرقی و عرض جغرافیایی 34 درجه و 6 دقیقه شمالی در سال زراعی 1376-79 در قالب طرح بلوک‌های کامل تصادفی با 8 تکرار روی 13 همبستگی ذرت انجام شد. بافت ناخالی بر مزرعه تحقیقاتی از نوع لومی‌رسی است. بذر هیریدرها از موسسه
RGR = [(ln W2 - ln W1)/(M2 – M1)] x 1000
CGR = [(W2 - W1)/(M2 - M1)] x (1/GA) x 1000
NAR = CGR/LAI

[1] شاخص سطح برگ بیان‌گر اندام‌گیری سطح برگ 10 بوته محاسبه شده است. مدل سطح اشغال شده سطح پ. و W₁ و W₂ رزنمایی شده‌اند.

[2] شاخص حرارتی روزانه بر حسب درجه روزهای رشد, یعنی Tₑ درجه حرارت پرداخته شده در هر روز, این شاخص به عنوان مقدار میانگین درجه حرارت پرداخته شده در نوبت‌های دارای گرمایی وضعیت 10٪ محاسبه شده است.

[3] شاخص حرارتی روزانه بر حسب درجه روزهای رشد, یعنی Tₑ درجه حرارت پرداخته شده در هر روز, این شاخص به عنوان مقدار میانگین درجه حرارت پرداخته شده در نوبت‌های دارای گرمایی وضعیت 10٪ محاسبه شده است.

[4] شاخص حرارتی روزانه بر حسب درجه روزهای رشد, یعنی Tₑ درجه حرارت پرداخته شده در هر روز, این شاخص به عنوان مقدار میانگین درجه حرارت پرداخته شده در نوبت‌های دارای گرمایی وضعیت 10٪ محاسبه شده است.

[5] شاخص حرارتی روزانه بر حسب درجه روزهای رشد, یعنی Tₑ درجه حرارت پرداخته شده در هر روز, این شاخص به عنوان مقدار میانگین درجه حرارت پرداخته شده در نوبت‌های دارای گرمایی وضعیت 10٪ محاسبه شده است.

مراجع:
1. موسوی، ف Zahedi-Meibodi, A. کیفیت محصولات گیاهی با استفاده از رابطه زیر محاسبه شده:
2. FAT, موسوی، ف Zahedi-Meibodi, A. کیفیت محصولات گیاهی با استفاده از رابطه زیر محاسبه شده:
3. FAT, موسوی، ف Zahedi-Meibodi, A. کیفیت محصولات گیاهی با استفاده از رابطه زیر محاسبه شده:
4. FAT, موسوی، ف Zahedi-Meibodi, A. کیفیت محصولات گیاهی با استفاده از رابطه زیر محاسبه شده:
5. FAT, موسوی، ف Zahedi-Meibodi, A. کیفیت محصولات گیاهی با استفاده از رابطه زیر محاسبه شده:
6. FAT, موسوی، ف Zahedi-Meibodi, A. کیفیت محصولات گیاهی با استفاده از رابطه زیر محاسبه شده:
7. FAT, موسوی، ف Zahedi-Meibodi, A. کیفیت محصولات گیاهی با استفاده از رابطه زیر محاسبه شده:
8. FAT, موسوی، ف Zahedi-Meibodi, A. کیفیت محصولات گیاهی با استفاده از رابطه زیر محاسبه شده:
9. FAT, موسوی، ف Zahedi-Meibodi, A. کیفیت محصولات گیاهی با استفاده از رابطه زیر محاسبه شده:
10. FAT, موسوی، ف Zahedi-Meibodi, A. کیفیت محصولات گیاهی با استفاده از رابطه زیر محاسبه شده:
11. FAT, موسوی، ف Zahedi-Meibodi, A. کیفیت محصولات گیاهی با استفاده از رابطه زیر محاسبه شده:
12. FAT, موسوی، ف Zahedi-Meibodi, A. کیفیت محصولات گیاهی با استفاده از رابطه زیر محاسبه شده:
ضروب یکنواخت از حاصل ضرب ماتریس ضروب همبستگی ذرت با یکدیگر در بردار ضروب همبستگی ذرت مناسب و جمعیت وازد بزرگی از این مدل آثار مستقیم و غیر مستقیم محاسبه شد. در این مدل مدل به شرح زیر می‌باشد:

\[ \text{PCV} = \left[ \frac{\delta_y}{\delta_x} \times 100 \right] \text{ و } \text{GCV} = \left[ \frac{\delta_{pcy}}{\delta_{pcx}} \times 100 \right] \]

در این آزمایشات نهایی، به محاسبه شده‌اند افتیاد جریب‌های واریانس و ضرایب همبستگی ذرت عناصری داشته و جریب‌های همبستگی ذرت و فنوتیپی به‌عنوان متغیرهای مستقل تعیین شدند. سپس با استفاده از تجزیه علیت، همبستگی ذرت مشاهده شده و راهاندیداری مدل افزایش یافته قرار گرفته است. در این مدل مدل به شرح زیر می‌باشد:

\[ \text{GCV} = \frac{1}{1 + \left( \frac{\delta_{pcy}}{\delta_{pcx}} \times 100 \right)} \]

در این آزمایشات نهایی، به محاسبه شده‌اند افتیاد جریب‌های واریانس و ضرایب همبستگی ذرت عناصری داشته و جریب‌های همبستگی ذرت و فنوتیپی به‌عنوان متغیرهای مستقل تعیین شدند. سپس با استفاده از تجزیه علیت، همبستگی ذرت مشاهده شده و راهاندیداری مدل افزایش یافته قرار گرفته است. در این مدل مدل به شرح زیر می‌باشد:

\[ \text{GCV} = \frac{1}{1 + \left( \frac{\delta_{pcy}}{\delta_{pcx}} \times 100 \right)} \]

در این آزمایشات نهایی، به محاسبه شده‌اند افتیاد جریب‌های واریانس و ضرایب همبستگی ذرت عناصری داشته و جریب‌های همبستگی ذرت و فنوتیپی به‌عنوان متغیرهای مستقل تعیین شدند. سپس با استفاده از تجزیه علیت، همبستگی ذرت مشاهده شده و راهاندیداری مدل افزایش یافته قرار گرفته است. در این مدل مدل به شرح زیر می‌باشد:

\[ \text{GCV} = \frac{1}{1 + \left( \frac{\delta_{pcy}}{\delta_{pcx}} \times 100 \right)} \]

در این آزمایشات نهایی، به محاسبه شده‌اند افتیاد جریب‌های واریانس و ضرایب همبستگی ذرت عناصری داشته و جریب‌های همبستگی ذرت و فنوتیپی به‌عنوان متغیرهای مستقل تعیین شدند. سپس با استفاده از تجزیه علیت، همبستگی ذرت مشاهده شده و راهاندیداری مدل افزایش یافته قرار گرفته است. در این مدل مدل به شرح زیر می‌باشد:

\[ \text{GCV} = \frac{1}{1 + \left( \frac{\delta_{pcy}}{\delta_{pcx}} \times 100 \right)} \]
تغییرات و بحث

ماینگین معیارهای آزمایش، رقم، محبوبیت و برهمکنش آنها با صفات در جدول 1 آمده است. این انجام تجربه ی علیه صفاتی که اثر مستقیم آنها حداقل رای همیستگی زیستی آن صفات با علیه صفاتی همیار معمایت بودند انتخاب شدند. بر این اساس و تایید تجزیه علیه دلالی که در پی گرازه آمده در تایید 12 صفت برای تغییر نشان دهنده انتخاب گرینش شد. اینه بنابراین به ذکر این است که این ماده از صفات در پایدار ترکیبات خاصها و ضرایب آنها مربوط به مراحل نمونه برداری است. همچنین مخفف صفات درون پرانت داده شده است.

1. بالاروند و رانت پذیری (99/0)، مربوط به سرعت رشد نسبی گیاه زراعی در مرحله کهارم (RGR4) و پس از آن (94/2) ـ پس از بالاروند (TL) و کورنون و رانت پذیری (70/0) مربوط به ارتقاء گیاه در مرحله کهارم نمونه برداری (PH4) بود.

2. ورانت پذیری علیه گرینش 65/0 بیش از میانگین همیستگی زنوتیکی خارج گردیدن دلالت عوامل محیطی بود. از 35 صفت مورد بررسی، فقط 16 صفت دارای همیستگی زنوتیکی معنی داری با عملکرد بود. این صفات به عنوان دارندور ورانت پذیری و پیشترت زنوتیکی بالاتر وارده محسوبات تجربه علیه شدند. از آنجا که هدف اصلی این پژوهش ارائه ترکیبات مختلف صفات همراه با ضرایب آن به عنوان شاخص انتخاب برای انتخاب ارقاء به عملکرد بالاتر است. از پرداختن به جنبات صفات انتخاب شده برای تشکیل شاخص علیه گرینش دش.

3. صفات نمونه برداری EL 3 و 4 صفات دارای بالاروند همیستگی NAR3 و EL 4. CGR4 صفات دارای بالاروند همیستگی NAR3 و EL 4. CGR4 صفات دارای بالاروند همیستگی NAR3 و EL 4. CGR4 صفات دارای بالاروند همیستگی NAR3 و EL 4. CGR4 صفات دارای بالاروند Hm یک میلیون همیستگی (1) به شاخص NAR2 و غیره...

ویژه‌های اقتصادی نسبی برای عملکرد عدد گیاه و برای بهبود صفات، عدد صفر منظور می‌گردد و P نیز به ترتیب ماریس وارینس-کوروارانز فنوتیپی و زنوتیکی صفات است (200).
جدول 2. ترکیبات صفات و ضرایب مربوطه در شاخص نوع اول

<table>
<thead>
<tr>
<th>رده</th>
<th>شاخص</th>
<th>$\Gamma_{HI}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.82X1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>0.62X4 + 1/2X12</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>3.24X3 + 1/2X12</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>1/2X12 + 1/2X11 +</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>1/2X12 + 1/2X11 +</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>8/2X12 + 1/2X11 +</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>8/2X12 + 1/2X11 +</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>8/2X12 + 1/2X11 +</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>8/2X12 + 1/2X11 +</td>
<td>18</td>
</tr>
</tbody>
</table>

LAI2, LAI3, NAR1, NAR2, CRG1, CRG2,

<table>
<thead>
<tr>
<th>Rده</th>
<th>شاخص</th>
<th>$\Gamma_{HI}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.82X1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>0.62X4 + 1/2X12</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>3.24X3 + 1/2X12</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>1/2X12 + 1/2X11 +</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>1/2X12 + 1/2X11 +</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>8/2X12 + 1/2X11 +</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>8/2X12 + 1/2X11 +</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>8/2X12 + 1/2X11 +</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>8/2X12 + 1/2X11 +</td>
<td>18</td>
</tr>
</tbody>
</table>

LAI2, LAI3, NAR1, NAR2, CRG1, CRG2,

<table>
<thead>
<tr>
<th>Rده</th>
<th>شاخص</th>
<th>$\Gamma_{HI}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.82X1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>0.62X4 + 1/2X12</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>3.24X3 + 1/2X12</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>1/2X12 + 1/2X11 +</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>1/2X12 + 1/2X11 +</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>8/2X12 + 1/2X11 +</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>8/2X12 + 1/2X11 +</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>8/2X12 + 1/2X11 +</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>8/2X12 + 1/2X11 +</td>
<td>18</td>
</tr>
</tbody>
</table>

LAI2, LAI3, NAR1, NAR2, CRG1, CRG2,

<table>
<thead>
<tr>
<th>Rده</th>
<th>شاخص</th>
<th>$\Gamma_{HI}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.82X1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>0.62X4 + 1/2X12</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>3.24X3 + 1/2X12</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>1/2X12 + 1/2X11 +</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>1/2X12 + 1/2X11 +</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>8/2X12 + 1/2X11 +</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>8/2X12 + 1/2X11 +</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>8/2X12 + 1/2X11 +</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>8/2X12 + 1/2X11 +</td>
<td>18</td>
</tr>
</tbody>
</table>

LAI2, LAI3, NAR1, NAR2, CRG1, CRG2,
شماره‌های انتخاب در ارقام ذرت (Zea mays L.)

نتیجه: با بررسی (r) و (μ) بهترین انتخاب شماره‌های 12 به خود اختصاصی پایین‌ترین انتخاب شماره‌های 12 به خود اختصاصی پایین‌ت
جدول 3. ترکیبات مختلف صفات و ضرابی مربوط در شاخص نوع دوم

<table>
<thead>
<tr>
<th>شاخص</th>
<th>رده</th>
<th>n</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1000</td>
<td>81</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>500</td>
<td>95</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1000</td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.5</td>
<td>93</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>500</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>750</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0.5</td>
<td>91</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>0.5</td>
<td>91</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>500</td>
<td>87</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>750</td>
<td>92</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>0.5</td>
<td>94</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>0.5</td>
<td>91</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>750</td>
<td>85</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>0.5</td>
<td>91</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>0.5</td>
<td>91</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>750</td>
<td>74</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>0.5</td>
<td>91</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>0.5</td>
<td>91</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>500</td>
<td>8</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>0.5</td>
<td>91</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>0.5</td>
<td>91</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>0.5</td>
<td>91</td>
</tr>
</tbody>
</table>

لازم به ذکر است که شمار صفات ورد شده در شاخصها اهمیت ندارند و لزوماً شاخصی که شمار صفت بیشتری در خود داشته باشد، مناسبتر نیست و آنچه مهم می‌باشد این است که صفات انتخاب شده در ارایه نیازی به روندی دارد که می‌توان از شاخص‌های انتخاب به مسئله انجام پذیرد.

باشد، علت داشته باشد. نتایج به دست آمده از هر دو نوع شاخص انتخاب نیز این امر را اثبات می‌کند. از طرف دیگر یاد دقت کرد تا حد ممکن آزمایش انجام شده بیان منظر از نوع کاهش رقم و محیط نیز برخوردار باشد. جماه‌ریزی که به انجام آزمایش در طیف وسیعی از محیط‌ها و رقم باعث افزایش دقت شاخص‌های به دست آمده می‌شود.

می‌توان از شاخص‌های انتخاب به مسئله انجام بپذیرد.
موفقیت برنامه‌های طیف‌گیری نیز به‌هدر می‌آید که به پنج صورت
که هر دوی که به صورت درصدی که راه‌نمایی از این صورت می‌باشد. از یک نظر است که راه‌نمایی از صورت، این صورت
انگیزه مذکور است. این نظر است که این صورت می‌باشد.
در نهایت توصیه می‌شود برای بررسی گزارش‌های به‌دست
آمده، این شاخص‌ها در یک برنامه اصلاح از آبی‌ای و یشود.

متابع مورد استفاده

1. محمدی، ر. 1380. ارزیابی عملکرد و اجزای عملکرد دانه ذرت با استفاده از تجربه‌های دی‌آل. مجله علوم زراعی ایران 3(3): 8-18.

2. رضایی، غ. 1383. شاخص‌های انتخاب در اصلاح نباتات: چهارمین کنگره علوم زراعت و اصلاح نباتات، انتشارات دانشگاه تبریز.

3. رضایی، غ. و.ا. سلطانتی. 1377. مقدمه ای بر تحلیل گزارش‌های کاربردی. چاپ اول. مرکز تحقیقات و ارزیابی صنعتی اصلاح‌های بیولوژیکی (Triticum aestivum) به منظور افزایش عملکرد دانه. پایان نامه کارشناسی ارشد اصلاح نباتات، انتشارات دانشکده کشاورزی دانشگاه شیراز. 48 صفحه.

4. ناوی، غ. 1378. ارزیابی عملکرد و تغییرات جنبشی در انتخاب گندم نان F4 از نوع عنوان ارتباطی لایه‌های پر‌عمودی. پایان نامه کارشناسی ارشد دانشگاه آزاد اسلامی، تهران. 58 صفحه.

5. نورمحمدی، ق. س. و. سیاسی و. 1376. ارزیابی لایه‌های بذری در پرورش مهی از انتخابات دانشگاه شهید چمران، اهواز.


