تعیین شاخص‌های انتخاب در ارقام ذرت (Zea mays L.) به منظور افزایش عملکرد دانه

محمد مدرسی، محمدتقی آزاد و میترا خرندام

چکیده
عملکرد، صفتی کمی است و رسیدن به بهبود زننکی در آن از طریق غیرمتئی صمتی، وقت گیر است. کاربرد شاخص‌های انتخاب سی-توانایی یکی از روش‌های مؤثر انتخاب غیر منتظم باشد. پژوهش در سال زراعی 1379/1380 صورت پذیرفت. دقت در نتایج ترکیبی بی‌کیفیتی کامل تصادفی با سه تکرار در دو ایستگاه تحقیقاتی دانشگاه کشاورزی دانشگاه شیراز واقع در کوشک و پایگاه انجام گرفت. نتایج نشان داد که بالاترین نمودارهای صفات تعدادی از صفات بهبود یافته و در برخی از صفات بهبود یافته نشان داد. بهترین ترکیب صفات بالاترین نمودارهای صفات بهبود یافته پردازش‌های گیرش شدن، در این پروبده در نوع شاخص انتخاب از نوع انتخاب به کار برده شد. در هر دو نوع شاخص انتخاب ترکیب مختلفی از صفات پردازش‌های خشک (مقدار خشکی چند متری) به کار برده و ضرایب مربوط به هرکدام از صفات در این شاخص محسوب می‌شده. ضرایب مربوط به هرکدام از شاخص‌ها با استفاده از معادله $b = \frac{p^*}{1-p}$ به دست آمد که b ضرایب ضرایب شاخص.

معکوس ماتریس واریانس-کورولارانس فنوتیپی، ماتریس واریانس-کورولارانس زنوتیپی و b به داده‌های پایینی پهلوی ساخته است.

در شاخص انتخاب نوع اول، وراثت پذیری صفات با علائم‌های یکسان به عنوان ارزش‌های انتخابی دنیای نرم‌گره شد. پرترین شاخص انتخاب نوع دوم، شاخص کلیدی میزان زننکی و تعداد میزان صفات کلیک که به عنوان ارزش‌های انتخابی برای خود گزینش شده است. در هر دو نوع شاخص انتخاب، شاخص‌های لایه‌پیازی کلیک، شاخص‌های میزان جذب و تحلیل خالص، سرعت رشد گیاه زراعی و سرعت رشد نسبی گیاه زراعی از جمله صفات بسیار مهم تشکیل دهنده شاخص‌های پرتره شدند.

واژه‌های کلیدی: ذرت، شاخص انتخاب، شاخص انتخابی و وراثت پذیری

1. بهترین دانشجوی سایر کارشناسی ارشد، استاد و استادیار زراعت و اصلاح نباتات، دانشگاه شیراز
مقدمه

بکارگیری روش‌های نوین مبناهای و بی‌ریز در بالا بردن عملکرد ذرات در کشور و در نهایی تأمین ذرت مورد نیاز امری مهم است. عملکرد، صفتی است که تحت کنترل ژن‌های زیادی بوده و عملکرد ژن‌هایی غیر مستقیم به بهره‌زیستی قسمتی از جمله یکی از مؤثرترین روش‌های غیر مستقیم بهره‌گیری از شاخص‌های انتخاب فرد است (21).

برای بهبود دو یا چند صفت به‌طور همزمان، سه روش انتخاب شامل شاخص انتخاب، انتخاب مستقل و انتخاب نوینی در برنامه‌ای اصلی، مناسب تخصیص داده شده است. شاخص انتخاب انتخابی است که هسته‌گذاری صفت‌های مختلف را می‌تواند به ترتیب طبقه‌بندی از ارزش‌های فنوتیپی است که با ضرابی و زنی می‌شود. در انتخاب بهینه، ارزش نسبی انتخاب شاخص انتخاب می‌شود. در انتخاب‌های یک یا دو صفت به‌طور مفرود در نسل‌های موجودی ژن‌یابی می‌شود و آن‌ها حصول سطح مطلوب، انتخاب انجام می‌شود. در انتخاب مستقل برای هر صفت، سطح معیاری در نظر گرفته می‌شود و افرادی که ارزش فنوتیپی کمتر از سطح مورد نظر دارند از جمعیت حذف می‌شوند (2 و 7).

اصلاً بهترین روش انتخاب روشی است که برای تامین از قبلاً دسترس در حوزه انتخابی یک فرد (گیاه) پایین‌تر شده باشد. در این روش، برای هر صفت بستگی به اهمیت انتخابی نسبی، برخی از پیشگی زن‌گوی و فنوتیپی از صفات مختلف انتخاب مشابه داده (10)

آزمایش عملکرد مکمل است ناشی از افزایش عملکرد.

پیژونیک (کل ماده خشن بالای سطح خاک) با شاخص برداشت (نسبت عملکرد انتخابی به عملکرد پیژونیک) و یا به دو آنها باشد (11). یک بستگی (24) در آزمایشی که شامل گروه مختلف از هیرینه‌های حاصل از این‌ها به عنوان یک رقم مفید کیفیت بود و چنین تئیه گرفت که برای بهبود عملکرد، شاخص‌هایی که شامل جمعیت عملکرد داتاند، بهترین پاسخ را
تعیین شاخص‌های انتخاب در ارقام ذریت (Zea mays L.)

ورالت پذیرفته، صفات به عنوان ضرایبی شاخص به کار برده می‌شود. ولی شاخص‌هایی که با وزنه‌ای اقتصادی نسبی مشخص باشند، احتمالاً کاراکتر است.

مالهوترا و کهیرا (16) به‌همگری از تجربه علیت و با بررسی روابط صفات در ذریت، اثر ارتفاع گل به ارتفاع بالا را در عملکرد مؤثر دانسته و نقش زمان ظهور اندام ماده در گلی را کم اهمیت تلقی نموده است.

در آزمایشات در روسیه، رقم ذرت بررسی و مشخص شد که طول بالا، وزن بالا، شمار دانته در ریفی و مارک بالا در گیاه هم‌سطح مثبت بالایی با عملکرد دانه دارد و می‌تواند در اصلاح برای عملکرد مؤثر باشد (20).

از آزمایشی که توسعه گاجناتاسکیو و همکاران (14) انجام داش آن رهگیری از تجربه علیت، به این نتیجه رسیدند که شمار بالا در گلی و قطر بالا اثر مستقیم و بستگی نسبت به مرحله منطقه و گیاه انجامی رد و برای مبارزه با علف‌های هرز نیز از خلق که‌های آرایان و توسعه پرورشی بود.

برای انتخاب‌های صفات و انتخاب‌های شاخص‌های انتخاب، 5 نمونه‌برداری در مراحل زیر انجام شد (6):

مرحله طولی شدن ساقه: مرحله‌ای است که همه‌بندی (برخلاف ساقه کاذب) شروع به طولی شدن می‌کند و این مرحله در گلی در نزدیکی از زمان ظهور کامل برگ شمش بیش از این مرحله می‌باشد. در این مرحله لازم برای رشد ساقه به بالایی ساقه تا گل‌هایی ادامه دارد. البته مرحله ساقه رفت اولین مرحله دارای می‌تواند در 50 درصد گیاهان گزارش شده است.

مرحله ظهور کامل گل‌تاج: این مرحله زمانی است که در 50 درصد گیاهان گزارش شده است.
مرحله شریف شدن داده‌ها: در این مرحله آگاهی دانه و سطح پلاس دیت‌ش و را فشار دهیم. مابو نرمی‌شود از آن خارج می‌شود.

مرحله خمیده‌سازی: این مرحله پس از مرحله شریف است و اگر دانه‌ها فشار خمیده دخمه به بخشی به یاد انریک می‌گردد. در این مرحله حدود ۴۵ درصد ماده خشک تشکیل شده و دانه‌ها در قسمت سطح پلاس زرد نگه می‌شود.

مرحله رسیدن فیزیولوژیک: این مرحله قبل از رسیدن کامل است و با ظهور لایه سیب‌آمی دانه در محل اتصال دانه به محور بلال (قامتت تحتینی دانه) این مرحله آغاز می‌شود.

در مراحل اول تا چهار نمودن‌برداری هر بار ۱۰ به به رد متراکم شده و ۳ برهنگی شده از مرحله اول در نتیجه این غده‌ها می‌شود. در گام اول راهیت این گام به مرحله دیگر ۱۵ برهنگی در هر گام درصد شده و یا دهانه حاصله در رسیدن برگ (LA) که با استفاده از رابطه زیر محاسبه گردید.

\[
\text{LA} = \frac{(MSE)}{(\text{عرض برگ}) \times (طول برگ)}
\]

ارتفاک گیاه، (PH)، طول گل‌نامه، (TL)، شمار برگ فعل، (NACTL)، طول و عرض برگ اصلی (IL)، وزن هزار دانه (W1000)، (NN) می‌باشد. میزان آب ۲ نمونه ۱۰۰۰۰۰۰ تایی و وزن پلاستیک (EWC) و بدون پوشش (EW) عمکبرد دانه به حساب عمکبرد دانه در کیلوگرم (GYH) و عمکبرد در هکتار (GYP) انداره‌گذاری عمکبرد دانه را در واحد سطح و سیستم تعمیم آن در هکتار، شمار برگ‌های بالای پلاستیک (NLAME) شامل شامل این برگ‌های بالایی از چهار روز مطابق با برگ دانه‌ها در این مرحله قبل از رسیدن کامل است و با ظهور لایه سیب‌آمی دانه در محل اتصال دانه به محور بلال (قامتت تحتینی دانه) این مرحله آغاز می‌شود.

مرحله شریف شدن داده‌ها: در این مرحله آگاهی دانه و سطح پلاس دیت‌ش و را فشار دهیم. مابو نرمی‌شود از آن خارج می‌شود.

مرحله خمیده‌سازی: این مرحله پس از مرحله شریف است و اگر دانه‌ها فشار خمیده دخمه به بخشی به یاد انریک می‌گردد. در این مرحله حدود ۴۵ درصد ماده خشک تشکیل شده و دانه‌ها در قسمت سطح پلاس زرد نگه می‌شود.

مرحله رسیدن فیزیولوژیک: این مرحله قبل از رسیدن کامل است و با ظهور لایه سیب‌آمی دانه در محل اتصال دانه به محور بلال (قامتت تحتینی دانه) این مرحله آغاز می‌شود.

\[
\text{LA} = \frac{(MSE)}{(\text{عرض برگ}) \times (طول برگ)}
\]

ارتفاک گیاه، (PH)، طول گل‌نامه، (TL)، شمار برگ فعل، (NACTL)، طول و عرض برگ اصلی (IL)، وزن هزار دانه (W1000)، (NN) می‌باشد. میزان آب ۲ نمونه ۱۰۰۰۰۰۰ تایی و وزن پلاستیک (EWC) و بدون پوشش (EW) عمکبرد دانه به حساب عمکبرد دانه در کیلوگرم (GYH) و عمکبرد در هکتار (GYP) انداره‌گذاری عمکبرد دانه را در واحد سطح و سیستم تعمیم آن در هکتار، شمار برگ‌های بالای پلاستیک (NLAME) شامل شامل این برگ‌های بالایی از چهار روز مطابق با برگ دانه‌ها در این مرحله قبل از رسیدن کامل است و با ظهور لایه سیب‌آمی دانه در محل اتصال دانه به محور بلال (قامتت تحتینی دانه) این مرحله آغاز می‌شود.

\[
\text{LA} = \frac{(MSE)}{(\text{عرض برگ}) \times (طول برگ)}
\]

ارتفاک گیاه، (PH)، طول گل‌نامه، (TL)، شمار برگ فعل، (NACTL)، طول و عرض برگ اصلی (IL)، وزن هزار دانه (W1000)، (NN) می‌باشد. میزان آب ۲ نمونه ۱۰۰۰۰۰۰ تایی و وزن پلاستیک (EWC) و بدون پوشش (EW) عمکبرد دانه به حساب عمکبرد دانه در کیلوگرم (GYH) و عمکبرد در هکتار (GYP) انداره‌گذاری عمکبرد دانه را در واحد سطح و سیستم تعمیم آن در هکتار، شمار برگ‌های بالای پلاستیک (NLAME) شامل شامل این برگ‌های بالایی از چهار روز مطابق با برگ دانه‌ها در این مرحله قبل از رسیدن کامل است و با ظهور لایه سیب‌آمی دانه در محل اتصال دانه به محور بلال (قامتت تحتینی دانه) این مرحله آغاز می‌شود.

\[
\text{LA} = \frac{(MSE)}{(\text{عرض برگ}) \times (طول برگ)}
\]

ارتفاک گیاه، (PH)، طول گل‌نامه، (TL)، شمار برگ فعل، (NACTL)، طول و عرض برگ اصلی (IL)، وزن هزار دانه (W1000)، (NN) می‌باشد. میزان آب ۲ نمونه ۱۰۰۰۰۰۰ تایی و وزن پلاستیک (EWC) و بدون پوشش (EW) عمکبرد دانه به حساب عمکبرد دانه در کیلوگرم (GYH) و عمکبرد در هکتار (GYP) انداره‌گذاری عمکبرد دانه را در واحد سطح و سیستم تعمیم آن در هکتار، شمار برگ‌های بالای پلاستیک (NLAME) شامل شامل این برگ‌های بالایی از چهار روز مطابق با برگ دانه‌ها در این مرحله قبل از رسیدن کامل است و با ظهور لایه سیب‌آمی دانه در محل اتصال دانه به محور بلال (قامتت تحتینی دانه) این مرحله آغاز می‌شود.

\[
\text{LA} = \frac{(MSE)}{(\text{عرض برگ}) \times (طول برگ)}
\]

ارتفاک گیاه، (PH)، طول گل‌نامه، (TL)، شمار برگ فعل، (NACTL)، طول و عرض برگ اصلی (IL)، وزن هزار دانه (W1000)، (NN) می‌باشد. میزان آب ۲ نمونه ۱۰۰۰۰۰۰ تایی و وزن پلاستیک (EWC) و بدون پوشش (EW) عمکبرد دانه به حساب عمکبرد دانه در کیلوگرم (GYH) و عمکبرد در هکتار (GYP) انداره‌گذاری عمکبرد دانه را در واحد سطح و سیستم تعمیم آن در هکتار، شمار برگ‌های بالای پلاستیک (NLAME) شامل شامل این برگ‌های بالایی از چهار روز مطابق با برگ دانه‌ها در این مرحله قبل از رسیدن کامل است و با ظهور لایه سیب‌آمی دانه در محل اتصال دانه به محور بلال (قامتت تحتینی دانه) این مرحله آغاز می‌شود.
ضرایب پت از حاصل ضرب ماتریس ضرایب همبستگی زنویوی

صفاها با کیفیت بالا در بردار ضرایب همبستگی زنویوی صفات با
عمک بردارهای مناسب که در این مدل متغیرهای مختلف منهیه می‌شود.

ضرایب تغییرات زنویوی و همبستگی صفات محاسبه و

به‌عنوان یکی از ابزار‌های مهم در غربال‌گیری و دریافت‌های

شفا، می‌تواند بهترین نحوه انتخاب شیوه‌های آزمایشگاه‌یاری لازم را نشان دهد.

محاسبه شکل گردد. ضرایب تغییرات زنویوی و همبستگی

براساس روابط زیر به‌دست آمد (15):

$$GCV = \frac{\sum (y_i - \hat{y}_i)^2}{n}$$

$$PCV = \frac{\sum (y_i - \hat{y}_i)^2}{n}$$

در نهایت صفات که محاسبه آنها در حذف تجربی

ویلایان و ضرایب همبستگی زنویوی معنی‌داری داشته و

وزن‌های پیش‌پردازشی انجام شده در جدول تجربی

که همبستگی‌های متنگری مورد استفاده قرار گرفت.

آثار محاسباتی همگرایی کدام از متغیرها وارد شده روند

عمدک برآورد شد.

در روش تجزیه غلطی، ضرایب همبستگی بین متغیر به

آمار محاسباتی و غیر محاسباتی جزئی بر می‌رود. اثرات منتقل صفات

در واقع همان ضرایب بی‌متغیر به‌بدن صفات است و اثر

غیر منتقل صفات به‌معنی که در طی سایر متغیرهای از آن صفات

رابطه دارند، روز عملاً با همکاری اعمال می‌شود. از حاصل ضرب

ضرایب همبستگی دو صفات در ضرایب بی‌متغیر به‌بدن دوم

به‌دست می‌آید، و به‌همه‌کاران (32) شکل جدیدی برای

محاسبه ضرایب بی‌متغیر و آثار غیر منتقل طراحی کرد. که آثار

محاسبه صفات روند قطعی اصلی یک ماتریس و آثار غیر منتقل را در

سایر نقاط ماتریس چاپ داده که کمک‌شان توجه به درک

و تفسیر نتایج تجزیه غلطی نشان می‌دهد. در این مدل بردار

$$r_{hi} = (b^T G a^T)^{1/2}$$

$$r_{hi}$$ همبستگی صفات با ارزش ارتیه و $$b$$ و $$a$$ به‌ترتیب بردار

وزن‌های انتخابی نسبتاً و بردار ضرایب شاخصی که در بردار

به‌طور گمری شده:

$$r_{hi} = (b^T G a^T)^{1/2}$$
جدول 1. میانگین‌های مربوط به آزمایش‌های گزارش شده، مقادیر و مقایسه آنها

<table>
<thead>
<tr>
<th>سابقه دومین (df=44)</th>
<th>سابقه اولین (df=11)</th>
<th>E/L</th>
<th>(df=1)</th>
<th>نقش</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.389</td>
<td>1.490</td>
<td>3.089**</td>
<td>3.046**</td>
<td>0.935**</td>
</tr>
<tr>
<td>13.931</td>
<td>1.659</td>
<td>3.274**</td>
<td>3.188**</td>
<td>0.893**</td>
</tr>
<tr>
<td>12.889</td>
<td>1.226</td>
<td>2.588**</td>
<td>2.555**</td>
<td>0.734**</td>
</tr>
<tr>
<td>24.192</td>
<td>51.64</td>
<td>12.875***</td>
<td>12.793***</td>
<td>1.402***</td>
</tr>
<tr>
<td>13.575</td>
<td>51.64</td>
<td>12.875***</td>
<td>12.793***</td>
<td>1.402***</td>
</tr>
<tr>
<td>10.591</td>
<td>7.399</td>
<td>12.198**</td>
<td>12.127**</td>
<td>1.397**</td>
</tr>
<tr>
<td>19.102</td>
<td>1.600</td>
<td>0.616**</td>
<td>0.537**</td>
<td>0.420**</td>
</tr>
<tr>
<td>88.231</td>
<td>5.874</td>
<td>0.111**</td>
<td>0.127**</td>
<td>0.086**</td>
</tr>
<tr>
<td>38.625</td>
<td>1.918</td>
<td>0.342**</td>
<td>0.334**</td>
<td>0.243**</td>
</tr>
<tr>
<td>154.77</td>
<td>1.424</td>
<td>0.347**</td>
<td>0.334**</td>
<td>0.243**</td>
</tr>
<tr>
<td>81.72</td>
<td>3.093</td>
<td>0.063**</td>
<td>0.066**</td>
<td>0.049**</td>
</tr>
<tr>
<td>85.113</td>
<td>27.717**</td>
<td>0.051**</td>
<td>0.054**</td>
<td>0.047**</td>
</tr>
<tr>
<td>38.918</td>
<td>27.717**</td>
<td>0.051**</td>
<td>0.054**</td>
<td>0.047**</td>
</tr>
<tr>
<td>58.185</td>
<td>27.717**</td>
<td>0.051**</td>
<td>0.054**</td>
<td>0.047**</td>
</tr>
<tr>
<td>68.27</td>
<td>3.093</td>
<td>0.063**</td>
<td>0.066**</td>
<td>0.049**</td>
</tr>
<tr>
<td>19.58</td>
<td>3.093</td>
<td>0.063**</td>
<td>0.066**</td>
<td>0.049**</td>
</tr>
<tr>
<td>8.18</td>
<td>0.101</td>
<td>0.012**</td>
<td>0.013**</td>
<td>0.009**</td>
</tr>
<tr>
<td>4.22</td>
<td>0.101</td>
<td>0.012**</td>
<td>0.013**</td>
<td>0.009**</td>
</tr>
<tr>
<td>4.11</td>
<td>0.101</td>
<td>0.012**</td>
<td>0.013**</td>
<td>0.009**</td>
</tr>
<tr>
<td>43.61</td>
<td>1.918</td>
<td>0.342**</td>
<td>0.334**</td>
<td>0.243**</td>
</tr>
<tr>
<td>10.44</td>
<td>1.918</td>
<td>0.342**</td>
<td>0.334**</td>
<td>0.243**</td>
</tr>
<tr>
<td>18.276</td>
<td>1.918</td>
<td>0.342**</td>
<td>0.334**</td>
<td>0.243**</td>
</tr>
<tr>
<td>58.23</td>
<td>2.351</td>
<td>0.272**</td>
<td>0.262**</td>
<td>0.212**</td>
</tr>
<tr>
<td>10.43</td>
<td>0.561</td>
<td>0.116**</td>
<td>0.112**</td>
<td>0.086**</td>
</tr>
<tr>
<td>2.07</td>
<td>0.492</td>
<td>0.274**</td>
<td>0.266**</td>
<td>0.206**</td>
</tr>
<tr>
<td>5.72</td>
<td>0.378</td>
<td>0.152**</td>
<td>0.148**</td>
<td>0.114**</td>
</tr>
<tr>
<td>15.13</td>
<td>0.475</td>
<td>0.152**</td>
<td>0.148**</td>
<td>0.114**</td>
</tr>
<tr>
<td>8.17</td>
<td>0.378</td>
<td>0.152**</td>
<td>0.148**</td>
<td>0.114**</td>
</tr>
<tr>
<td>18.94</td>
<td>2.351</td>
<td>0.272**</td>
<td>0.262**</td>
<td>0.212**</td>
</tr>
<tr>
<td>6.52</td>
<td>1.918</td>
<td>0.342**</td>
<td>0.334**</td>
<td>0.243**</td>
</tr>
<tr>
<td>10.11</td>
<td>0.561</td>
<td>0.116**</td>
<td>0.112**</td>
<td>0.086**</td>
</tr>
<tr>
<td>18.47</td>
<td>1.918</td>
<td>0.342**</td>
<td>0.334**</td>
<td>0.243**</td>
</tr>
<tr>
<td>17.11</td>
<td>2.351</td>
<td>0.272**</td>
<td>0.262**</td>
<td>0.212**</td>
</tr>
<tr>
<td>11.25</td>
<td>0.378</td>
<td>0.152**</td>
<td>0.148**</td>
<td>0.114**</td>
</tr>
<tr>
<td>20.74</td>
<td>1.918</td>
<td>0.342**</td>
<td>0.334**</td>
<td>0.243**</td>
</tr>
</tbody>
</table>

(منبع معنی‌دار در سطح 0.05: *)

منبع معنی‌دار در سطح 0.01:

منبع معنی‌دار در سطح 0.001:

منبع معنی‌دار در سطح 0.0001:

مقدار متوسط اختلاف معنی‌دار در سطح 0.05:

مقدار متوسط اختلاف معنی‌دار در سطح 0.01:

مقدار متوسط اختلاف معنی‌دار در سطح 0.001:

مقدار متوسط اختلاف معنی‌دار در سطح 0.0001:
نمونه شاخ‌هایی از ۱۱ گونه از مزرعه‌های زعفرانی بالتیکی، زعفرانی منعیت شکوفه‌ای، زعفرانی گردویی، زعفرانی هندی، زعفرانی عربی، زعفرانی پاکستانی، زعفرانی تایلندی، زعفرانی ترکی، زعفرانی ژاپنی و زعفرانی کره‌ای

نتایج و بحث

میانگین مربوطات خطای آزمایش، رقم، محیط، و برهمکنش آنها با صفات در جدول ۱ آمده است. این نتایج نشان می‌دهد که اثر مستقل آنها حداکثر با همبستگی زبانی آن صفت با عکاردکرده معمولی مربوط به دانشگاه انتخاب شده بود. در این مطالعه، انتخاب تجزیه علیت و دلالتی که در پایه آمده در نهایت ۱۲ صفت برای تشکیل شاخ‌هایی انتخاب گرندیشن شد. این گروه به‌کار برده شده است که اندیشه‌های مرتبط با صفات در بسته ترکیبات شاخص‌ها و ضرایب آنها مربوط به مراحل عکاردکرده معمولی در این مطالعه است. همچنین تحقیق‌های دیگر درون پرانت داده است.

پارامتر ورش‌بذری (۱/۹۹) مربوط به نسبت پشتیبانی گیاه زراعی در مراحل چهارم و پنجم (RGR4) و دهمین (TL) و ترکردهای اثرپذیری (ph4) یکی از عوامل اصلی از این پیوستگی ارتباطی بین عکاردکرده با صفات درون پرانت داده است. این تحقیق گروهی از میانگین مربوطات خطای آزمایش، رقم، محیط و برهمکنش آنها با صفات در جدول ۱ آمده است. این نتایج نشان می‌دهد که اثر مستقل آنها حداکثر با همبستگی زبانی آن صفت با عکاردکرده معمولی مربوط به دانشگاه انتخاب شده بود. در این مطالعه، انتخاب تجزیه علیت و دلالتی که در پایه آمده در نهایت ۱۲ صفت برای تشکیل شاخ‌هایی انتخاب گرندیشن شد. این گروه به‌کار برده شده است که اندیشه‌های مرتبط با صفات در بسته ترکیبات شاخص‌ها و ضرایب آنها مربوط به مراحل عکاردکرده معمولی در این مطالعه است. همچنین تحقیق‌های دیگر درون پرانت داده است.

دانشگاه علوم کشاورزی و منابع طبیعی تهران
جدول ۲. ترکیبات صفات و ضرایب مربوط در شاخص نوع اول

<table>
<thead>
<tr>
<th>ردیف</th>
<th>شاخص</th>
<th>(\Gamma_{HI})</th>
<th>رتبه</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>۱/۰۲۸۰۱</td>
<td>۱۰</td>
<td>۱/۸۱</td>
</tr>
<tr>
<td>۲</td>
<td>۱/۰۰۰۰۰۱ + ۱/۲۲۸۰۱ + ۱/۲۲۸۰۱</td>
<td>۱</td>
<td>۱/۸</td>
</tr>
<tr>
<td>۳</td>
<td>۱/۱۰۸۰۱ + ۱/۵۴۸۰۱</td>
<td>۵</td>
<td>۵/۰۵</td>
</tr>
<tr>
<td>۴</td>
<td>۱/۱۹۰۱ + ۱/۲۲۸۰۱</td>
<td>۱۳</td>
<td>۵/۰۵</td>
</tr>
<tr>
<td>۵</td>
<td>۱/۰۰۰۱ + ۱/۲۲۸۰۱</td>
<td>۱۵</td>
<td>۵/۰۶</td>
</tr>
<tr>
<td>۶</td>
<td>۱/۱۰۴۰۱ + ۱/۰۰۰۱</td>
<td>۱۶</td>
<td>۵/۰۶</td>
</tr>
<tr>
<td>۷</td>
<td>۱/۲۲۸۰۱ - ۱/۱۰۱۱</td>
<td>۱۴</td>
<td>۵/۰۶</td>
</tr>
<tr>
<td>۸</td>
<td>۱/۰۰۰۱ + ۱/۲۲۸۰۱</td>
<td>۱۹</td>
<td>۵/۰۶</td>
</tr>
<tr>
<td>۹</td>
<td>۱/۰۸۰۱ - ۱/۰۰۰۱</td>
<td>۹</td>
<td>۷/۰۵</td>
</tr>
<tr>
<td>۱۰</td>
<td>۱/۰۰۰۱ + ۱/۲۲۸۰۱</td>
<td>۷</td>
<td>۷/۰۵</td>
</tr>
<tr>
<td>۱۱</td>
<td>۱/۲۲۸۰۱ - ۱/۰۰۰۱</td>
<td>۷</td>
<td>۷/۰۵</td>
</tr>
<tr>
<td>۱۲</td>
<td>۱/۲۲۸۰۱ + ۱/۱۰۱۱</td>
<td>۲</td>
<td>۷/۰۵</td>
</tr>
<tr>
<td>۱۳</td>
<td>۱/۰۰۰۱ - ۱/۱۰۴۰۱</td>
<td>۴</td>
<td>۷/۰۵</td>
</tr>
<tr>
<td>۱۴</td>
<td>۱/۰۰۰۱ + ۱/۱۰۴۰۱</td>
<td>۶</td>
<td>۷/۰۵</td>
</tr>
<tr>
<td>۱۵</td>
<td>۱/۲۲۸۰۱ - ۱/۱۰۴۰۱</td>
<td>۷</td>
<td>۷/۰۵</td>
</tr>
<tr>
<td>۱۶</td>
<td>۱/۰۰۰۱ - ۱/۰۰۰۱</td>
<td>۸</td>
<td>۷/۰۵</td>
</tr>
<tr>
<td>۱۷</td>
<td>۱/۲۲۸۰۱ + ۱/۱۰۴۰۱</td>
<td>۱۱</td>
<td>۷/۰۵</td>
</tr>
<tr>
<td>۱۸</td>
<td>۱/۰۰۰۱ + ۱/۲۲۸۰۱</td>
<td>۱۱</td>
<td>۷/۰۵</td>
</tr>
<tr>
<td>۱۹</td>
<td>۱/۰۰۰۱ - ۱/۰۰۰۱</td>
<td>۱۲</td>
<td>۷/۰۵</td>
</tr>
<tr>
<td>۲۰</td>
<td>۱/۰۰۰۱ + ۱/۲۲۸۰۱</td>
<td>۱۳</td>
<td>۷/۰۵</td>
</tr>
<tr>
<td>۲۱</td>
<td>۱/۲۲۸۰۱ + ۱/۲۲۸۰۱</td>
<td>۱۴</td>
<td>۷/۰۵</td>
</tr>
<tr>
<td>۲۲</td>
<td>۱/۰۰۰۱ - ۱/۰۰۰۱</td>
<td>۱۵</td>
<td>۷/۰۵</td>
</tr>
<tr>
<td>۲۳</td>
<td>۱/۲۲۸۰۱ + ۱/۲۲۸۰۱</td>
<td>۱۶</td>
<td>۷/۰۵</td>
</tr>
<tr>
<td>۲۴</td>
<td>۱/۰۰۰۱ - ۱/۰۰۰۱</td>
<td>۱۷</td>
<td>۷/۰۵</td>
</tr>
<tr>
<td>۲۵</td>
<td>۱/۲۲۸۰۱ + ۱/۲۲۸۰۱</td>
<td>۱۸</td>
<td>۷/۰۵</td>
</tr>
<tr>
<td>۲۶</td>
<td>۱/۰۰۰۱ + ۱/۰۰۰۱</td>
<td>۶</td>
<td>۷/۰۵</td>
</tr>
<tr>
<td>۲۷</td>
<td>۱/۰۰۰۱ - ۱/۰۰۰۱</td>
<td>۷</td>
<td>۷/۰۵</td>
</tr>
<tr>
<td>۲۸</td>
<td>۱/۲۲۸۰۱ + ۱/۲۲۸۰۱</td>
<td>۲</td>
<td>۷/۰۵</td>
</tr>
</tbody>
</table>

\[\text{LAI}_1, \text{LAI}_2, \text{NAR}_1, \text{NAR}_2, \text{GR}_1, \text{GR}_2 \]

شمار رده‌گیری در بالا، طول مالگه در مرحله سوم، شمار گره‌ها در مرحله سوم ویژه در بالا به پایین گرفته است.

کلیه تعداد داده (جدول ۱): شاخص که شامل صفت عملکرد نیز می‌باشد برترین صفت به‌دست آمده‌بود. هم‌وتپیگی این صفت با ارزش اول ۱۴ درصد از صفت شماره هنگامی که فاصله میان صفت عملکرد است برتر می‌باشد.

این‌ها با اشتهایهای پرسه (۲۴) هکی بانی می‌کند صفت هایی که شامل صفت عملکردند بهترین پاسخ را به‌وست داده‌مطابقت

۷۸
اعلایه‌های ارزنی و اندازه‌گیری استفاده در این نوع سایر نشانگر ارزنی و اندازه‌گیری استفاده در این نوع سایر نشانگر ارزنی و اندازه‌گیری استفاده در این نوع سایر نشانگر ارزنی و اندازه‌گیری استفاده در این نوع سایر نشانگر ارزنی و اندازه‌گیری استفاده در این نوع سایر نشانگر ارزنی و اندازه‌گیری استفاده در این نوع سایر نشانگر ارزنی و اندازه‌گیری EST فاکتورهای ارزنی و اندازه‌گیری EST
<table>
<thead>
<tr>
<th>ردیف</th>
<th>شاخص</th>
<th>(r_{ii})</th>
<th>رتبه</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2458x1</td>
<td>0/8</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>2 + 347x2</td>
<td>1/5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>1/497x1 + 1/497x2</td>
<td>0/95</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>2/843x1 - 1/434x2</td>
<td>0/92</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>1/474x1 - 1/474x2</td>
<td>0/93</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>5 + 396x8</td>
<td>0/91</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>763x2 + 1/763x1</td>
<td>0/91</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>3 + 96x1 - 1/369x1</td>
<td>0/85</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>-1/344x1 + 1/344x2</td>
<td>0/83</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>9 + 347x2 - 1/543x1 + 1/543x2</td>
<td>0/82</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>1 + 347x2 - 1/543x1 + 1/543x2</td>
<td>0/99</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>9 + 347x2 - 1/543x1 + 1/543x2</td>
<td>0/92</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>-1/344x1 + 1/344x2</td>
<td>0/92</td>
<td>7</td>
</tr>
<tr>
<td>14</td>
<td>1 + 347x2 - 1/543x1 + 1/543x2</td>
<td>0/85</td>
<td>12</td>
</tr>
<tr>
<td>15</td>
<td>9 + 347x2 - 1/543x1 + 1/543x2</td>
<td>0/89</td>
<td>17</td>
</tr>
<tr>
<td>16</td>
<td>9 + 347x2 - 1/543x1 + 1/543x2</td>
<td>0/92</td>
<td>7</td>
</tr>
<tr>
<td>17</td>
<td>8 + 347x2 - 1/543x1 + 1/543x2</td>
<td>0/65</td>
<td>15</td>
</tr>
<tr>
<td>18</td>
<td>9 + 347x2 - 1/543x1 + 1/543x2</td>
<td>0/65</td>
<td>15</td>
</tr>
<tr>
<td>19</td>
<td>8 + 347x2 - 1/543x1 + 1/543x2</td>
<td>0/92</td>
<td>7</td>
</tr>
<tr>
<td>20</td>
<td>-1/344x1 + 1/344x2</td>
<td>0/92</td>
<td>7</td>
</tr>
<tr>
<td>21</td>
<td>8 + 347x2 - 1/543x1 + 1/543x2</td>
<td>0/67</td>
<td>10</td>
</tr>
<tr>
<td>22</td>
<td>9 + 347x2 - 1/543x1 + 1/543x2</td>
<td>0/89</td>
<td>17</td>
</tr>
<tr>
<td>23</td>
<td>-1/344x1 + 1/344x2</td>
<td>0/89</td>
<td>17</td>
</tr>
<tr>
<td>24</td>
<td>9 + 347x2 - 1/543x1 + 1/543x2</td>
<td>0/92</td>
<td>7</td>
</tr>
<tr>
<td>25</td>
<td>-1/344x1 + 1/344x2</td>
<td>0/92</td>
<td>7</td>
</tr>
<tr>
<td>26</td>
<td>9 + 347x2 - 1/543x1 + 1/543x2</td>
<td>0/92</td>
<td>7</td>
</tr>
<tr>
<td>27</td>
<td>-1/344x1 + 1/344x2</td>
<td>0/92</td>
<td>7</td>
</tr>
<tr>
<td>28</td>
<td>9 + 347x2 - 1/543x1 + 1/543x2</td>
<td>0/92</td>
<td>7</td>
</tr>
</tbody>
</table>

نداشتی به‌پایین. نتایج به‌دست آمده از هر یک از مدل‌های تفسیر مخصوص ارزش ارتباط میان شاخص‌های ابتکار در جدول‌های بالا. \(r_{ii} \) غیرقابل قبول در مدل‌های بالا، در مدل‌های سوم، شاخص‌های ابتکار، ارتقاع گیاه در مرحله‌ی سوم و برای گیاهان در مرحله‌ی نهایت استفاده گردیده است.

باشند، استفاده از شاخص ابتکار به‌عنوان توصیه‌ی می‌شود.

لارم به‌دقت است که شاخص‌های ابتکار در شاخص‌ها اهمیت ندارند ولی شاخص‌های شاخص صفت بیشتری در خود داشته‌اند. اهمیت ترتیب و نسبت به آن‌ها مهم می‌باشد.

در صفاتی ابتکار، شاخص دارای معنویت بالایی و واقعاً در طیف زننده‌ی به‌دست آمده می‌شود.

می‌توان از شاخص‌های ابتکار به‌عنوان ابتکارهای ابتکار به‌عنوان اندازه‌گیری پتانسیلی در بیماری‌های فیزیولوژیکی و

80
نتیجه گرفته شده است که در صورتی که واریانس افزاشی صفت مورد نظر که قصد بهبود آن را داریم، قسمت اعظم واریانس مربوط به آن صفت باشد یا به عبارت دیگر سهم عوامل غیر افزاشی روی آن صفت کم یا به‌طور کلی شدید بیشتر گسترش می‌یابد.

منابع مورد استفاده

1. جوکانی، ر. ۱۳۸۰. ارزیابی عضله و اجزای عضله دانه دیدگاهی با استفاده از تلاق‌های دی آتل. مجله علوم زراعی ایران (۳۳):۸-۱۷.
2. رضایی، ع. ۱۳۷۳. تلاق‌های انتخاب در اصلاح نباتات: محاسبه کنترل علوم زراعی و اصلاح نباتات، انتشارات دانشگاه تبریز.
3. رضایی، ع. م. و. ا. سلطانی. ۱۳۷۳. معادله ای برتحال رگرسیون کاربردی. چاپ اول. مرکز تحقیق دانشگاه صنعتی اصفهان.
4. سهیلی، م. ر. ۱۳۷۸. ارزیابی اجزای عضله و انتخابی صفات انتخاب از ارقام گندم نان افراشی (Triticum aestivum). یکمین کنفرانس علمی دانشگاه شاهد کشاورزی دانشگاه شیراز. ۴۸ صفحه.
5. نمایی، ع. ۱۳۷۵. بررسی تاثیر صفات مهم زراعی در ب逛街ی F۴ گندم (Triticum aestivum) علیه اثرات انتخابات. شیدایی، اکلا. ۵ صفحه.