اثر دما و طول روز بر مراحل نمو ژنوتیپ‌های گلرگ در شرایط مزرعه

نصیرالله داداشی و محمدرضا خواجه‌پور

چکیده

پیروی از تغییرات محیطی طول مراحل مختلف نمو ژنوتیپ‌های گلرگ از تغییرات طول روز و دما در شرایط مزرعه‌ای، و مدل‌سازی سرعت نمو در دوره‌های مختلف نمو آزمایشی با بهره‌برداری از طرح کرده‌های یک بار خرد شده، در چارچوب پژوهش‌های کشاورزی دانشگاه صنعتی اصفهان در سال‌های 1379-1384 انجام شد. تیمار‌های اصلی شامل پنج تریال کاشت، و 21 نمونه دیگر از ژنوتیپ‌های مختلف گلرگ در شرایط مزرعه‌ای انداخته شدند. نتایج نشان داد که با افزایش طول روز و دما از 1330 تا 1339، سرعت نمو به صورت قابل توجهی افزایش یافت.

شمار روز از کاشت تا نسب شدن، طول دوره شروع رشد طولی ساله تا روتی طبق پیش‌بینی شده به کوتا می‌بایست. شمار روز از سپاسناد شروع رشد طولی ساله، طول دوره‌گل‌گی و ادامه کاشت به راستی به نسبتی نسبت برده می‌شود که ممکن است به منظور بهبود کاشت به روش‌های دیگر مراجعه شود.

واژه‌های کلیدی: گلرگ، تاریخ کاشت، مراحل نمو، مدل‌سازی، سرعت نمو، دما، طول روز.
مقدمه

ارقام گلبول‌گرده تا نه تنها از نظر طول دوره نمای یا یک‌دیگر
متغییر هستند (۱۳ و ۱۶). بلکه تأثیر پذیرفته طول دوره‌های
مختلف نمای آنها از دما و طول دوره یا یک‌دیگر فرق کند. (۱)
اين نتایج به این قرار هيکن در انطباق مراحل حساس در
گیاهان با اثرات مختلف پیش ديده آمده در تاريخ مختلف
کاشت به، و انتخاب تاريخ كاشت نسبت و پیشنهاد زمان
وضع مراحل نمای یا برای توضیح گیاه‌ها زراعی دشوار
می‌سازد. گل‌گیم تطبیقی گیاهی روند‌دهد، ولی حساسیت
ژنتیکی‌های مختلف به طول روز فرق می‌کند (۲ و ۳). در
بررسی زیبترین (۱۶) در دمای نیلی حداقل ۲۰ و حداکثر ۱۰
درجه سانتی‌گراد، افزایش طول روز از ۱۰ به ۱۴ ساعت، سبب
کاهش طول دوره از سبز می‌شود و شروع رشد طول ساقه در
ارقام زیلان، این بر و نیروکا ۱۰ از ۲۸ به ۱۲ روز و در زنیتروب
A۱۸۶-۲ از ۴۷ به ۲۴ روز گردید. اندازه می‌رود که افزایش
طول روز فقط بر طول دوره سبز شدن تا نشکل جوانه‌گل
(مرحله روتی طبق در گسترش) موثب باشد (۱۱). ولی به دلیل
هم‌رخود و سبب طول روز با ما (۳ و ۴). اثر طول روز بر
طول دوره‌های مختلف نمای نیز گزارش شده است (۴). و
۲۴ دیده شده که تأثیر طول روز از اثر دما در شرایط
مزرعه‌بندی بسیار مشکل است (۴).

به‌هرحال، افزایش‌های سبب تسریع مراحل مختلف نمای
گل‌گیم می‌گردد (۵ و ۶ و ۱۳ و ۱۵). در بررسی تیماری و
همکاران (۹) طول دوره سبز مینان افزایش دما کاهش یافت.
همچنین در بررسی زیبترین (۱۶) کاهش می‌دهد، جدایی که
حدود و ترتیب در ۲۰ و ۱۵ به ۱۰ و ۵ درجه سانتی‌گراد در
طول روز تابع ۴ ساعت، سبب افزایش طول دوره از سبز
شنن تا سه‌گانه در ارقام زیلان، این بر و نیروکا ۱۰ از ۲۱ به
۲۴ روز و در زنیتروب A۱۸۶-۲ از ۴۷ به ۲۴ روز گردید.

ستشنج زودرس یا بکارگیری شمار روز یا طول دوره
میان در مرحله نمای، مقایسه عکس عکس ژنتیکی مختلف
تنسب به عوامل مختلف است مشکل‌های مختلف. از این رو، از

سرعت نمای یا معمولاً طول مدت میان در مرحله نمای برای
پیمان زندگی و مدل سازی نمای گیاهان استفاده شده است
(۴ و ۱۴). بر این پایه، زیر نتیجه‌هایی یا در دوره‌کننده میان در
مرحله نمای دارای سرعت نمای زیادی هستند. سرعت نمای
معمولاً عوامل نتایج از طول روز، دما و اثر متقابل این در
پیمان می‌شود (۴ و ۱۴). همچنین، عکس عمل ارقام به طول
روز و یا دما ممکن است در شرایط کنترل شده و یا در مزرعه
ارزانی شود (۱۴ و ۱۶). در ارزیابی مزرعه‌ای، امکان تفکیک
اثر از طول دما و طول دوره یا یک‌دیگر بسیار مشکل و یا غیر
ممکن است (۴). ولی نتایج به‌دست آمده ممکن است بهتر
به سایر شرایط قابل تعبیر شود.

به‌طور کلی نمای یا محصولات می‌تواند موجب افزایش
میزان دما در شرایط تابثی و کاهش دما در شرایط اطراف
تابستان گردد و عملکرد زیاد‌تر حاصل شود. در مواردی، نیز
محصول به دلیل تغییر در دما به‌ویژه می‌پایدار نمای است به
مرحله رشدگذار تردد شود (۳ و ۱۳). کاشت تأخیری یا
کاشت تابستان به دلیل توزیع بهینه آب آبی بین محصولات
پایین وجود دارد. گیاهی گیاهی برای کاهش دارای و هرگاه به
دلیل تحمیل ویربن ممکن است به دما زیاد، به‌ویژه
اقتصادی‌های بودید، بسیار مطلوب خواهد بود. چنین وضعی
در کشت گل‌گیم تردد محیطی کمک که در اسکالا می‌شود
با توجه به طبیعت روزانه و سرمایه‌های گردید گل‌گیم
(۱) بررسی تقلیل دارداز گروه ممکن که به کمک
نابسامان و نت احتمال احتمال ممکن ارقام به چنین شرایطی
به‌طور کاملاً و نیز عملیات زیادی دارد. پسدر
بررسی حاضر، عکس عمل مراحل نمای واریته‌های مختلف

۸۴
آزمایش در سال زراعی 1379-69 در مزرعه پژوهشی دانشکده کشاورزی دانشگاه صنعتی اصفهان واقع در 40 کیلومتری جنوب غربی اصفهان (عرض جغرافیایی ۲۳و و ۳۲ شمالی و طول جغرافیایی ۵۲و و ۶۶ شرقی) اجرا گردید. ارتفاع مزرعه از سطح دریا ۱۳۵۰ متر و طبق تقسیم به دوی کوه، دارای اقلیم نیمه خشک، خنک، با تابستانهای خشک بوده و معیارهای بارندگی و دما سالانه به ترتیب ۱۴۰ میلی‌متر و ۱۴/۵ درجه سانتی‌گراد است.

آزمایش با طرح پایه‌ای کامل تصادفی و آزمایش‌های در پایه‌بندی شاهد خرد و سه تکرار پایه‌بندی شد. تیمار اصلی شامل پنج تریال کاشت (14 اسفند ۱۳۷۸ و ۱۶ بهمن) و تیمار فرعی شامل چهار زنبق (اراک ۱۳۷۸) توده محلی کوه، نیراسکا ۱۰ و ۹۸۹ (بودنی) و ۷ روستا کاشت با فاصله ۴۵ سانتی‌متر، به صورت جو از پشت به و طول ۱۰ متر بوده و بعضاً با فلزات مکاشف در عمق ۳ تا ۴ سانتی‌متر کاشته شدند و با پوشش آبیاری صورت گرفت. آبسیراها تا زمان مرحله‌بندی با تا برگ‌های ۴ روز بیکار، طی دوران رشد رویشی بر اساس ۱۰۰ میلی‌متر تبخیر و طی دوران رشد زایشی بر اساس ۸۰ میلی‌متر تبخیر از تشکیل کلاس‌های انجام گردید. در مرحله‌بندی با چهار برگی گیاه‌ها به اساس فاصله حذفی ۵ سانتی‌متر (تراکم حدود ۴۴ بوته در متر مربع) تک گردیدند.

زمان محل آزمایش، در سال قبل زیر کشت گندم بود. عمليات تهیه بستر شال مورد استخدام پیش‌بازی و نشر پایه و دیسک و تسطیح به‌کار بود. کولبی‌گرم در هکتار سفیدن آمونیوم (۴۰ درصد اکسید سنگر و ۱۸ درصد نیتریژن خالص) انجام گرفت و کرک به کمک

گل‌نگی به تغییرات دما و طول روز در شرایط مزرعه برپایی شد.

مواد و روش‌ها

آزمایش با طرح پایه‌ای کامل تصادفی و آزمایش‌های از پایه‌بندی

دیسک با خاک مخلوط شد. برای پیشگیری از گستر

علف‌های هرز، علف‌کش تیرفلوئرالین بر اساس ۱۱۰۰ گرم ماده

مؤثر در هکتار پاشیده شده و از دیسک برای اختلاف سم با

خاک به‌کار گرفته شد. در تهیه خاک‌های کاشت در مرحله

رویت طبق معادل ۱۰۰ کیلوگرم در هکتار اردو به عنوان کود

سرک در هر کرت توزیع و آبزی بست نهایی گرفت.

با به‌کار بردن دما در جداسازی و حداکثر جویانه، که در

پنالتنی فیوبسی در بلندی ۱۵ متری از سطح زمین و در این

مرحله نصب شده بود، دما در جداسازی و حداکثر جویانه

باداواسته برداشته شد. طول روز با استفاده از عرض جغرافیایی

ایستگاه پژوهشی توسط پردازشکده کیلی‌سیسم (۱۲)، با

فرض کمترین شدت نور بر کرت گل‌نگی به پای‌های ۵۰۰/۳ کاری بر

سانتی‌متر مربع در دقیقه (۱۱) برآورد گردید.

مرحله اصلی از این مطالعه به تغییرات در سرمایه‌بندی در محیط تخریب گردید. طول راه‌بندی کاشت با تفاوت در ارتفاعات با شرایط زمینی و در این

مرحله نصب شده بود، در محدوده (خروج

گل‌نگی) در ۵۰ درصد از طبقه‌های سالانه اصلی هر کرت بود.

کاشت

شین ریسنگ کیلی‌سیسم (آغاز زرد شدن برگ‌های چشم‌های در

۷/۵ درصد طبقه‌های موجود)، سپس شین با شروع رشد طولی

ساخته می‌شود. رشد نتیجه منابعی به طول حدود ۱

سانتی‌متر و سرعت رشد طولی ساخته می‌شود (نسبت قله

جویانه طبق در رسم ساخته‌ای به حدود ۵ میلی‌متر) رشد

طبق شیوع گل‌نگی (منابعی گل‌های خارج شده در

طبقه‌های اصلی هر کرت). طول درون گل‌نگی و اکتشاف گل‌نگی

(منابعی گل‌های خارج شده در ۹۰ درصد طبقه‌های

موجود در هر کرت) روش‌های انجام کشت گندم.

جوانه‌ی این ثبت زبان آزمایش‌های برای گل‌های انتقال‌گری

شده معمولاً به بهشت دانشگاه‌های بزرگی در دانشگاه‌ها ایجاد می‌کنند. در تهیه و تهیه در مورد

مقایسه آماده در سطح اختلال و درصد فشار گرفته.

در مودیت

۲۹۵ به دلیل داشتن مراحل تمایل سیب‌پیاز طولانی و غیر قابل

85
فصل نخست

شمار روز که کاستری فراهم کننده نیازهای محیطی را به‌طور کامل تأمین کرده است، می‌تواند به‌عنوان شاخصی برای تعیین بهترین زمان برای تحقق تأثیر کاستری در بهبود کیفیت محیطی و بهبود معیارهای اهمیت‌پذیر در محیط زیست به شمار می‌رود. در این بخش، از نظر تأثیر روز بر طول دوره کاستری نسبت به تأثیر فاصله زمانی و اندازه وسایل در کاستری بررسی خواهد شد.

فصل دوم

شمار روز که کاستری فراهم کننده نیازهای محیطی را به‌طور کامل تأمین کرده است، می‌تواند به‌عنوان شاخصی برای تعیین بهترین زمان برای تحقق تأثیر کاستری در بهبود کیفیت محیطی و بهبود معیارهای اهمیت‌پذیر در محیط زیست به شمار می‌رود. در این بخش، از نظر تأثیر روز بر طول دوره کاستری نسبت به تأثیر فاصله زمانی و اندازه وسایل در کاستری بررسی خواهد شد.

فصل سوم

شمار روز که کاستری فراهم کننده نیازهای محیطی را به‌طور کامل تأمین کرده است، می‌تواند به‌عنوان شاخصی برای تعیین بهترین زمان برای تحقق تأثیر کاستری در بهبود کیفیت محیطی و بهبود معیارهای اهمیت‌پذیر در محیط زیست به شمار می‌رود. در این بخش، از نظر تأثیر روز بر طول دوره کاستری نسبت به تأثیر فاصله زمانی و اندازه وسایل در کاستری بررسی خواهد شد.

فصل چهارم

شمار روز که کاستری فراهم کننده نیازهای محیطی را به‌طور کامل تأمین کرده است، می‌تواند به‌عنوان شاخصی برای تعیین بهترین زمان برای تحقق تأثیر کاستری در بهبود کیفیت محیطی و بهبود معیارهای اهمیت‌پذیر در محیط زیست به شمار می‌رود. در این بخش، از نظر تأثیر روز بر طول دوره کاستری نسبت به تأثیر فاصله زمانی و اندازه وسایل در کاستری بررسی خواهد شد.

فصل پنجم

شمار روز که کاستری فراهم کننده نیازهای محیطی را به‌طور کامل تأمین کرده است، می‌تواند به‌عنوان شاخصی برای تعیین بهترین زمان برای تحقق تأثیر کاستری در بهبود کیفیت محیطی و بهبود معیارهای اهمیت‌پذیر در محیط زیست به شمار می‌رود. در این بخش، از نظر تأثیر روز بر طول دوره کاستری نسبت به تأثیر فاصله زمانی و اندازه وسایل در کاستری بررسی خواهد شد.

فصل ششم

شمار روز که کاستری فراهم کننده نیازهای محیطی را به‌طور کامل تأمین کرده است، می‌تواند به‌عنوان شاخصی برای تعیین بهترین زمان برای تحقق تأثیر کاستری در بهبود کیفیت محیطی و بهبود معیارهای اهمیت‌پذیر در محیط زیست به شمار می‌رود. در این بخش، از نظر تأثیر روز بر طول دوره کاستری نسبت به تأثیر فاصله زمانی و اندازه وسایل در کاستری بررسی خواهد شد.
جدول 1. میانگین شمار روز، متغیرهای دمایی (درجه سانتی‌گراد) و طول روز (ساعت) در دوره‌های مختلف نمو ارقام گل‌نگ

<table>
<thead>
<tr>
<th>طول روز</th>
<th>میانگین دما</th>
<th>حداقل دما</th>
<th>شمار روز</th>
<th>تاریخ کاشت</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/8</td>
<td>14/9</td>
<td>19/6</td>
<td>15/7a</td>
<td>78/12/21</td>
</tr>
<tr>
<td>13/2</td>
<td>18/5</td>
<td>20/8</td>
<td>7/0b</td>
<td>79/1/23</td>
</tr>
<tr>
<td>14/0</td>
<td>20/5</td>
<td>30/3</td>
<td>7/0c</td>
<td>79/2/20</td>
</tr>
<tr>
<td>14/5</td>
<td>21/0</td>
<td>35/5</td>
<td>7/0c</td>
<td>79/3/18</td>
</tr>
<tr>
<td>14/4</td>
<td>23/6</td>
<td>39/7</td>
<td>7/0c</td>
<td>79/4/21</td>
</tr>
</tbody>
</table>

کاشت‌های 50 درصد گلدانی

13/6	18/9	28/8	10/2/9d	78/12/21
14/1	21/5	30/7	8/3/6e	79/1/23
14/4	24/9	33/6	7/1/6e	79/2/20
14/2	23/8	34/2	7/7/4d	79/3/18
13/2	21/6	31/9	9/3/6d	79/4/21

کاشت‌های تا رسیدگی فیزیولوژیکی

13/8	20/0	28/5	13/0/3d	78/12/21
14/1	22/2	31/8	11/7/6e	79/1/23
14/2	23/3	33/7	13/7/4d	79/2/20
13/4	22/1	32/4	12/7/4b	79/3/18

1. اعداد هر گروه به‌دراز حروف مشترک هستند، پر و پایه آزمون چند دامی دانکن، در سطح احتمال 0.05 5 درصد تفاوت معنی‌دار دارد.

شکل 1. ارتباط سرعت نمو با طول روز در دوره کاشت تا سبزشدن ارقام اراک 1881 و ورامین 295.
زمان

شکل ۲. روند تغییرات طول روز و حداکثر، حداقل و میانگین دما در فصل رشد

حداکثر دما (درجه سانتی گراد)

شکل ۳. ارتباط سرعت نمو با حداقل دما در دوره کاشت تماسی زنبور عسل در ارقام کوسه و نیراسکا.
حاصل ضرب میانگین دما و طول روز

شکل 4: ارتباط سرعت نمای با حاصل ضرب میانگین دما و طول روز در دوره کاشت تا 50 درصد گلدهی در ارقام

اراک 1411، تبریز 10 و کویر

1 در هندوستان و مندل و همکاران (13) در کنار آن دو کاهش طول دوره کاشت نسبت به رشدیکی در اثر تأثیر در کاشت که این اثر بر مقدار افزایش در طول دوره کاشت تا رشدیکی یکپارچه زیادی از طرف تعیین دارد تحت تأثیر نق فاز و گرفت. کناره‌تراز و بلندترین طول این دوره همانیاب مربوط به رقم تبریز 10 و 929 روزی در طول دوره کاشت تا 50 درصد گلدهی در زنوتیپ‌های مورد بررسی به دلیل همروندی و سنی این دور متفاوت جوی و هم‌سویی آنها بر سرعت نمای (۳ و ۴) در شرایط مطالعه حاضر اکم‌اندازی نمی‌شود. در برسی مختلف بود و آنها تفاوت عکس عمل ارقان به شرایط اقلیمی را تمایل اکمنسکه و آمار داشتنی که ارقام از نظر تندی حرارت و نسبت وزن برای دادنند این دوره با هم متفاوت هستند.

در برسی نحوه عکس عمل اکمال ارقام به متفاوت‌های جوی، حداقل دمای بیش از سایر منطقه‌ها تغییرات سرعت نمای ارک 1411 و تبریز 10 در دوره کاشت نسبت به رشدیکی یکپارچه و 10 روزی تحت تأثیر تغییر نوع نمود (شکل 5). سرعت نمای ارک 1411 در اثر رشدیکی 929 1811 با یک رابطه دوم نسبت به طول دوره اکمال دما طی این دوره عکس عمل نشان داد. ظاهرًا ارک 1811 حساسیت بیشتری به افزایش دما در مقایسه با تبریز 10 و کویر، افزایش طول دوره و دما هم‌انگک بود (جدول 1). توصر
شکل 5: ارتباط سرعت نمای با دماهای حداقل در دوره کاشت تا رشیدگی فیوزیولوژیک در ارقام اراک 1381 و نیراسکا 10

کاشت از کاشت اول تا کاشت سوم، طول این دوره کاهش یافته و از تاریخ کاشت سوم به سمت جنوب تغییر می‌یابد. نتیجه ثابت باقی ماند. با تأخیر کاشت از کاشتچهارم به کاشت پنج‌مین دوره افزایش یافت (جدول 3). روند تغییرات طول دوره سبز شدن تا شروع رشد طول ساقه با تغییرات طول روز بیش از تغییرات دما همرخوید نشان داد. این تغییر با کوتاهی شدن دوره نمو کیهان روزانه مربوط به در اثر برخورد با روزهای بلند (3) هم‌اتها می‌باشد.

نتایج از آنچه که طول دوره روست در گارنر تحت تأثیر دمای محیط نیز قرار می‌گیرد (۱۶). نمونه‌های افراشته دما نامی از تاکید در کاشت بر کاهش طول دوره سبز شدن تا شروع رشد طول ساقه در این دمای مطالعه نادیده گرفته. در پرونده (۳) نیز افراشته دمای ناشی از تاکید در کاشت در مناطق با طول روز مشابه، باعث کاهش طول دوره روست کرده‌است. این تغییرات ناشی از افزایش طول دوره است. در حالت که در طول روز متساوی است، در نظر گرفته شود که این دمای سبز شدن تا شروع رشد طولی ساقه بسیار معنی‌دار بود. ارقام ورامین ۲۹۵ و اراک ۲۸۱، بهترین طول‌ساقه به‌طور کوتاه‌ترین طول این دوره را داشتند (جدول ۲). وجود تفاوت بین ارقام از نظر طول این دوره نشان‌گذار عکس عمل‌ها متفاوت

۱۰ نشان می‌دهد در بررسی‌های انجام یافته توسط باقری (۱) روی گارنر نیز قرار شده است که نشان داد به تغییر طول دوره کاشت تا رشیدگی فیوزیولوژیک بی‌بازه از طول روز بوده است. در حالی که در بررسی خواجه‌پور و سیدی (۴) روی آفتایگردان، سرعت نمای دوره از کاشت تا رشیدگی فیوزیولوژیک توسط تغییرات طول روز تفسیر گردید. تغییرات سرعت نمای توده محلی کوسه در دوره کاشت تا رشیدگی فیوزیولوژیک توسط تغییر حاصل در بینگی تغییرات دمای شیب‌روزی در طول روز تفسیر شد (شکل ۷). تفکیک سهم طول روز از میانگین دمای شیب‌روز روز در تغییر طول دوره کاشت تا رشیدگی فیوزیولوژیک در توده محلی کوسه به دلیل هم‌وها و سبیع این در میانگین چون و هم‌وها آنها بر سرعت نمای (۳) در شرایط بررسی حاضر امکان پذیر نیست. همچنین از متغیرهای جوی مورد بررسی گردید که طور معنا داری تغییرات سرعت نمای را را در این مرحله از تغییر نمی‌گیرد.
جدول ۲: میانگین طول مراحل مختلف نمو (به روز) در ارقام گل‌داری

| جزئیات مراحل مختلف نمو | کلاس تا | شروع شدن تا | پایان تا | شروع طولی | پایان طولی | رشد طولی ساقه | رشد طولی گل‌داری | رشد طولی رشته‌گاهی | کلاس تا | درصد کلی | درصد کلی گل‌داری | درصد کلی گل‌داری رشته‌گاهی |
|------------------------|---------|-------------|---------|------------|-------------|----------------|-----------------|-----------------|---------|------------|----------------|----------------|-------|
| ابتدا عضو |
| ابتدا عضو |
| ابتدا عضو |
| ابتدا عضو |
| ابتدا عضو |

1. اعداد هر ستون که دارای جریب مشترک هستند، بر پایه آموم، چند دمتعای دانستنی، در سطح احتمال نیچه درصد تفاوت معنی‌داری دارند.

2. به دلیل عدم سازگاری با شرایط تقلیلی مصرف مورد طالب‌های رشته‌گاهی، در محاسبات آماری وارد نگردید.
جدول 3: میانگین شمار روز منجر به مسمومیت بیماران در دو روز (ساعت) در دوره‌های مختلف لیزر گیاهی

<table>
<thead>
<tr>
<th>شمار روز</th>
<th>طول روز</th>
<th>میانگین دما</th>
<th>حداقل دما</th>
<th>ً</th>
<th>تاریخ کاشت</th>
<th>سبب شدن تا شروع شدن رشد طولی ساقه</th>
<th>شروع رشد طولی ساقه تا روزیت طبقه</th>
<th>روزیت طبقه تا شروع گلدهی</th>
<th>دوره گلدهی</th>
<th>اتمام گلدهی تا رسیدگی فیزیولوژیک</th>
</tr>
</thead>
<tbody>
<tr>
<td>13/1</td>
<td>15/9</td>
<td>22/6</td>
<td>9/2</td>
<td>32/5</td>
<td>1/8</td>
<td>27/8</td>
<td>11/7</td>
<td>12/5</td>
<td>14/5</td>
<td>23/8</td>
</tr>
<tr>
<td>13/7</td>
<td>19/8</td>
<td>27/6</td>
<td>11/9</td>
<td>29/5</td>
<td>2/4</td>
<td>26/4</td>
<td>2/3</td>
<td>2/6</td>
<td>17/5</td>
<td>19/8</td>
</tr>
<tr>
<td>14/2</td>
<td>22/0</td>
<td>32/3</td>
<td>11/8</td>
<td>27/4</td>
<td>2/1</td>
<td>27/4</td>
<td>11/1</td>
<td>17/5</td>
<td>18/7</td>
<td>20/2</td>
</tr>
<tr>
<td>14/0</td>
<td>23/7</td>
<td>34/5</td>
<td>12/7</td>
<td>29/5</td>
<td>11/2</td>
<td>27/5</td>
<td>11/2</td>
<td>18/9</td>
<td>20/5</td>
<td>21/1</td>
</tr>
<tr>
<td>14/1</td>
<td>23/9</td>
<td>35/7</td>
<td>13/9</td>
<td>30/6</td>
<td>11/3</td>
<td>27/6</td>
<td>11/3</td>
<td>18/8</td>
<td>21/1</td>
<td>22/1</td>
</tr>
<tr>
<td>14/4</td>
<td>23/1</td>
<td>37/6</td>
<td>11/7</td>
<td>31/8</td>
<td>11/4</td>
<td>27/6</td>
<td>11/2</td>
<td>18/7</td>
<td>21/6</td>
<td>23/6</td>
</tr>
<tr>
<td>14/6</td>
<td>23/3</td>
<td>38/6</td>
<td>11/8</td>
<td>31/5</td>
<td>11/4</td>
<td>27/6</td>
<td>11/2</td>
<td>18/7</td>
<td>23/6</td>
<td>25/2</td>
</tr>
<tr>
<td>12/7</td>
<td>21/3</td>
<td>31/8</td>
<td>10/9</td>
<td>32/7</td>
<td>11/4</td>
<td>27/6</td>
<td>11/2</td>
<td>18/7</td>
<td>25/2</td>
<td>27/6</td>
</tr>
</tbody>
</table>

1. اعداد هر گروه که دارای حروف مشترک هستند، بر پایه آزمون چند دامنه‌ای دانکن در سطح احتمال 5 درصد تفاوت معنی‌دار دارند.
شکل ۷: ارتباط سرعت نمو با طول روز در دوره سبز شدن تا شروع رشد طولی سافه، در اواک ۲۰۱۱ و توده محلي کوسه.

شکل ۶: ارتباط سرعت نمو با حاصل ضرب میانگین دما و طول روز در دوره کاشت تا رسیدگی فیزیولوژیک در توده محلي کوسه.
شکل 8. ارتباط سرعت نمای حداکثر در دوره سبز شدن تا شروع رشد طولی ساقه در رقم نیتراسکا 10.

شکل 9. ارتباط سرعت نمای حداکثر دما در شروع رشد طولی ساقه تا روزیت طبق در ارقام اراک 1811 و نیتراسکا 10.
ارقام به دما و طول روز است. در مطالعه زیررمن (۱۲) نیز تفاوت معنی‌داری بین ارقام از نظر طول دوره روز وجود داشت.

تغییرات سرعت نمو اراک ۲۸۱۱ و توده‌حلیک کوسه در دوره مسی شدن تا شروع رشد طول ساقه بیش از سابیر متغیرهای جوی، توسط طول زمان تفسیر شد (شکل ۷). اراک ۲۸۱۱ با یک رابطه درجه دوم و توده‌حلیک کوسه به یک رابطه خطی است. نسبت به طول روز عکس العمل نشان دادند. از ناحیه‌های که طول دوره روز در کانالگی تأثیر هر دو متغیر دما و طول روز افزایش طول روز علاوه بر این که از طریق تمیز نیاز فنون‌گونه‌گی کامیاب کوسه طول دوره می‌گذارند، بلکه تأثیری هم‌زمان با متغیرهای دما به ابعاد کاهش طول دوره سپر شد. از این نظر نیز اراک ۲۸۱۱ در دوره مسی شدن تا شروع رشد طول‌ساقه سه‌گانه تأثیر داشت. نیازمندی به یک تفسیر شد (شکل ۷). این اثر به یک رابطه خطی به این متغیر عمل نشان داد. این نادرستی در این ارتقای‌هایی که به طول روز روی‌هایی حادثه در این تاریخ‌ها نسبت به طول روز بی‌تفاوت باشند. همین متغیر نتوانسته بطور مشابه داری طول دوره روز در این اثر به درک‌می‌شد. ۲۹۵ /۱۰ تفسیر کند.

تاریخ کاشت به‌عنوان هر کامیابی به‌طور دوره شروع شرفا ساقه تا روتی طبق داست. طول این دوره به‌طور کامیابی که از اراک ۲۸۱۱ و توده‌حلیک کوسه در دوره مسی شدن تا شروع رشد در با تأخیر کاشت از کاشت چهارم که کاشت اول کاشت چهارم که کاشت اول کشید (جدول ۳). روند تغییرات طول این مرحله از ناحیه به تغییرات حداکثر دما از طول‌وز سایر متغیرهای دما یا ماه‌ها بود. در با روابط بین تفسیر برای (۱) نیز تأخیر در کاشت باعث کاهش طول دوره شروع طول‌ساقه به لحاظ در تحقیقات مورد نظر ساقه تا روتی طبق داست.
میانگین دما (درجه سانی گراد)

شکل 10. ارتباط سرعت نمو با میانگین دما در دوره شروع رشد طولی ساقه تا رژیم طبق در توده محلی کوسه.

دیاگرام میانگین دما و تعداد فرآیندهای کاشت:

شکل 11. اثر منطبق تاریک کاشت و رقم بر شمار روز از شروع رشد طولی ساقه تا رژیم طبق. ستون‌هایی که دارای یک حرف مشترک هستند، فاقد تفاوت معنی‌دار آماری برابر آزمون چند دامنه‌ای دانکن در مطلع احتمال 5 درصد هستند.

96
بعض طول روز حساس است. در بررسی زیمرمن (۱۶)، رقم نیبراسکا ۱۰ در طول روز ۱۴ ساعت به طول روز فیشرس قبیل تفسیر بود. این ارقام در این مرحله از نمودی به یک رابطه درجه دوم داده و حساسیت نشان داده‌اند (شکل ۱۲). وجود این عکس الگویی از آن است که تنش ناشی از افزایش دمای حداکتر و تغییرات طول دوره روتیت طبق تاریکی قبیل می‌گردد. افزایش سرعت نمود در دوره روتیت گلدهی در این مرحله از نمود یک تغییر دقت. یکی از روش‌های ۱۶ و ۱۷ به گزارش شده است. تغییرات سرعت نمود در هر میلی‌ثانیه تغییرات طول دوره روتیت طبق تاریکی بیشینه درجه دوم عکس الگویی تغییرات طول دوره روتیت طبق تاریکی به عضویت نمایندگان جایگزین سایر عکس‌های دمایی شده است
(۳ و ۴).

تاریخ تأثیر بسیار معنی‌داری بر طول دوره گلدهی داشت. تأخیر در کاشت از کاشت اول به کاشت دوم تاریکی کاهش حذف سه روز در طول دوره گلدهی شد. ولی با تأخیر در کاشت از کاشت دوم ناکام کاهش را در طول دوره گلدهی بیشتر داشت. تأخیر تا درجه دوم مشاهده شد. برای سایر تاریکی‌های کاشت این ممکن است با تغییرات از طول دوره (جدول ۱۳) به عنوان نمایندهٔ کارکرد سایر عکس‌های دمایی شده است. بطور پیش‌بینی داشت. تأثیر رقم قبیل می‌گردد. در نظر گرفت. نمود می‌گردد که در کاشت از میزان مهاجمان به طول دوره گلدهی با طول دوره روتیت طبق تاریکی به طول دوره گلدهی را به‌خوبی اختصاص داده‌اند (جدول ۱۵). تفاوت معنی‌داری با در نظر گرفت. در میزان مهاجمان به طول دوره گلدهی با طول دوره روتیت طبق تاریکی به طول دوره گلدهی را به‌خوبی اختصاص داده‌اند (جدول ۱۵).

۹۷
عکس، میزان فیزیولوژیک تا رشد کلیه نشان داده‌است (شکل ۱۴). بر اساس این رابطه، سرعت نمایه‌های فیزیولوژیک طول روزیان طول روز فرار غیردلیلی (۹) ممکن است طول روز به‌عنوان تفسیرکننده متغیرهای دمایی و مدل شده و تغییرات این دوره را توجیه نموده باشد. در بررسی خواصه‌پور و سیدی (۹) نیز طول روز توجه کننده طول دوران کلیه قرار داده‌اند. بررسی رابطه درجه دوی به تغییرات طول روز عکس عمل نشان داده‌است.

شکل ۱۲: ارتباط سرعت نمایه با حداقل دما در دوره رژیم طبقاً شرایط گلدسپ در توده محیطی کوهی.

شکل ۱۳: ارتباط سرعت نمایه با طول روز در دوره رژیم طبقاً شرایط گلدسپ در توده محیطی کوهی.

طول دوره انبار گلدسپ تا رشدکننده فیزیولوژیک به طور معنی‌داری تحت تأثیر تاریخ کاشت قرار گرفت. با تأخیر کاشت از کاشت اول تا کاشت چهارم، طول این دوره افزایش یافت و تاریخ کاشت پنجم به مرحله رشدکننده فیزیولوژیک وارد شد (جدول ۲). افزایش طول دوره انبار گلدسپ تا رشدکننده فیزیولوژیک با تأخیر در کاشت باید روسته عمومی کاهش معنی‌داری دمایی و طول روز (شکل ۲) هم آهنگ می‌باشد. ولی بیشترین هم‌زیندی عکس را با کاهش
شکل 14. ارتباط لگاریتم سرعت نمو با طول روز در دوره گلدهی اراک 1881، کرمه و نیراسکا 10

\[RD = +2.3201 - 0.3397 \text{DL} + 0.0131 \text{DL}^2 \quad R^2 = 0.75 \]

\[RD = +1.0826 - 0.1854 \text{DL} + 0.0065 \text{DL}^2 \quad R^2 = 0.95 \]

\[RD = +2.3515 - 0.3566 \text{DL} + 0.0135 \text{DL}^2 \quad R^2 = 0.91 \]

شکل 15. ارتباط سرعت نمو با طول روز در دوره انتمام گلدهی تا رسیدن طیفولوژیک در ارقام اراک 1881، کرمه و نیراسکا 10

\[RD = 14.6915 - 1.064 \text{DL} + 0.0456 \text{DL}^2 \]
مطالعه تفسیر نشده همانگونه که قبلاً بیان گردید، طول روز نمی‌تواند به عنوان نماینده‌ای از متغیرهای دمایی وارد مدل شده است. به‌نظر می‌رسد که تسریع نمو ارتفاع ۲۸۱۱ در اثر افزایش دما یکی از تغییرات

نتایج حاصل از این پژوهش نشان داد که ارتفاع مورد بررسی عکس عملی متفاوتی نسبت به تغییرات طول روز و دما ناشی از تأخیر در کاشت نتشان می‌دهد. رقم ورایم ۲۹۵ نسبت به سایر ارقام دیگر تر بود و عکس عمل مشخصی نسبت به متغیرهای دیگر نشان داد. ظاهراً ارتفاع اراک ۲۰۱۲ و نبراسکا ۱۰ به طول روز بر تفاوت هستند و طول دوره نمو آنها بیشتر کمتر تأثیر داشت. ترکیب محله کوه احتمالاً به طول روز حساسیت دارد و کمتر از دماهای بالا تأثیر می‌پذیرد. با توجه به اینکه ارتفاع مورد بررسی بخصوص تهیه و در محدوده کوه، عکس عمل کمی به افزایش دما از لحاظ تسریع نمی‌شناسد. به‌نظر می‌رسد که کشت تابستان گرلژک، به‌ویژه در محله کوه، با مشکلی از لحاظ نیاز فتوپرودکس و آسیب دما بالا در شرایط اصفهان روبه‌رو نمی‌شود.

طول روز نشان می‌دهد (جدول ۳) که ارتفاع مورد بررسی
نمی‌روید که طول دوره اندازه‌گیری تا رسیدگی فیزیولوژیک
تحت تأثیر طول قرار گردید (۰.۱۱). به‌نظر می‌رسد طول روز
به‌عنوان تفسیر گرئه دمایی وارد مدل شده و تغییرات
این دوره را توجه به‌نموده‌شد. در بررسی بانری (۱) نیز
عکس الگوهای مختلفی از این دوره به متغیرهای دمایی متفاوت
بود. در بررسی حاضر، تفاوت بین ارقام مورد مطالعه، ان تأثیر
طول دوره اندازه‌گیری تا رسیدگی فیزیولوژیک به‌عنوان
بود. تدوین محله کوه به‌بیشترین و رقم ورایم ۲۹۵ کمتر
تعداد و از اینان گلدهی کرد. ارتفاعات بین ارقام از ۴۰ درصد
گلدهی تا رسیدگی فیزیولوژیک را به‌خود اختصاص دادند (جدول ۲). در بررسی (۱) نیز نتایج معنی‌دار
بررسی نمایندگی توسعه انرژی در دوره اندازه‌گیری گرئه از فیزیولوژیک به‌کمک متغیر طول
روز قابل تفسیر بود. اراک ۲۸۱۱، ترکیب محله کوه و نبراسکا
۱۰ نسبت به تغییرات طول روز با یک رابطه درجه دوم
عکس عمل نشان داده (شکل ۱۵). تغییرات سرعت نمو رقم
ورایم ۲۹۵ در دوره مداکور توسعه هیچ یک از متغیرهای مورد

منابع مورد استفاده

1. ژاپنی، م. ۱۳۷۴. آثار تاریخی کشت بر عملکرد و اجرای عملکرد ارتفاع گلرگ کپنای نامه کارشناسی ارشد زراعت، دانشگاهی.
2. خواجویی، م. ۱۳۷۰. تولید نباتیان. انتشارات جهاد دانشگاهی، دانشگاه صنعتی اصفهان.
3. خواجویی، م. ۱۳۷۷. نقش طول روز و دما در انتخاب تاریخ کاشت محصولات زراعی. مجموعه مقالات کلیدی پنج‌مین کنگره زراعت و اصلاح نباتات ایران، ۹ تا ۱۳ شهریور ۱۳۷۷. انتشارات موسسه تحقیقات اصلاح و تهیه نهال و بذر، کرج.
4. خواجویی، م. ۱۳۷۰. تأثیر دما و طول روز بر روابط نمو ارتفاع آناگربندان در شرایط مزرعه. مجله علوم و فنون کشاورزی و منابع طبیعی ۵(۱):۹۱-۱۰۸.
5. محمدی نیکی‌پور، ع. ر. و. کوچکی. ۱۳۷۸. بررسی اثرات تاریخ کشت بر شاخص‌های رشد، عملکرد و اجرای عملکرد گلرگ، مجله علوم و صنایع کشاورزی ۱۳(۱):۱۰-۲۳.