چکیده
بیماری ارزابی‌پذیری طول مراحل مختلف نمزوئیپتیمی گلرگنز از تغییرات طول روز و دما در شرایط مزرعه‌ای و مدل‌سازی سرعت نمزوئیپتیمی گلرگنز در گلرگنز از تغییرات طول روز و دما در شرایط مزرعه‌ای و مدل‌سازی سرعت نمزوئیپتیمی گلرگنز در گلرگنز از تغییرات طول روز و دما در شرایط مزرعه‌ای و مدل‌سازی سرعت نمزوئیپتیمی گلرگنز در گلرگنز از تغییرات طول روز و دما در شرایط مزرعه‌ای و مدل‌سازی سرعت نمزوئیپتیمی گلرگنز در گلرگنز از تغییرات طول روز و دما در شرایط مزرعه‌ای و مدل‌سازی سرعت نمزوئیپتیمی گلرگنز در گلرگنز از تغییرات طول روز و دما در شرایط مزرعه‌ای و مدل‌سازی سرعت نمزوئیپتیمی گلرگنز در گلرگنز از تغییرات طول روز و دما در شرایط مزرعه‌ای و مدل‌سازی سرعت نمزوئیپتیمی گلرگنز در گلرگنز از تغییرات طول روز و دما در شرایط مزرعه‌ای و مدل‌سازی سرعت نمزوئیپتیمی گلرگنز در گلرگنز از تغییرات طول روز و دما در شرایط مزرعه‌ای و مدل‌سازی سرعت نمزوئیپتیمی گلرگنز در گلرگنز از تغییرات طول روز و دما در شرایط مزرعه‌ای و مدل‌سازی

نصیرالله داداشی و محمدرضا خواجه‌پور

واژه‌های کلیدی: گلرگنز، تاریخ کاشت، مرحله نمو، مدل‌سازی، سرعت نمو، دما، طول روز.
مقدمه
ارقام گلبرگ نشان دهنده نظر طول دوره نمای وِ یک‌دیگر متفاوت هستند (۱۳ و ۱۶). بلکه تأثیر بسیار طول دوره‌های مختلف نمای آنها از دم و طول روز یا یک‌دیگر فرقی کند. (۱۴) این نتایج از سیب ناهمگونی از طبقات مراح حساس و گیاهان با شرایط میکشی آبیده‌ای أثربخش در تاریخ مختلف کاشته شده و انتخاب تاریخ کاشت مناسب و پیش‌بینی زمان وقوع مراحل نمای را برای تصمیم‌گیری های زراعی دشوار می‌سازد. گلبرگی طبیعتاً گیاهی روزانه است، ولی حساسیت ژنتیکی این طول روز فرقی می‌کند (۲) و ۳. در بررسی زیب‌مرن (۱۶) در دامای نتیج هشاکردها و حداکثر ۱۰ درجه سانتی‌گراد، افزایش طول روز از ۱۰ به ۱۴ ساعت، سبب کاهش طول دوره از سبیل شدن نشان می‌دهد. این سبب به مراحل زیب‌مرن و ۲۴ ساعت است (۴). افزایش طول روز بر طول دوره ژنتیکی مختلف نمای نیز گزارش شده است (۵) و ۶. در افزایش ژنتیکی طرحی از اثر‌رسیدگی اثر طول روز از اثر در شرایط مزروعه ایرانی مشکل می‌سازد (۴).

به‌طور خلاصه، افزایش دما یا سبب تنوع مراحل مختلف نمو گلبرگ می‌گردد (۹، ۱۰، ۱۱، ۱۲ و ۱۳). در بررسی بعضی و همکاران (۹) طول دوره سبیل شدن افزایش دما گیاهی در مورد ژنتیک و چندین وضعیت کمک‌رسان در کشت گلبرگ نشان می‌دهد که از اشکال دیده می‌شود. باید به‌طور بیشتری روزنامه و سرما دوست بودن گلبرگ (۱۲) بررسی داده شود از طبیعت و اثرات کشاورزی و جامعه مناسب. این شرایط اهمیت کاربردی و نیز علی‌عمیقی زیادی دارد. بسیاری از بررسی‌ها حاضر، عکس‌ها تصویر اینها مختلف نمای و ارتباطهای مختلف به‌صورت محیطی را مشکل می‌سازد. از این رو، از

۸۴
از دما و طول روز بر مراحل نموم دریایی گلرنگ در شرایط مزروعه بروز می‌شود.

مواد و روش‌ها

آزمایش در سال زراعی 1379-78 در مزرعه بیوه‌شیان دانشگاه کشاورزی دانشگاه صنفی اصفهان واقع در 40 کیلومتری جنوب غربی اصفهان (عرض جغرافیایی 32° و 50′ شمالی و طول جغرافیایی 52° و 17′ شرقی) اجرا گردید. ارتفاع مزرعه از سطح دریا 1330 متر و طبق تقسیم بندی کوه، در آن قبیل تپه خشک، حدوداً میانگین خشکی بوده و میانگین بارندگی و دمای سالانه به ترتیب 140 میلی‌متر و 24/5 درجه سانتی‌گراد است.

آزمایش با طرح یکمانه کامل تصادفی و آزمایش‌های در چارچوب کرت‌های پک بار خرد شده و سه تکرار پایده شد. تیمار اصلی شامل پنج ترکیب کشت (آسفال، 14/578، 14/478 و تیمار فرعی شامل چهار زنون (آرک، توده، مخلوط کوه، نبراسکا 10 و ورامین 954) بودند. هر کرت آزمایش شامل 7 ردیف کشت با فاصله 45 سانتی‌متر، به صورت جوی و پشتی و به طول 10 متر بود به‌دست هر تکرار در مصوب 4 تا 5 سانتی‌متر کاشت‌شده و به‌دست آمده خاک‌سازی سری‌الافزار صورت گرفت.

آیپی‌اهای زمان مرحله دو تا سه برگه هر 4 روز بیکار، طی دوران رشد رویشی بر اساس 100 میلی‌متر تبخیر و طی دوران رشد زایشی بر اساس 80 میلی‌متر تبخیر از تشکیل کلاس A انجام گردید. در مرحله سه تا چهار برگی، گیاه‌های اصلی بر اساس فاصله حدود 5 سانتی‌متر (تراکم حدود 44 بوته در متر مربع) انجام مرحله گردنده و تکن گردنده.

زمان محل آزمایش، در سال قبل زیر کشت کرد. نمونه‌برداری عملیات به عنوان سه شکل سوزاندن قطع و نشان پاییزه و دیسه و نسبت به‌دست آوردن کشت از کشت بر اساس 200 کیلوگرم در هکتار سپس امینیوم 48 درصد اسید فسفر و 18 درصد نیترورژن خاکی انجام گرفته و کود به کمک
نسب شاندن کمتری داشته. بررسی روند تغییرات میانگین دمای شبانه‌روزی هوا نشان می‌دهد که دمای شبانه‌روزی کمتر از مقدار سطحی در پاییز و تغییرات نسبی در حدود گزارش شده در طول دوره کاهش نموده است (جدول 1) و در مه 1387 به‌طور گسترده‌تری در کاهش دو دوره کاهش به‌خصوص در ماه‌های ژانویه و فوریه راه‌لند شده. 

نتایج و بحث

شمار روز از کاست کاهش تأثیر تاخیر قرار نکرده و با تأخیر کاهش از تاخیر کاست اول به دوم شدیداً کاهش بافت (جدول 1). شمار روز از کاست در میانمی و تأثیر و سیز شاند نتایج در مشاهده فضای کاهش طول دوره نمایه‌گر روز بین دو نقطه است که نشان می‌دهد این کمبود به نسبت به دوم و 249 یک رابطه خطی نسبت به میانگین طول روز در این کمبود به دو نقطه اضافه شده کاستی نشان داده. ولی نسبت به حداکثر دما، داشتند با رابطه در کاست افزایش نسبت به افزایش دما در این کمبود به دو نقطه اضافه شده کاستی نشان داده (شکل 2). و در مطالعه خواص می‌تواند سطح مؤثر در بیان دمای دما، در این مطالعه نشان دنیا که طول روز نسبت به دو نقطه اضافه شده کاستی نشان داده. 

نسبت به افزایش دما افزایش 2881 اضافه شده کاستی نشان داده (شکل 3). چرا خواص می‌تواند بیان دمای دما، در این مطالعه نشان دنیا که طول روز نسبت به دو نقطه اضافه شده کاستی نشان داده (شکل 2). و در مطالعه خواص می‌تواند سطح مؤثر در بیان دمای دما، در این مطالعه نشان دنیا که طول روز نسبت به دو نقطه اضافه شده کاستی نشان داده.
جدول 1. میانگین شمار روز، متغیرهای دمایی (درجه سانتی‌گراد) و طول روز (ساعت) در دوره‌های مختلف نمو ارقام گل‌نگ

<table>
<thead>
<tr>
<th>تاریخ کاشت</th>
<th>شمار روز</th>
<th>حداقل دما</th>
<th>میانگین دما</th>
<th>طول روز</th>
</tr>
</thead>
<tbody>
<tr>
<td>13/8</td>
<td>15/9</td>
<td>19/5</td>
<td>10/4</td>
<td>6/7^b</td>
</tr>
<tr>
<td>13/2</td>
<td>18/9</td>
<td>20/8</td>
<td>11/3</td>
<td>7/0^b</td>
</tr>
<tr>
<td>14/0</td>
<td>21/0</td>
<td>20/3</td>
<td>10/6</td>
<td>7/0^c</td>
</tr>
<tr>
<td>14/5</td>
<td>21/0</td>
<td>30/5</td>
<td>12/8</td>
<td>7/0^c</td>
</tr>
<tr>
<td>14/4</td>
<td>21/0</td>
<td>24/7</td>
<td>12/5</td>
<td>7/0^c</td>
</tr>
</tbody>
</table>

کاشت تا سیبر شدن

<table>
<thead>
<tr>
<th>کاشت تا 50 درصد گلدهی</th>
<th>13/6</th>
<th>18/6</th>
<th>28/6</th>
<th>11/0</th>
<th>10/2^c</th>
</tr>
</thead>
<tbody>
<tr>
<td>14/1</td>
<td>21/0</td>
<td>30/7</td>
<td>12/4</td>
<td>83/6</td>
<td></td>
</tr>
<tr>
<td>14/4</td>
<td>23/4</td>
<td>33/4</td>
<td>12/4</td>
<td>71/6</td>
<td></td>
</tr>
<tr>
<td>14/2</td>
<td>23/2</td>
<td>34/2</td>
<td>13/4</td>
<td>77/4</td>
<td></td>
</tr>
<tr>
<td>13/2</td>
<td>21/6</td>
<td>31/9</td>
<td>11/4</td>
<td>93/6</td>
<td></td>
</tr>
</tbody>
</table>

کاشت تا رسیدگی فیزیولوژیکی

<table>
<thead>
<tr>
<th>کاشت تا 80 درصد گلدهی</th>
<th>13/8</th>
<th>20/0</th>
<th>28/5</th>
<th>11/4</th>
<th>13/0^d</th>
</tr>
</thead>
<tbody>
<tr>
<td>14/1</td>
<td>22/2</td>
<td>31/8</td>
<td>12/6</td>
<td>11/7^c</td>
<td></td>
</tr>
<tr>
<td>14/2</td>
<td>23/3</td>
<td>33/7</td>
<td>12/6</td>
<td>13/0^d</td>
<td></td>
</tr>
<tr>
<td>13/4</td>
<td>22/1</td>
<td>32/4</td>
<td>11/8</td>
<td>12/6^b</td>
<td></td>
</tr>
</tbody>
</table>

1. اعداد هر کرگه که دارای حروف مشترک هستند، بر اساس آزمون چند دامه‌ای دانکن، در سطح احتمال 5 درصد متفاوت معنی‌دارند.

شکل 1. ارتباط سرعت نمو با طول روز در دوره کاشت تا سیبر شدن ارقام اراک 2811 و ورامین 290
زمان

شکل ۲. تغییرات طول روز و حداکثر، حداقل و میانگین دما در فصل رشد

حداکثر دما (درجه سانتی‌گراد)

شکل ۳. ارتباط سرعت نمای حداکثر دما در دوره کاشت تا سبز شدن در ارقام کوسه و نیراسکا ۱۰.
در دما و طول روز بر مراحل نمو ژنتیپ‌های گل‌گند در شرایط مزرعه

حاصل ضرب میانگین دما و طول روز

شکل 4: ارتباط سرعت نمو با حاصل ضرب میانگین دما و طول روز در دوره کاشت با 50 درصد گلدهی در ارقام اراك 2011 نبات 10 و کوسم

بررسی 10 در دوره کاشت با 50 درصد گلدهی بیش از سایر متغیرها جوی، توسط متغیر حاصل ضرب میانگین دمای شبندر، کاشت در طول روز نمایش بدید (شکل 4). سرعت نمو در سه رقم تابعی خطی از متغیر مکروسکوپی بود. تفکیکی مهم طول روز از میانگین دمای شبندر، وزیر در تعیین طول دوره کاشت با 50 درصد گلدهی در زنوتیپ‌های مورد بررسی به دلیل همروندی و سبب این در متغیر جوی و همچنین اثر آنها بر سرعت نمو (2 و 3)، در شرایط زائد دمای خاک اکسپانژنیز تیسن. در بررسی خواص پرور و سبید 4 (برو) اکسپانژنیز تغییرات سرعت نمو آزمایش در دوره کاشت با 50 درصد مور برسی تعیین نمی‌تواند نمایندگی تغییرات سرعت نیم رقم ورامین 295 را در این مرحله از نمایش نکند.

طول دوره از کاشت با رسیدگی فیزیولوژیک تحت تأثیر تاریخ کاشت قرار گرفت. طول این دوره در اثر تاخیر کاشت از کاشت اول تا کاشت سوم کاهش یافت. ولی با تأخیر بیشتر در کاشت افزایش پیدا کرد. زنوتیپ‌های طول دوره مکروسکوپی با روندهای تغییرات طول روز و دما هم‌انگیز بود (جدول 1). نمایش 2811

حسین سیاهی‌پور به ارزیابی دما در مقایسه با نبات 10 در دما و طول روز بر مراحل نمو ژنتیپ‌های گل‌گند در شرایط مزرعه یر در هندوستان و مندل و همکاران (13) در کانادا نیز کاهش طول دوره کاشت از رسیدگی را در اثر تأخیر در کاشت کازران کردند. اعداد روز از کاشت رسیدگی فیزیولوژیک به طور معنی‌داری تحت تأثیر رقم قرار گرفت. کوهنتین و بلندترین طول این دوره به‌ترتیب مربوط به رقم نبات 10 و روامن 295 بود (جدول 2). در بررسی مندل و همکاران (13) باعث تفاوت بین ارقام مورد مطالعه از نظر طول دوره کاشت این رسیدگی فیزیولوژیک معنی‌دار بود. آنها نمایش عکس عمل ارقب در شرایط اقلیمی را عامل این اختلاف دانستند و اظهار داشتند که ارقب از نظر نیاز حرارتی و شمار روز باید کاهش دهد. البته این دوره با هم متفاوت می‌شد.

بررسی نهایی عکس عمل ارقام به بیماری جوی، حداقل می‌شود به سازمان متغیرها تغییرات سرعت نمو اراك 2011 و نبات 10 در دوره کاشت را رسیدگی فیزیولوژیک را تفسیر نمود (شکل 5). سرعت نمو نبات 10 تابعی خطی از متغیر مکروسکوپی بود. از اراك 2011 با یک رابطه درجه دوم نسبت به حداقل دما طی این دوره عکس عمل نشان داد. ظاهراً اراك 2811 حساسیت بیشتری به افزایش دما مقایسه با نبات 10.
شکل ۵. ارتباط سرعت نمو با دمای حداقل در دوره کاشت تا رسیدگی فیزیولوژیک در ارقام انارک ۲۸۱۱۶ و نیروساکا ۱۰. ۱۰ نشان می‌دهد. در بررسی‌های انجام یافته توسط باقری (۱) روی گارنک نیز گزارش شده است که نشان داده که تغییرات طول دوره کاشت تا رسیدگی فیزیولوژیک بیشتر از طول روز بوده است. در حالی که در بررسی خواجه‌پور و سیدی (۴) روی آفتابگردان، سرعت نمو در دوره از کاشت تا رسیدگی
فیزیولوژیک توسط تغییرات طول روز تفسیر گردید. تغییرات سرعت نمو توده محیطی کوسه در دوره کاشت تا رسیدگی
فیزیولوژیک توسط منجر حاصل ضرب میانگین دمای
شباهویی در طول روز تفسیر شد (شکل ۷). تفکیک سهم
طول روز از میانگین دمای شباهویی در تغییر طول دوره
کاشت تا رسیدگی فیزیولوژیک در توده محیطی کوسه به دلیل
هوپوندی و سیی این دو منجر جوی و هم‌سایی اثر آنها بر
سرعت نمو (۲۳) در شرایط بررسی حاضر امکان‌پذیر نیست.
همچنین، وقتی از منجرهای جوی بود بررسی‌های تفسیر بطور
معنی‌داری تغییرات سرعت نمو رقم ورامین ۲۹۵ را در این
مرحله از تمرینات کند.
شمار روز از سیزد شدن تا شروع رشد طولی سافه به طور
معنی‌داری تحت تأثیر تابع تاریخ کاشت قرار گرفت. با تاکید در

۹۰
جدول ۲: میانگین طول مراحل مختلف نمو (به روز) در ارقام گلیتک

<table>
<thead>
<tr>
<th>رقم</th>
<th>کلیت نا کاشت</th>
<th>کلیت نا کاشت</th>
<th>کلیت نا کاشت</th>
<th>کلیت نا کاشت</th>
</tr>
</thead>
<tbody>
<tr>
<td>فیزیولوژیک</td>
<td>۴۱/۴</td>
<td>۲۰/۷</td>
<td>۲۱/۸</td>
<td>۱۸/۴</td>
</tr>
<tr>
<td>رسیدگی</td>
<td>۲۳۷/۴</td>
<td>۲۲/۹</td>
<td>۲۷/۴</td>
<td>۱۲۵</td>
</tr>
<tr>
<td>روزه</td>
<td>۳۸/۳</td>
<td>۲۱/۸</td>
<td>۲۲/۷</td>
<td>۸۸</td>
</tr>
<tr>
<td>حمر</td>
<td>۳۸/۳</td>
<td>۲۱/۸</td>
<td>۲۷/۴</td>
<td>۸۸</td>
</tr>
<tr>
<td>پاک</td>
<td>۲۰/۷</td>
<td>۲۰/۷</td>
<td>۱۸/۴</td>
<td>۸۸</td>
</tr>
<tr>
<td>نرجسکا</td>
<td>۱۰</td>
<td>۵</td>
<td>۵</td>
<td>۵</td>
</tr>
<tr>
<td>ورام۵</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
</tbody>
</table>

1. اعداد هر ستون به دلیل عدم مبارزه با شرایط گرمایشی منطقه مورد مطالعه و عدم اعمال قوانین اساسی با سایر رقابت در محاسبات آماری وارد نگردید.

2. به دلیل عدم مبارزه با شرایط گرمایشی منطقه مورد مطالعه و عدم اعمال قوانین اساسی با سایر رقابت در محاسبات آماری وارد نگردید.
جدول 3: میانگین شمار روز، متغیرهای دما ای (درجه سانتی گراد) و طول روز (ساعت) در دوره‌های مختلف نم ارقام گلرگ

<table>
<thead>
<tr>
<th>طول روز</th>
<th>میانگین دما</th>
<th>حداقل دما</th>
<th>میزان شمار روز</th>
<th>تاریخ کاشت</th>
</tr>
</thead>
<tbody>
<tr>
<td>13/1</td>
<td>15/9</td>
<td>9/2</td>
<td>33/5</td>
<td>78/12/21</td>
</tr>
<tr>
<td>13/7</td>
<td>19/8</td>
<td>11/9</td>
<td>29/9</td>
<td>79/11/23</td>
</tr>
<tr>
<td>14/2</td>
<td>20/0</td>
<td>11/8</td>
<td>22/7</td>
<td>79/3/20</td>
</tr>
<tr>
<td>14/5</td>
<td>22/7</td>
<td>13/3</td>
<td>22/4</td>
<td>79/3/18</td>
</tr>
<tr>
<td>14/1</td>
<td>24/1</td>
<td>13/9</td>
<td>24/8</td>
<td>79/3/21</td>
</tr>
<tr>
<td>14/0</td>
<td>20/6</td>
<td>11/7</td>
<td>26/8</td>
<td>78/12/21</td>
</tr>
<tr>
<td>14/3</td>
<td>22/4</td>
<td>12/1</td>
<td>21/4</td>
<td>79/12/23</td>
</tr>
<tr>
<td>14/0</td>
<td>23/7</td>
<td>12/2</td>
<td>18/1</td>
<td>79/2/20</td>
</tr>
<tr>
<td>14/4</td>
<td>31/3</td>
<td>12/4</td>
<td>10/5</td>
<td>79/2/18</td>
</tr>
<tr>
<td>12/5</td>
<td>33/0</td>
<td>10/9</td>
<td>30/0</td>
<td>79/4/21</td>
</tr>
<tr>
<td>12/4</td>
<td>33/7</td>
<td>11/5</td>
<td>19/3</td>
<td>78/12/21</td>
</tr>
<tr>
<td>12/8</td>
<td>34/1</td>
<td>13/4</td>
<td>14/9</td>
<td>78/11/23</td>
</tr>
<tr>
<td>12/5</td>
<td>34/5</td>
<td>13/1</td>
<td>11/1</td>
<td>79/2/20</td>
</tr>
<tr>
<td>12/3</td>
<td>34/1</td>
<td>13/1</td>
<td>19/6</td>
<td>79/2/20</td>
</tr>
<tr>
<td>12/4</td>
<td>33/6</td>
<td>13/4</td>
<td>22/3</td>
<td>78/3/18</td>
</tr>
<tr>
<td>12/0</td>
<td>4/2</td>
<td>10/9</td>
<td>23/8</td>
<td>78/3/21</td>
</tr>
<tr>
<td>11/7</td>
<td>12/6</td>
<td>20/9</td>
<td>14/5</td>
<td>78/12/21</td>
</tr>
<tr>
<td>11/4</td>
<td>33/6</td>
<td>13/8</td>
<td>20/9</td>
<td>79/12/23</td>
</tr>
<tr>
<td>11/1</td>
<td>34/4</td>
<td>13/4</td>
<td>18/4</td>
<td>79/12/23</td>
</tr>
<tr>
<td>14/0</td>
<td>32/0</td>
<td>13/8</td>
<td>23/1</td>
<td>79/2/20</td>
</tr>
<tr>
<td>12/4</td>
<td>19/0</td>
<td>8/2</td>
<td>37/9</td>
<td>79/3/18</td>
</tr>
</tbody>
</table>

در نهایت کاشت

دوره گلدهن

انجام گلدهن تا رسیدگی فیزیولوژیک

1. اعداد هر گروه که دارای حروف مشترک هستند، بر پایه آزمون چند دامنه‌ای دانکین در سطح احتمال 5 درصد تفاوت معنی‌دار ندارند.
شکل ۷: ارتباط سرعت نمو با طول روز در دوره شروع شدن تا شروع رشد طولی سافه در اراک ۲۰۱۱ و توده محلي کوسه
شکل 8. ارتباط سرعت نمای بدامان حداکثر در دوره سبز شدن تا شروع رشد طولی ساقه در رنگ نیپاسکا 10، حداکثر دما (درجه سانتی‌گراد).

شکل 9. ارتباط سرعت نمای بدامان حداکثر دما در شروع رشد طولی ساقه تا رژیت طبقه‌بندی در ارقام اراک 2811 و نیپاسکا 10.
طول آن دوره ذکر شده است، شمار روز از شروع رشد طولی ساقه تا زریست طبقه بندی می‌باشد تحت تأثیر رقم قرار گرفت، ورامین 195 پیشترین و اراک 2811 و نیروی 10 کمترین شمار روز از شروع رشد طولی ساقه تا زریست طبقه بندی خود اختصاص دادن (جدول 2). تفاوت معنی‌دار از ارقام از لحاظ طول از شروع نمایش دادن 811 نیز گزارش شده است. همچنین در بررسی ۶۵۹، رقم اراک 2011 در طول این دوره را در مدت زمان 10/5 روز طبقه بندی علت تفاوت طول آن دوره برای اراک اراک 2811 در مطالعه محیط دایر نشان داد. از این نگاهی که طول دوره روزت در گلبرگ تحت تأثیر هر دو متغیر چه و طول روز قرار می‌گیرد (۱۶)، به مدت زمان که در بررسی افزایش طول روز علاوه بر این که از طرفی تأثیر می‌کند، گذشته از طریق هم‌روندی با متغیر های دیگر نیز به عنوان گاه تا قاعدتاً در دوره سپر شدن تا شروع رشد طولی ساقه شده است. بنابراین، عكس العمل شدیدتر رقم اراک اراک 2011 به طول روز ضروری دارد. همچنین رقم یکی از این رقیم به طول زیاد معنی‌دار ندارد. تفاوتهای سرتاسرین نموده نموده 10 در دوره سپر شدن تا شروع رشد طولی ساقه به کمک متغیر حداکثر دارد رهبر تفسیر شد (شکل 8). این رقم با یک رابطه خطي به این متغیر عكس العمل نشان داد. احتمال می‌رود که رقم نرمال ۱۰ در محدوده طول روزهای حادثه در این پژوهش‌های کاست نسبت به طول روز به تفاوت باشد. همچنین هنوز نموده نموده داری طول دوره روزت در رقم ورامین 295 را تفسیر کنند.

تاریخ کاست تأثیر بسیار معنی‌داری با طول دوره شروع پیش از شروع رشد طولی ساقه تا زریست طبقه بندی داشت. طول این دوره با تأخیر کاست از کاست تأثیر چهارم کاهش یافته و با تأخیر کاست از کاست تأثیر چهارم کاهش یافته و با تأخیر کاست از کاست چهارم با کاست تا کاست در از مدت‌ها تغییرات حداکثر دما از طول روز و سایر متغیرهای دما هم آهک به یک عدد در بررسی اگرایش ۱ (یک) تا نتایج در کاست باعث کاهش طول دوره شروع پیش طولی ساقه تا زریست طبقه بندی داشت.

۹۵
شکل 10. ارتباط سرعت نمو با میانگین دما در دوره شروع رشد طولی ساقه تا رئیت طبق در نبوده محلی کوهه.

شکل 11. اثر متقابل تاریخ کاشت و رقم بر شمار روز از شروع رشد طولی ساقه تا رئیت طبق. سن‌هایی که دارای یک حرف مشترک هستند، فاقد تفاوت معنی‌دار آماری براساس آزمون چند دامنه دانکن در مسطح احتمال 0.05 محسوس نمی‌باشند.
به طول روز حساس است. در بررسی زیمربن (۱۶)، رقم
نبراسکا ۱۰ می‌تواند به توزیع روز ۱۸ ساعت به طول روز غیرحساس
پیوسته باشد. ولی در طول روز ۱۲ ساعت به طول روز حساس
دای و دیربرسانش، ظاهره عکس عمل به طول روز در توئه
محیط کوسه مکانیسمی به منظور مقابله با اثر زودرس‌کننده
دبای بالا می‌باشد که در اثر آنها انتخاب طبیعی تحت شرایط
کشت دوم، ایم محصول در منطقه اصفهان در این توئه
به وجود آمد. است. مدل‌های رگرسیونی مزرعه‌ای، بهدید
هویوندی مغزی‌های داماسی با طول روز می‌توانند تفسیر
فیزیولوژیک عکس عمل‌ها را مشکل‌زد و هر جه که روش
کار از نظر کاربردی مفید است (۴)。

شمار روز از رویت طی شروع گلدی به طور معنی‌داری
تحت تأثیر آماری قرار گرفت. با این‌که کاشت از کاشت
اول تا کاشت، طول دوره مزدک‌کوشا یافته. ولی با
تأثیر کاشت از کاشت بسیار تأثیر ۷۳ بر ۴۰ در. این صورت، طول روز
به‌عنوان نماینده‌ای چگونگی سایر متغیرهای دامنی شده است
(۳ و ۴).

تاریخ تأثیر پیوسته معنی‌داری بر طول دوره گلدی
دایه. تأخیر در کاشت اول به کاشت اول به کاشت دوم باعث
کاهش حدوده بیشتر در طول دوره گلدی شد. ولی با تأخیر
در کاشت از کاشت دوم، کاشت پیچ، طول دوره گلدی
به‌طور معنی‌داری تأثیر مثبتی داشت. البته بستگی به تاریخ
کاشت دما، پیشینه شکست و سایر متغیرهای دامنی به
می‌گردد: در بررسی خواص ریجیدی (۳) و افرادگرندزی، نیز
تعداد روز از رویت ضریب تغییر آنها تحت تأثیر تاریخ
کاشت قرار گرفت. ولی به‌دست این که کاشت مزدک کوشا و دما و
طول روز مشابه برخورد داشته، نقاط تاریخ‌های کاشت
ناچیز بود. در بررسی حاضر، نقاط بین ارقام مورد مطالعه، از
نظر طول دوره رویت طبق شروع گلدی معنی‌دار است. رقم
ارک ۲۸۱۱ پیشینه و نتایج محلی کوسه، کمترین شمار روز از
رویت طبق شروع گلدی را به‌خوره اختصاص داده (جدول
۲). نقاط معنی‌داری بین ارقام این اراک ۲۸۱۱ و نبراسکا ۱۰
انزجار طول این دوره دیده نشد. نقاط تأخیر بین ژن‌های
مورد مطالعه از نظر طول دوره رویت طبق شروع گلدی
شناسانه که گونه‌ها عکس عمل کمی نسبت به
دما و طول روز داشته‌اند. در بررسی پیشین (۱) نیز نقاط بین
ارقام از نظر طول دوره رویت طبق تا ۵۰ درصد گلدی

هداکتر دما (درجه سانتی گراد)

شکل 12. ارتباط سرعت نمای با هداکتر دما در دوره روزیت طبق تا شروع گلدیه در اتاق 1811 و نبیسکا.

\[
RD = 0.988 - 0.156 DL + 0.0064 DL^2 \quad R^2 = 0.97
\]

شکل 13. ارتباط سرعت نمای با طول روز در دوره روزیت طبق تا شروع گلدیه در نوبت محلی کوسه.

طول دوره انمام گلدیه‌ی نا رسفیدگی فيژیولوژیک به طور معمدیاری تحت تأثیر تاریخ کاشت قرار گرفت. با تأخیر کاشت از کاشت اول تا کاشت چهارم، طول این دوره افزایش یافته و تاریخ کاشت پنجم به مرحله رسفیدگی فيژیولوژیک وارد نشده (جدول 2). افزایش طول دوره انمام گلدیه‌ی نا رسفیدگی فيژیولوژیک با تأخیر در کاشت با روند عمومی کاهش معیارهای دمایی و طول روز (شکل 2) هم آهنگ می‌باشد. ولی بیشترین هم‌روندی عكس را با کاهش رابطه درجه دوم به تغییرات طول روز عكس العمل نشان دادند (شکل 14). بر اساس این رابطه، سرعت نمای همراه با افزایش طول روز شدیدا زیاد می‌شود. نظر به اینکه اندازه‌ی رشد هک طول دوره گلدیه‌ی تحت تأثیر طول روز قرار گرفت (11)، ممکن است طول روز به عنوان تفسیرکننده متغیرهای دمایی وارد مدل شده و تغییرات این دوره را توجیه نموده باشد. در بررسی خواص‌های و سیدی (12) بی توجهی به تغییرات طول دوران کاشت نا رسفیدگی فيژیولوژیک ارقام آفتاپارک‌دان بود.

98
شکل ۱۴: ارتباط لگاریتم سرعت نمو با طول روز در دوره گلدهی اراک ۱۸۱۱، کوهه و نیراسکا

شکل ۱۵: ارتباط سرعت نمو با طول روز در دوره انمای کلیده تا رسیدگی فیزیولوژیک در ارقام اراک ۱۸۱۱، کوهه و نیراسکا
بطول روز نشان می‌دهد (جدول ۳). از آن‌جایی که انتظار نمی‌رود که طول دوره ادامه گلدهی تا رسیدگی فیزیولوژیک تحت تأثیر طول قرار گیرد (۱۱۱)، ممکن است طول روز به عنوان تفسیر کننده متغیرهای دمايی وارد مدل شده و تغییرات این دوره را توجيه نموده باشد. در بررسی‌های بالاتر (۱) نیز عكس عملکرد از ادامه گلدهی دما، متغیرهای دمای تفاوت بود. در بررسی‌های حاضر، تفاوت بین ارقام مورد مطالعه از نظر طول دوره ادامه گلدهی شاد رسم فیزیولوژیک بیشتر معنی‌دار بود. نتایج محققی که مربوط به رابطه و رقیم ورامین ۲۹۵ کمترین تعداد روز از اندازه گلدهی شاد رسم فیزیولوژیک را به‌خود اختصاص داده (جدول ۲) باقری (۱) نیز نتایج معنی‌داری از ارقام را از نظر طول دوره از ۵۰ تا ۶۰ درصد گلدهی را رسیدگی فیزیولوژیک گزارش کرد. انتظارات سرعت نمو از این طرف در دوره ادامه گلدهی شاد رسم فیزیولوژیک به کمک متغیر طول روز قابل تفسیر بود. از سال ۲۸۳۸ تا به هر محیط به روش‌های گازی می‌توان جامعی داماد (۱۵) تغییرات سرعت نمو رقم ورامین ۲۹۵ در دوره مذکور توسط هیچ یک از متغیرهای مورد

متابع مورد استفاده

۱. باقری، م. ۱۳۷۴. اثرات نگارxiv خواج‌پور، م. ۱۳۷۷. نتایج طول روز و دمای اندازه‌گیری در تأثیر نواحی کلیدی پنج‌گونه زراعت و نگارxiv خواج‌پور، م. و ف. مهدی. ۱۳۸۰. اثرات طول روز و دمای اندازه‌گیری در شرایط مزروعه. مجله علوم و فنون کشاورزی و متابع حیاتی (۱۳۷۴) ۴۹-۷۹.

۲. کشاورزی و سایر حیاتی (۱۳۷۷) ۹۱-۹۷.

۳. محمدرضا نیکورش. حسین. چو. گل‌خورا. ۱۳۷۸. بررسی اثرات نگارxiv خواج‌پور، م. و ف. مهدی. ۱۳۸۰. اثرات طول روز و دمای اندازه‌گیری در شرایط مزروعه. مجله علوم و فنون

