استفاده از آب‌پنیر از طریق آب آشامیدنی بر عملکرد جوجه‌های گوشتی

چکیده

این آزمایش به منظور بررسی اثر مصرف آب پنیر از طریق آب آشامیدنی بر عملکرد جوجه‌های گوشتی انگاج گردید. در گروه آب پنیر در شش مقطع (صفر، ۱۰، ۲۰، ۳۰، ۴۰ و ۵۰ درصد) آماده‌سازی به مدت ۴۷ روز به کار برده شد. شمار فلجه ۴۰۰ فلخه جوجه‌های گروه یک روز را به دو گروه ۳۰ جوجه گروه تغذیه شاند و هر یک از گروه‌های آماده‌سازی از سه هفت تا ۴۰ روزگر به چهار گروه از جوجه‌ها داده شد. آب پنیر روزانه از یک کارخانه تهیه پنیر تهیه و مصرف شد. در طول آزمایش جوجه‌ها به آب و غذا دسترسی آزاد داشتند. جوجه‌ها تنها سن هفت روزگری یا آخر آغازین تغذیه و سپس توزین و به تیمارهای آزمایشی اختصاص یافتند. تمام جوجه‌ها از سه چهار آغازین، رشد و پایان استفاده کردند. جوجه‌های هر تکرار که در تقریباً دسته‌جمعی زمینه‌های مختلف در سه روز مورد درصد ۱۰، ۲۰ و ۴۰ روزگری تزریق و مصرف غذایی گروه محاسبه شد و در پایان دوره از هر تکرار دو مرغ و دو درخواست انتخاب، ذبیح و درصد لاش، چربی محوطه پلئی، وزن لوزوالمعده، کبد و اپلیسوم اندازه‌گیری شد. محتوای ایلیوم در خروس و مرغ جمع‌آوری، مخلوط و برای بررسی شمارش باکتری‌های دهنده، اضافه و روزانه، ضرب نتیجه گذاری شد و رفتوی بسته تحت تأثیر معنی‌دار (0.01) موطول آب پنیر قرار گرفتند. معیارهای مفکور به مصرف بیش از چهار درصد آب پنیر کاهش و ضرب نتیجه افزایش ثانی داد. درصد لاش به مصرف ۰ و ۱۰۰ درصد آب پنیر به طور معنی‌دار (p < 0.01) جوان‌تر و دختر بکر حفره بکری که لوزوالمعده تحت تأثیر سطح آب پنیر ضرور تغذیه شد. درصد یک درصد در تمام مراحل اختلاف معنی‌دار (p < 0.01) با گروه شاهد، داشت و افزایش ثانین داد. معادلات رگرسیون وزن و اضافه وزن بدن، ضرب نتیجه بست و رفتوی بسته در تمام معنی‌داری از نوع دوج دو مدل (مشرطی) و معنی‌دار (P < 0.01) پیوست. و نشان داد مصرف بیش از ۴۰ درصد آب پنیر باعث کاهش عملکرد جوجه‌های گوشتی شد. اختلاف معنی‌داری در شمار لاکتوسازی و انتروبیکتی ای ایلیوم در اثر سطح مختلف آب پنیر دیده شد ولی کل باکتری‌های ایلیوم با اندازه سطح آب پنیر افزایش معنی‌دار (0.01) نشان داد.

واژه‌های کلیدی: آب‌پنیر، جوجه‌های گوشتی، باکتری‌های روده، رفتوی بسته

1. به ترتیب استاد و مربی (دندانپزشک) علوم دانشگاه کشاورزی، دانشگاه صنعتی اصفهان
مقدمه
آب‌نیترین‌هایی است که پس از تهیه نیتریزی به‌دست می‌آید. آب‌نیترین‌هایی که در محدوده pH تا 7.5 و ماده خشک آن حدود 50/5 درصد از آب‌نیترین‌ها تشکیل می‌دهد. از آب‌نیترین‌های محلول در آب، بسترهایی به وسیلهٔ سهم برگردانی در آب‌نیترین‌های دارای pH محدود می‌شود و فسفر شیر و آب‌نیترین‌ها باعث می‌شود. ارزش پولی‌ژئیک آب‌نیترین‌ها که در حالت جامد آنها فعال نمی‌گردد باعث شده است (1 و 2).

(Biochemical Oxygen Demand) BOD بالایی که دارد از pH محدودیت محلولی می‌شود و تا سال 1976 بیش از 75 درصد آب‌نیترین‌های دردوقهره بیش از دستگاه گازهای تغییر جمعیت میکرویایان شده و این جمعیت میکروبیرا به نفع باکتری‌های خاص می‌گردد. همچنین جمعیت‌بندی گروه‌های میکروبی، تغییرات جمعیتی آب‌نیترین‌ها است که تا پایان عمر آب‌نیترین‌ها در دستگاه گازهای استقرار می‌یابد (7 و 8). در این باره نژاد میکروبیرا به نفع لاکتواسپوره‌ها و استریتکوکه‌ها (7 و 9) اگر این نژاد به نفع باکتری‌های خاص می‌گردد باعث حفظ سلامت، افزایش قابلیت ضد جدایی و جلوگیری از عفونت‌های رو به رو می‌گردد (5 و 15) لاکتواسپوره‌ها نقش مهمی در هضم و جذب کربوهیدرات‌ها، چربی‌ها، پروتئین‌ها و نیز ساختمان‌های شکل‌گیری و باعث ساخت و ایجاد گازهای خاص می‌گردد (11). لاکتواسپوره‌ها به عنوان پروپیوتیک در کره و B گروه‌های حیاتی‌های تشکیل می‌دهند. همچنین جمعیت‌بندی گروه‌های میکروبیرا به نفع لاکتواسپوره‌ها و استریتکوکه‌ها (7 و 9) اگر این نژاد به نفع باکتری‌های خاص می‌گردد باعث حفظ سلامت، افزایش قابلیت ضد جدایی و جلوگیری از عفونت‌های رو به رو می‌گردد (5 و 15) لاکتواسپوره‌ها نقش مهمی در هضم و جذب کربوهیدرات‌ها، چربی‌ها، پروتئین‌ها و نیز ساختمان‌های شکل‌گیری و باعث ساخت و ایجاد گازهای خاص می‌گردد (11). لاکتواسپوره‌ها به عنوان پروپیوتیک در کره و B گروه‌های حیاتی‌های تشکیل می‌دهند. همچنین جمعیت‌بندی گروه‌های میکروبیرا به نفع لاکتواسپوره‌ها و استریتکوکه‌ها (7 و 9) اگر این نژاد به نفع باکتری‌های خاص می‌گردد باعث حفظ سلامت، افزایش قابلیت ضد جدایی و جلوگیری از عفونت‌های رو به رو می‌گردد (5 و 15).
تحقیقات نشان داده‌اند که مصرف پروپیتوکینا باعث کاهش فعالیت آنزیم آوره در درستگاه گوارش و افزایش فعالیت آنزیم‌های گوارشی جوجه‌های گوشته شده و بیدری، و سهولت بهبود وضعیت سلامتی و عملکرد جوجه‌ها گردید. (1) مصرف لاکتوباسیل‌ها در جوجه‌های گوشته نیز باعث افزایش رشد و افزایش فعالیت آنزیم آنزیم‌های آمیلاز و روده‌ای شد. (2) به همین صورت، کارگیری لاکتوباسیل‌ها در جوجه‌های گوشته تخلیه‌گذار باعث بالا رفتن مصرف و بهبود ضربه غذا و کاهش کلسولرونه تخم مصرف گردید. (3)

مواد و روش‌ها

آزمایش در قالب طرح کاملاً تصادفی با 6 تیمار و 4 تکرار اجرای شد. شمار تقریبی جوجه‌گویی یک روزه راس، به 44 کروه 30 جوجه جفت شدند. از 8 تیمار آزمایش به 4 تکرار 30 جوجه در فقس های جمعی زمینی به مدت 24 (تا 45 روزگیر) ردیف داده شد. تیمارها شامل سطوح مختلف آب پهنی (صفحه 20، 20، 200 درصد) از طریق آب آشامیدنی یا مصرف یک کارخانه تولید پنیر نهایی و به نسبت هایی از آب آشامیدنی مخلوط و مصرف می‌شد. طی دوره آزمایش جوجه‌ها با هم جیره و تغذیه شدند. تمام شرایط پرورش در طول دوره آزمایش مطابق با استانداردهای توصیه شده برای جوجه‌ها فراهم شد و جوجه‌ها در این مدت با آب و غذا دسترسی آزاد داشتند.

در طول آزمایش طبق مصرف، وزن بدن، اضافه وزن روزانه و ضربت تبدیل غذایی هر فقس در سطح 42، 45 و 54 روزگیر اندازه‌گیری شد. در سطح 42 و 45 روزگیری، از هر تکرار نمونه بستر جمعیت آوری و رطوبت آن اندوزه‌گیری شد. در پایان دوره آزمایش از هر تکرار در دو قطعه سه و دو قطعه خروس که وزن آنها حدود میانگین مرغ و خروس‌های مرغ تکرار بود ذخیره و در صندلی لیزر وزن سنجش، لوزی معده، کبد، ایلوتود و چربی خونی دقتی اندوزه‌گیری شد. محتویات ایلوتود و قطعه مرغ و دو قطعه خروس جمع‌آوری و برای شمارش باکتری‌ها در 20 درجه سانتیگراد تهیه شدند. تعداد کل باکتری‌ها، انتروباکتری‌ها و لاکتوباسیل‌ها در یک گرم نمونه تعیین گردید.

شمارش باکتری‌های نمونه‌های ایلوتود به شرح زیر انجام شد:

1. تأثیر سطح مختلف آب پهنی بر طبق آب آشامیدنی در عملکرد جوجه‌های گوشته.

2. تبعیض بهترین سطح مصرف آن برای جوجه‌های گوشته.
جدول 1. ترکیب چهارهای آزمایشی

<table>
<thead>
<tr>
<th>یابانی</th>
<th>رشد</th>
<th>آغاهی</th>
<th>اجزای مشکلکه %</th>
</tr>
</thead>
<tbody>
<tr>
<td>44/3</td>
<td>450</td>
<td>60/0</td>
<td>ذرت</td>
</tr>
<tr>
<td>25/8</td>
<td>20/0</td>
<td>0</td>
<td>کندم</td>
</tr>
<tr>
<td>22/0</td>
<td>270</td>
<td>30/0</td>
<td>کتابه بسیار</td>
</tr>
<tr>
<td>40/0</td>
<td>50/0</td>
<td>0</td>
<td>پودر ماهی</td>
</tr>
<tr>
<td>1/1</td>
<td>1/1</td>
<td>10/0</td>
<td>صرف</td>
</tr>
<tr>
<td>1/1</td>
<td>1/0</td>
<td>0</td>
<td>پروینه</td>
</tr>
<tr>
<td>0/1/5</td>
<td>0/145</td>
<td>10/0</td>
<td>نمک</td>
</tr>
<tr>
<td>0/180</td>
<td>0/87</td>
<td>10/0</td>
<td>میلیون</td>
</tr>
<tr>
<td>0/26</td>
<td>0/50</td>
<td>0</td>
<td>لیزین</td>
</tr>
<tr>
<td>0/3</td>
<td>0/3</td>
<td>0</td>
<td>مکمل معدنی (1)</td>
</tr>
<tr>
<td>0/3</td>
<td>0</td>
<td>0</td>
<td>مکمل ویتامین (1)</td>
</tr>
</tbody>
</table>

جمع

ترکیب محاسبه‌ی انتزاعی، فاصله و ضریب

<table>
<thead>
<tr>
<th>(کیلوگرام در کیلوگرم)</th>
<th>2885</th>
<th>2860</th>
<th>2875</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/10</td>
<td>20/4</td>
<td>27/0</td>
<td>40/0</td>
</tr>
<tr>
<td>1/10</td>
<td>1/0</td>
<td>1/0</td>
<td>1/0</td>
</tr>
<tr>
<td>0/45</td>
<td>0/45</td>
<td>0/45</td>
<td>0/45</td>
</tr>
<tr>
<td>0/40</td>
<td>0/40</td>
<td>0/40</td>
<td>0/40</td>
</tr>
<tr>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
</tr>
<tr>
<td>1/12</td>
<td>1/12</td>
<td>1/12</td>
<td>1/12</td>
</tr>
</tbody>
</table>

1. هر 3 کیلوگرم در تان محتوی کولن کلرید 400 گرم، نكته 30 گرم، اهم 10 گرم، روز 50 گرم. یک گرم، سه 1 گرم

2. هر 3 کیلوگرم در تان محتوی کولین 100 گرم، نکته 30 گرم، روز 50 گرم. یک گرم، سه 1 گرم

برای چهارهای پاکتری‌های خانواده انترپوبکتریا (باکتری‌های MacConkey Agar+1%Glucose رودهای) از محیط کشت over lay و Pour plate استفاده گردد. یا با روش Plate Count Agar (P.C.A) (باکتری‌های از محیط کشت پاکتری‌ها استفاده شد. به دنبال بودن ترتیب که بک میلیتر از رقی ماهی 10:10 به با با Pour plate محیط کشت فاصله ذکر کشت و در انکوباسورهای 37-39°C بود. یا 10 بی‌روش از نمونه‌ها استفاده شد و با روش Plate Count Agar (P.C.A)
سن 21 روزگر بود (جدول 3) و با افزایش سطح آب پنیر در آب آشفته‌ی مورد نظر بررسی و شمارش گردید. برای شمارش باکتری‌های لانگستری اسد حذف لاکتواسیلوس از محیط کشت استفاده می‌گردد.

Tomato juice و MRS-Agar استفاده می‌شود.

شکل عل‌های بر برسی میکرو‌سکوپی، برخی از ریزگرهای بوشی‌پیمان کلیه نیز بررسی گردید. دما نگهداری، ۱۱۰°C طرف حاوی CO2 قرار داده شدند (۱۸).

ارقام جمع‌آوری شده با بهره‌گیری از نرم‌افزار SAS مورد تجزیه و تحلیل قرار گرفتند و ضرایب همبستگی بین سطوح مختلف آب پنیر در آب آشفته‌ی مورد نظر گزارش می‌گردد.

نتایج

یافته‌های سطوح مختلف آب پنیر بر روند و ۴۰ روزگر تحت تأثیر معنی‌دار (P<0/001) سطوح مختلف گرفته شدند (جدول ۴).

مصرف و ضریب تبدیل غذا در سین ۲۱ روزگر در جدول ۱ و نشان داده شد. تأثیر سطوح مختلف آب پنیر بر روزن و اضافه و روزن روزانه معنی‌دار بود (p<0/001).

ضرایب تبدیل غذا تحت تأثیر معنی‌دار سطح آب پنیر قرار گرفتند. افزایش سطح آب پنیر از طریق آب آشفته‌ی مورد نظر کاهش و بدان و اضافه و روزن روزانه گردید. بطوری که اختلاف بین ۸۰ و ۱۰۰ روز‌گر، روند افزایش سطح آب پنیر در آب نشان دادند.

ضرایب تبدیل بالای (R²=۰/۶۸) وزن بدن نشان‌دهنده تأثیر تبادل آب نسبت به آب آشفته‌ی از آزمایشی است.

روندهای روند کاهش وزن بدن و اضافه وزن روزانه در کل دوره ۷۵-۴۰ (روزانه) در افزایش سطح آب پنیر همانند سایر سنین بود (جدول ۴). بطوری که اختلاف وزن بدن و اضافه وزن روزانه گروه بهره‌برداری ۱۰۰ روز آب پنیر ورادانت کرده بوده، با گروه شاهد و سایر گروه‌ها معنی‌دار (P<0/001) بود.

ضرایب ضریب تبدیل غذا تحت تأثیر معنی‌دار سطوح آب پنیر قرار گرفتند (جدول ۴).

شکل در دمای ۱۳-۳۵ به مدت ۲۴ ساعت نگهداری و سپس کلیه‌های مورد نظر بررسی و شمارش گردید.
طراحی طرح‌های هدایت مبتنی بر روش‌های ساده و پیچیده

1. طراحی طرح‌های کلاسیک
 - ایده‌های پیچیده
 - ایده‌های ساده

2. مدل‌های انتقال نیرو
 - ایده‌های پیچیده
 - ایده‌های ساده

3. ایده‌های جدید
 - ایده‌های پیچیده
 - ایده‌های ساده

طراحی طرح‌های هدایت مبتنی بر روش‌های ساده و پیچیده

1. طراحی طرح‌های کلاسیک
 - ایده‌های پیچیده
 - ایده‌های ساده

2. مدل‌های انتقال نیرو
 - ایده‌های پیچیده
 - ایده‌های ساده

3. ایده‌های جدید
 - ایده‌های پیچیده
 - ایده‌های ساده

طراحی طرح‌های هدایت مبتنی بر روش‌های ساده و پیچیده

1. طراحی طرح‌های کلاسیک
 - ایده‌های پیچیده
 - ایده‌های ساده

2. مدل‌های انتقال نیرو
 - ایده‌های پیچیده
 - ایده‌های ساده

3. ایده‌های جدید
 - ایده‌های پیچیده
 - ایده‌های ساده

طراحی طرح‌های هدایت مبتنی بر روش‌های ساده و پیچیده

1. طراحی طرح‌های کلاسیک
 - ایده‌های پیچیده
 - ایده‌های ساده

2. مدل‌های انتقال نیرو
 - ایده‌های پیچیده
 - ایده‌های ساده

3. ایده‌های جدید
 - ایده‌های پیچیده
 - ایده‌های ساده
جدول 4. وزن بدن، اضافه وزن، مصرف و ضرب تبدیل غذا و رطوبت بستر در سین ۵۴ روزگری

<table>
<thead>
<tr>
<th>رطوبت بستر (درصد)</th>
<th>ضرب تبدیل غذا (گرم در روز)</th>
<th>اضافه وزن (گرم در روز)</th>
<th>وزن بدن (گرم)</th>
<th>میزان آب پیشر (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۸/۲</td>
<td>۱۸/۴</td>
<td>۲/۶۸</td>
<td>۶۱/۰۶</td>
<td>۰</td>
</tr>
<tr>
<td>۲۴/۲</td>
<td>۱۷/۰</td>
<td>۶/۸۹</td>
<td>۲/۱۷۰</td>
<td>۴۰</td>
</tr>
<tr>
<td>۱۵/۳</td>
<td>۶/۸۸</td>
<td>۸/۸۸</td>
<td>۲/۱۷۰</td>
<td>۴۰</td>
</tr>
<tr>
<td>۲/۷</td>
<td>۱/۸۸</td>
<td>۵/۸۸</td>
<td>۲/۱۷۰</td>
<td>۴۰</td>
</tr>
<tr>
<td>۳/۸</td>
<td>۵/۸۸</td>
<td>۵/۸۸</td>
<td>۲/۱۷۰</td>
<td>۴۰</td>
</tr>
<tr>
<td>±۵/۹/۷</td>
<td>±۵/۸/۷</td>
<td>±۵/۸/۷</td>
<td>±۵/۸/۷</td>
<td>±۵/۸/۷</td>
</tr>
<tr>
<td>۰/۳۲</td>
<td>۰/۳۲</td>
<td>۰/۳۲</td>
<td>۰/۳۲</td>
<td>۰</td>
</tr>
</tbody>
</table>

جدول 5. وزن بدن، اضافه وزن، مصرف غذا و ضرب تبدیل غذا در سین ۵۴-۷۰ روزگری

<table>
<thead>
<tr>
<th>ضرب تبدیل غذا (گرم در روز)</th>
<th>اضافه وزن (گرم در روز)</th>
<th>وزن بدن (گرم)</th>
<th>میزان آب پیشر (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲/۳۱</td>
<td>۱۱۸/۰</td>
<td>۶/۶۰</td>
<td>۰</td>
</tr>
<tr>
<td>۲/۳۲</td>
<td>۱۱۵/۴</td>
<td>۴/۹/۶۹</td>
<td>۰/۳۲</td>
</tr>
<tr>
<td>۲/۸۲</td>
<td>۱۱۵/۰</td>
<td>۴/۸/۹۹</td>
<td>۰/۳۲</td>
</tr>
<tr>
<td>۲/۸۲</td>
<td>۱۱۵/۴</td>
<td>۴/۹/۶۹</td>
<td>۰/۳۲</td>
</tr>
<tr>
<td>۲/۸۲</td>
<td>۱۱۵/۰</td>
<td>۴/۸/۹۹</td>
<td>۰/۳۲</td>
</tr>
<tr>
<td>±۵/۸/۷</td>
<td>±۵/۸/۷</td>
<td>±۵/۸/۷</td>
<td>±۵/۸/۷</td>
</tr>
<tr>
<td>±۵/۸/۷</td>
<td>±۵/۸/۷</td>
<td>±۵/۸/۷</td>
<td>±۵/۸/۷</td>
</tr>
<tr>
<td>±۵/۸/۷</td>
<td>±۵/۸/۷</td>
<td>±۵/۸/۷</td>
<td>±۵/۸/۷</td>
</tr>
</tbody>
</table>

بیانگر می‌باشد که در مورد غیرمامایی شسته اکثر افراد با افزایش سطح آب پیشر به خصوص سطح ۱/۲۰۰/افراشی، معنادار است (۰/۰۰۱).
جدول 7. درصد لاشه، پانکراس، کبد، اینتوم و چربی خونه بطنی در سن 54 روزگی میزان آب پنیر %

<table>
<thead>
<tr>
<th>شاخص</th>
<th>اینتوم</th>
<th>لاشه</th>
</tr>
</thead>
<tbody>
<tr>
<td>آب پنیر</td>
<td>73/2a</td>
<td>0</td>
</tr>
<tr>
<td>0/6b</td>
<td>77/2a</td>
<td>10</td>
</tr>
<tr>
<td>0/20ab</td>
<td>77/2ab</td>
<td>20</td>
</tr>
<tr>
<td>0/21ab</td>
<td>77/3a</td>
<td>40</td>
</tr>
<tr>
<td>0/2ab</td>
<td>77/1b</td>
<td>80</td>
</tr>
<tr>
<td>0/21ab</td>
<td>77/1c</td>
<td>100</td>
</tr>
<tr>
<td>انحراف معیار</td>
<td>±/70</td>
<td>±/3/7</td>
</tr>
<tr>
<td>R²</td>
<td>0/123</td>
<td>0/16</td>
</tr>
</tbody>
</table>

میانگین های هر ستون که در ارای حروف غیرشتاب هستند اختلاف معنی‌دار است (p<0.01)

جدول 8. اثر سطح آب پنیر در اب با یکتیهای اینتوم (اعداد تغییرمی‌شوند)

<table>
<thead>
<tr>
<th>شاخص</th>
<th>کل یاکرتیلا</th>
<th>انتروبینیک</th>
<th>لاکتواسیل</th>
</tr>
</thead>
<tbody>
<tr>
<td>سطح آب پنیر</td>
<td>8/20abc</td>
<td>7/8765</td>
<td>7/8765a</td>
</tr>
<tr>
<td>7/994c</td>
<td>7/8765</td>
<td>7/1723ab</td>
<td>10</td>
</tr>
<tr>
<td>8/9467ab</td>
<td>7/8764</td>
<td>7/4761b</td>
<td>20</td>
</tr>
<tr>
<td>8/412abc</td>
<td>7/7689</td>
<td>7/838ab</td>
<td>40</td>
</tr>
<tr>
<td>8/318abc</td>
<td>7/3489</td>
<td>7/8260ab</td>
<td>80</td>
</tr>
<tr>
<td>8/995abc</td>
<td>7/8365</td>
<td>7/8365ab</td>
<td>100</td>
</tr>
</tbody>
</table>

میانگین هایی که در هر ستون حروف غیرشتاب دارند اختلاف معنی‌دار است (p<0.01)

ضریب تبدیل غذا در 45 روزگی و کل دوره، تحت تأثیر می‌گردد.

سطح آب پنیر، قرار گرفت، اگرچه مصرف بیشتر از 40 درصد آب پنیر، وزن بدن و اضافه وزن روزانه را کاهش داد ولی با توجه به عدم تأثیر می‌شود سطح بالای آب پنیر بر ضریب تبدیل غذا می‌توان تغییر گرفت که مصرف بیشتر آب پنیر از لحاظ اقتصادی بر عملکرد تأثیر منفی ندارد.

نتایج نشان می‌دهد که وجود آب پنیر به بهبود و بدون حضور پروپیوکسی‌ها توانسته است تأثیر مثبت بر جمعیت میکروگردها، عضلانه باشد و یافته‌ها این اثربخشی در توانهای بیا سایر گزارش‌ها (8) و (14) می‌گیرند.

مصرف غذا و ضریب تبدیل غذا جزء از افزایش صلح آب پنیر در آب، مصرف غذا و ضریب تبدیل غذا در روند افزایشی نشان دادند. ولی اختلاف در ضریب تبدیل در سن 45 روزگی می‌باشد.

درصد آب پنیر با کوه به شاهد معنی‌دار است.

دفع آن است، زیرا با افزایش مصرف آب بیشتر روتیت بستر در سنین 45 و 54 روزگی نیاز افزایشی نشان داد. این شناخت فضولی و افزایش دفع آب به دلیل تأثیر منفی که می‌باشد و جذب دارد می‌تواند رشد و عملکرد را کاهش دهد. وجود اصلاح معنی‌دار از جمله پناسب و نیز قند لاکتوز که توسط طیور قابلیت پیش‌بینی می‌رود نیست را می‌توان دلیل افزایش دفع آب دانست (11).

مصرف و ضریب تبدیل غذا تناول از 42 روزگی تحت تأثیر معنی‌دار سطح آب پنیر قرار گرفتند و با افزایش صلح آب پنیر در آب، مصرف غذا و ضریب تبدیل غذا روند افزایشی نشان دادند. ولی اختلاف در ضریب تبدیل در سن 45 روزگی می‌باشد.
حضور پروپتیکها نیز ضروری است.

وجود ۴۰ درصد آببینی در آب، تأثیر منفی بر درصد لاهه نداشت و درصد لاهه با استفاده از دیگر آببین کاهش نشان داد که این امر ناشی و ناب‌کاهش وزن در سطوح بالاتر آببین است.

وزن ایلانا در مصرف آببین افرایش نشان داد و اختلاف آن با گروه شاهد و در سطح ۴۰ و ۱۰۰ درصد آببین معنی‌دار بود. این افزایش وزن می‌تواند ناشی از تخمیر باشند که حضور لاکتوژن در ایلانا به دلیل حضور پرپتیکها حذف شود تنها در ۷% ایلانا.

چربی حفره بطنی با افزایش سطح آببین روند کاهشی نشان داد و دلیل آن می‌تواند ناشی از وزن کمتر جوجه‌ها در سطوح بالای آببین باشد. زیرا چربی حفره بطنی تابی یافت گردید که وزن به آن است و اصولاً در فضاهای سطحی مقدار درصد چربی بنده از جمله چربی حفره بطنی پشتی است. نتایج به‌دست آمده نشان داد که حد مطلوب آببین برای جوجه‌های بلوچی بین ۴۰ تا ۵۰ درصد آب آشامیدنی است و پشتی از آن منکرده را کاهش می‌دهد. R1 های بالا (غیر از مصرف و ضرب تبدیل خوراک در سال ۲۴ روزگی) نشان دادند که معیارهای اندام‌گیری شده در سنین مختلف بیش از هرچه زیاد و یافته تأثیر تیمارهای آزمایشی بوده و نتایج به‌دست آمده از درجه اطمینان بالایی برخورداری هستند.

منابع مورد استفاده

۱. حکمتیار، م. ۱۳۸۰، اصلاح تهیه نیکوکاران جوجه‌های داشگاهی، تهران.
۲. رجایی، م. ۱۳۸۰، نکات درآمد آببینی و نحوه استفاده از آن، نشریه فنی، شماره ۴۸، مؤسسه تحقیقات دامپزشکی، جمیر، تهران.
۳. میررضایی، قاسمی، ح. و صفادی، سریعت، پ. ۱۳۸۵، اثر سرم لاجمایی، استخراج و تهیه، تهیه، تهیه، تهیه، تهیه.