بررسی عوامل مؤثر بر رسوپ پودر آب پرتقال بر دیواره خشک کن پاششی

چکیده

شیوعت نگهداری آب‌میوه‌ها و بهره‌گیری از پودر آب‌میوه‌ها به‌طوری‌که به‌روز می‌شود. خشک کردن آب‌میوه‌ها به‌صورت پودر از این نظر نتایج برتریت‌ریز روش‌های شیرینی‌کننده می‌دهد. خواص آب‌پذیری ترکیبات آب‌میوه و اکسیداسیون ترموپلایستیکی آنها پس از آب‌کردن، کنترل زمان خشک کردن و پودر ان محقق خشک کن یک کمیک که شکل کردد است. در این پژوهش با یک خشک کن پاششی آزمایشگاهی، عوامل مؤثر بر رسوپ پودر آب پرتقال بر دیواره‌های خشک کن بررسی شد.

نتایج: نشان می‌دهد که بدون بره‌گیری از مواد افزودنی به کنترل، پرتقال، هیچ گونه پودری تولید نمی‌شود. بهره‌گیری از گلکوز می‌تواند ماده کمکی خشک شدن در کنترل‌های پرتقال، عملکرد را بالا ببرد و رسوپ پودر را به میزان قابل توجهی کاهش می‌دهد. شیوعت بهره‌گیری با آب‌پذیری گلکوز مصرف شده با دمای 100°C در 5 min/100 درجه سانتی‌گراد به دست می‌آید. نتایج نشان می‌دهد که پرتقالهای دمای 100°C و مقدار تغذیه 10 ml/min/100 درجه سانتی‌گراد را به دست می‌آورند. تغذیه به‌صورت مستقیم در کاربرد اثر مثبتی در رشد و رشد خشک کن و رسوپ دیواره دارد. با افزایش دمای هوا، در دمای پودر و مقدار تغذیه، عملکرد خشک کن کاهش و رسوپ دیواره افزایش می‌یابد. با وجود بهره‌گیری از انرژی آنتی‌سیسکس، بین 14 یا 15 تا 85 درصد در دمای دیواره‌ها رسوپ کرک. نتایج آزمایش‌ها نشان می‌دهد که عامل اصلی رسوپ، دمای بالای دیواره است. برای جلوگیری از رسوپ، با افزایش دمای دیواره از دمای نطفه چسب‌پاکی پرتقال کمتر می‌باشد. برای پودر پرتقال با رطوبت 20% در دمای نطفه چسب‌پاکی 44°C به‌دست آمده. برای کنترل دمای دیواره، خشک کنی با دیواره‌در جداره و سیستم خشک کنده دیواره پیشنهاد می‌شود.

واژه‌های کلیدی: خشک کن پاششی، رسوپ دیواره، پودر آب پرتقال، دمای نطفه چسب‌پاکی

1. دکتری صنایع غذایی، دانشگاه تربیت مدرس، تهران
2. دکتری دانشگاه تربیت مدرس تهران
به عنوان ماده کمکی خشک کن شدن به کار برده می‌شود با تغییر فیزیکی در محلول به خشک شدن محلول کمک می‌کند. این مواد باعث کاهش رسوب در دیوارها و انتقال بی‌پردازه‌ای از خشک‌کننده می‌شود. این نوع کمک شیمیایی توسط شیمی‌دانان ساخته می‌شود و در حفاظت خانگی و صنعتی نیز استفاده می‌شود.

روش‌های خشک کردن عمدی برای تولید پودر آب‌میوه‌ها به دو روش کاربردی وجود دارد. در این مورد، دو کاربرد اصلی پودر آب‌میوه به ترتیب چک‌پیک و تولید پودر غذایی است. در کاربرد اول، پودر آب‌میوه با استفاده از تکنیک‌های مختلف به شکل خشک کرده می‌شود. در کاربرد دوم، پودر آب‌میوه به دو طریق مختلف تولید می‌شود.

در غلبه این دو روش، تغییرات در محیط، شرایط جغرافیایی و عامل‌های محیطی نقش دارند. در این مقاله، تأکید بر روی روش‌های خشک کردن غذایی است.

برای خشک کردن زمینه‌های مختلف از تکنیک‌های مختلف استفاده می‌شود. در تکنیک‌های مختلف، مولکول‌های آب‌میوه به دو صورت توزیع می‌شوند. در تکنیک یکم، مولکول‌های آب‌میوه در داخل هوا برای خشک کردن مورد استفاده قرار می‌گیرند. در تکنیک دوم، مولکول‌های آب‌میوه به دو صورت توزیع می‌شوند. در تکنیک یکم، مولکول‌های آب‌میوه در داخل هوا برای خشک کردن مورد استفاده قرار می‌گیرند. در تکنیک دوم، مولکول‌های آب‌میوه به دو صورت توزیع می‌شوند.

به گزارش تحقیقات مختلف، در بعضی از مواقع، مولکول‌های آب‌میوه به دو صورت توزیع می‌شوند. در بعضی از مواقع، مولکول‌های آب‌میوه به دو صورت توزیع می‌شوند. در بعضی از مواقع، مولکول‌های آب‌میوه به دو صورت توزیع می‌شوند. در بعضی از مواقع، مولکول‌های آب‌میوه به دو صورت توزیع می‌شوند. در بعضی از مواقع، مولکول‌های آب‌میوه به دو صورت توزیع می‌شوند. در بعضی از مواقع، مولکول‌های آب‌میوه به دو صورت توزیع می‌شوند.

برای خشک کردن زمینه‌های مختلف از تکنیک‌های مختلف استفاده می‌شود. در تکنیک‌های مختلف، مولکول‌های آب‌میوه به دو صورت توزیع می‌شوند. در تکنیک یکم، مولکول‌های آب‌میوه در داخل هوا برای خشک کردن مورد استفاده قرار می‌گیرند. در تکنیک دوم، مولکول‌های آب‌میوه به دو صورت توزیع می‌شوند. در تکنیک یکم، مولکول‌های آب‌میوه در داخل هوا برای خشک کردن مورد استفاده قرار می‌گیرند. در تکنیک دوم، مولکول‌های آب‌میوه به دو صورت توزیع می‌شوند.

به گزارش تحقیقات مختلف، در بعضی از مواقع، مولکول‌های آب‌میوه به دو صورت توزیع می‌شوند. در بعضی از مواقع، مولکول‌های آب‌میوه به دو صورت توزیع می‌شوند. در بعضی از مواقع، مولکول‌های آب‌میوه به دو صورت توزیع می‌شوند. در بعضی از مواقع، مولکول‌های آب‌میوه به دو صورت توزیع می‌شوند. در بعضی از مواقع، مولکول‌های آب‌میوه به دو صورت توزیع می‌شوند. در بعضی از مواقع، مولکول‌های آب‌میوه به دو صورت توزیع می‌شوند.

برای خشک کردن زمینه‌های مختلف از تکنیک‌های مختلف استفاده می‌شود. در تکنیک‌های مختلف، مولکول‌های آب‌میوه به دو صورت توزیع می‌شوند. در تکنیک یکم، مولکول‌های آب‌میوه در داخل هوا برای خشک کردن مورد استفاده قرار می‌گیرند. در تکنیک دوم، مولکول‌های آب‌میوه به دو صورت توزیع می‌شوند. در تکنیک یکم، مولکول‌های آب‌میوه در داخل هوا برای خشک کردن مورد استفاده قرار می‌گیرند. در تکنیک دوم، مولکول‌های آب‌میوه به دو صورت توزیع می‌شوند.
جدول 1. ترکیبات کنسانتره پرپتال

<table>
<thead>
<tr>
<th>ترکیبات</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد ماده جامد</td>
<td>1 ± 0.3%</td>
</tr>
<tr>
<td>قند</td>
<td>55 - 65 g/100 ml</td>
</tr>
<tr>
<td>اسید متانیک</td>
<td>8 - 12 g/100 ml</td>
</tr>
<tr>
<td>ویتامین ت</td>
<td>30 - 60 ml</td>
</tr>
<tr>
<td>چربی</td>
<td>22 - 32 Kg/lit</td>
</tr>
<tr>
<td>pH</td>
<td>3 - 5</td>
</tr>
</tbody>
</table>

دمای هوا و رودی مناسب برای تولید پودر 100-110 C است و افزایش دمای هوا خروجی خشکشکان بهبود از 125 C باعث تخریب محصول می‌شود.

به همراه و همکارانش (۲) با بهره‌گیری از ترکیبات افزودنی، مانند DE، و تشکیل را بررسی کردند. در این پژوهش از ترکیبات مختلف افزودنی مانند DE، DE 50 و DE 70 بهره‌گیری گردیدند که به افزودنی مانند DE 50 بهترین نسبت افزودنی به آب می‌باشد. برای انگور سیاه، درلمتوس ۱۰/۶۰ و برای تمشک ۵۰ درصد می‌باشد.

مواد و روش‌ها

مواد مورد استفاده در این پژوهش شامل کنسانتره پرپتال و مواد افزودنی است. ترکیبات کنسانتره پرپتال مطالعه جدول 1 است.

مواد مانند: کنسانتره پرپتال مقدار و میزان ترکیبات مذکور، مقدار دمای سردگری و ظرفیت پودر را بررسی کردند و نتیجه گرفتند که تمام مواد کمکی نامبرده می‌توانند بهبود خوش شرایط پودر را می‌دهند. در مورد ترکیبات باید به کنترل نسبت مقدار کنسانتره پرپتال افزودنی مانند DE 50 و کنسانتره پرپتال رضایت‌بخش کدکند.

ผล جهش‌های

برای یک محصول آب پرپتال از یک خشکشک بپیچی باید به کنترل نسبت مقدار کنسانتره پرپتال (با مقدار Buehler) میزان تغذیه‌ی بیم بهبود است. در این خشکشک را با مقدار بیم تغذیه‌ی 2/5 به دو دسته دوباره با سرعت دورانی 3500 rpm انتقال داده می‌شود. هوا و رودی نیز خشکشکان با مشاهده

۱۸۷
به‌کمک گرمسکر برقی با محدوده دمایی 80–200 درجه سانتی‌گراد و با سرعت ۵۰ ترکه‌سازی کننده هوا با جریان خورشیدی وارده به محله خشکسالی که می‌تواند با استفاده از سیکلتی با فشار را بر وسیله‌ای که از مایعات ۱۰ cm مخلوط هوا و پودر نواحی را نشان دهند. خشکسالی می‌تواند در پایانه مقدار تغییرات در دمای ورودی، مقدار تغییرات در دمای ورودی با کنتراستهای ترمیمی و کلمه‌ای می‌شود.

(3) روش‌های آزمایش

خشکسالی که در بی‌هوگره یا شرایط محیطی تابث قرار داده شد، به‌کمک آزمایشی‌ها در دمای هوا محیط ۲۵–۵۰ درجه سانتی‌گراد و رطوبت ۲۵ تا ۳۰/۰ rpm می‌باشد. در تمام آزمایش‌ها پامپ‌های سرعت دو راهی با پشتیبانی با دو سرعت ورودی در ۵۰۰:۱ نسبت به هم داشته شده‌اند. آزمایش‌ها در سه مراحل و با ۳ تکرار آزمایش شد. این آزمایش‌ها با سه مرحله انجام گرفت.

در مرحله اول آزمایش‌ها برای خشکسالی آب پردازش بدن مواد افزودنی و با افزودنی‌های مناسب، مایلی و ماتریکسی مکان‌های آزمایش‌های جدول ۳ انجام گرفت.

در مرحله بعد با بهره‌گیری از نتایج آزمایش‌های مرحله اول، آزمایش‌های دیگری برای خشکسالی آب پردازش با انرژی گلکز مایع انجام گرفت. در این مرحله مقدار تغییری در ۴ سطح با تقسیم‌کردن به دو سطح که سطح کبدی بیشتری داشته، انتخاب شدند. آزمایش‌ها به سبک آزمایش کامل فاکتوریل با طرح پایه‌ای کاملاً تصادفی در ۳ سطح دمای هوا ورودی و ۴ سطح مقدار تغییری با ۳ تکرار آزمایش شد. در این آزمایش‌ها ویژگی‌های پودر از دسته‌ای که اثر پارامترهای کاری، خشکسالی بر بیماری و راهروی پودر درونی و تغییرات در دمای ورودی، جامد و تغییرات در دمای ورودی، بی‌پایانی و در نهایت کلمه‌ای.

به‌کمک گرمسکر برقی با محدوده دمایی ۸۰–۲۰۰ درجه سانتی‌گراد و با سرعت ۵۰ ترکه‌سازی کننده هوا با جریان خورشیدی وارده به محله خشکسالی که می‌تواند با استفاده از سیکلتی با فشار را بر وسیله‌ای که از مایعات ۱۰ cm مخلوط هوا و پودر نواحی را نشان دهند. خشکسالی می‌تواند در پایانه مقدار تغییرات در دمای ورودی، مقدار تغییرات در دمای ورودی با کنتراستهای ترمیمی و کلمه‌ای می‌شود.

(3) روش‌های آزمایش

خشکسالی که در بی‌هوگره یا شرایط محیطی تابث قرار داده شد، به‌کمک آزمایشی‌ها در دمای هوا محیط ۲۵–۵۰ درجه سانتی‌گراد و رطوبت ۲۵ تا ۳۰/۰ rpm می‌باشد. در تمام آزمایش‌ها پامپ‌های سرعت دو راهی با پشتیبانی با دو سطعت ورودی در ۵۰۰:۱ نسبت به هم داشته شده‌اند. آزمایش‌ها در سه مراحل و با ۳ تکرار آزمایش شد. این آزمایش‌ها با سه مرحله انجام گرفت.

در مرحله اول آزمایش‌ها برای خشکسالی آب پردازش بدن مواد افزودنی و با افزودنی‌های مناسب، مایلی و ماتریکسی مکان‌های آزمایش‌های جدول ۳ انجام گرفت.

در مرحله بعد با بهره‌گیری از نتایج آزمایش‌های مرحله اول، آزمایش‌های دیگری برای خشکسالی آب پردازش با انرژی گلکز مایع انجام گرفت. در این مرحله مقدار تغییری در ۴ سطح با تقسیم‌کردن به دو سطح که سطح کبدی بیشتری داشته، انتخاب شدند. آزمایش‌ها به سبک آزمایش کامل فاکتوریل با طرح پایه‌ای کاملاً تصادفی در ۳ سطح دمای هوا ورودی و ۴ سطح مقدار تغییری با ۳ تکرار آزمایش شد. در این آزمایش‌ها ویژگی‌های پودر از دسته‌ای که اثر پارامترهای کاری، خشکسالی بر بیماری و راهروی پودر درونی و تغییرات در دمای ورودی، جامد و تغییرات در دمای ورودی، بی‌پایانی و در نهایت کلمه‌ای.
جدول 3. ماتریس آزمایش‌های برای خشک کردن آب پرفکت با افزودن میل سلولز و مالوتکسترتین

<table>
<thead>
<tr>
<th>سطح</th>
<th>پارامتر</th>
<th>مقدار تغذیه (ml/min)</th>
<th>دمای هوای ورودی (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>130</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>160</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>160</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>170</td>
</tr>
</tbody>
</table>

سپری (Sticky Point Temperature) به هدست آوردن دمای چربی که ذرات پودر شروع به چسبیدن می‌کنند، دستگاه استفاده گیری دمای نقطه چسبندگی مطلق شکل 1 مافته شد. برای این داده‌گیری مقیاس‌بندی پودر روی صفحه ریخته و گرم‌گیری دستگاه روش می‌شود. دمای دستگاه در لحظه‌ای که با مشاهده چشمی، پودر شروع به چسبیدن می‌کند دمای نقطه چسبندگی پودر است (14).

نتایج و بحث

آزمایش‌های تولید پودر پرفکت در چند مرحله و با افزودن مختلف صورت گرفت. نتیجه‌سنجی این آزمایش‌ها از کشتار پرفکت، بدون هیچ گونه مواد افزودنی مطلق شرایطی کاری نشان داده شده در جدول 3 در 3 انجام شد. در تمامی آزمایش‌ها هیچ پودری تولید نشد و تمامی مایع تغذیه به دیواره‌های مخزن خشک کن و سیستم تغذیه و رسمی سیستم بر دیواره‌ها ایجاد شد. بنابر این گونه‌ها لایه سخت و شیء‌ها روی دیواره‌ها گردد و به هر دیواره‌ها شکل گرفت که جدا کردن آن به سختی امکان‌پذیر بود. تغذیه پارامترهای کاری خشک کن مانند دمای پودر ورودی و تغذیه نیز تغییر بر روی دیواره و تولید پودر ایجاد نکرد.

یکی دیگر از مواد افزودنی که آزمایش شد، مالوتکسترتین پودر. آزمایش‌ها مطلق شرایط متردق در جدول 3 انجام گرفت. نتایج به هم‌سازی آنها از اندوزگیری برخی‌گاه‌های پودر آب پرفکت مالوتکسترتین بود. در جدول 4 نشان داده شده است. به‌هم‌گیری از انژیزیون مالوتکسترتین عامل کردن را به‌یادآوری می‌کند. در فاصله داده 35% افزایش داد و 72% بیشتر داده‌ها رضوی گردید. با جمع آوری ریس دیواره‌ها و اندوزگیری برخی‌گاه‌های پودر، چگالی حجمی 6/0-8/0 گی و فاصله اندوزه‌های این داده 10 30 یکی می‌باشد و می‌تواند به داشت داده آب در دیدگاه داشته‌اند که هگام خشک شدن باید دست دادن آب داده باعث چسبندگی در مواد غذایی با ساختار ناشناخته و همین‌طور که در این شکل نشان گرفته می‌باشد. همان‌طور که در این شکل نشان گرفته شد، یک چگالی حجمی و اندوزه‌های دراز را نشان می‌دهد.
جدول 4: نتایج برخی از اندازه‌گیری ویژگی‌های پودر آب پرپتال با افزودنی‌های ماتلونوسکرتین

<table>
<thead>
<tr>
<th>پارامترهای کاری ششک کن</th>
<th>دمای هوا (C)</th>
<th>مقدار تغییر (ml/min)</th>
<th>رطوبت (% جامد)</th>
<th>غیر جامد (% عملکرد)</th>
<th>اندازه ذرات (μm)</th>
<th>وزن گیاهی پودر (% عملکرد)</th>
<th>چگالی حجمی (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>27</td>
<td>0.5</td>
<td>0.12</td>
<td>21/10</td>
<td>2/4</td>
<td>0.13</td>
<td>0.45</td>
</tr>
<tr>
<td>33</td>
<td>27</td>
<td>0.5</td>
<td>0.13</td>
<td>22/15</td>
<td>2/2</td>
<td>0.14</td>
<td>0.5</td>
</tr>
<tr>
<td>34</td>
<td>27</td>
<td>0.5</td>
<td>0.14</td>
<td>22/25</td>
<td>2/0</td>
<td>0.15</td>
<td>0.5</td>
</tr>
<tr>
<td>35</td>
<td>27</td>
<td>0.5</td>
<td>0.12</td>
<td>21/15</td>
<td>2/0</td>
<td>0.13</td>
<td>0.6</td>
</tr>
<tr>
<td>36</td>
<td>27</td>
<td>0.5</td>
<td>0.14</td>
<td>22/25</td>
<td>2/0</td>
<td>0.15</td>
<td>0.5</td>
</tr>
<tr>
<td>37</td>
<td>27</td>
<td>0.5</td>
<td>0.12</td>
<td>21/15</td>
<td>2/0</td>
<td>0.13</td>
<td>0.5</td>
</tr>
<tr>
<td>38</td>
<td>27</td>
<td>0.5</td>
<td>0.14</td>
<td>22/25</td>
<td>2/0</td>
<td>0.15</td>
<td>0.5</td>
</tr>
<tr>
<td>39</td>
<td>27</td>
<td>0.5</td>
<td>0.12</td>
<td>21/15</td>
<td>2/0</td>
<td>0.13</td>
<td>0.5</td>
</tr>
<tr>
<td>40</td>
<td>27</td>
<td>0.5</td>
<td>0.14</td>
<td>22/25</td>
<td>2/0</td>
<td>0.15</td>
<td>0.5</td>
</tr>
<tr>
<td>41</td>
<td>27</td>
<td>0.5</td>
<td>0.12</td>
<td>21/15</td>
<td>2/0</td>
<td>0.13</td>
<td>0.5</td>
</tr>
<tr>
<td>42</td>
<td>27</td>
<td>0.5</td>
<td>0.14</td>
<td>22/25</td>
<td>2/0</td>
<td>0.15</td>
<td>0.5</td>
</tr>
<tr>
<td>43</td>
<td>27</td>
<td>0.5</td>
<td>0.12</td>
<td>21/15</td>
<td>2/0</td>
<td>0.13</td>
<td>0.5</td>
</tr>
<tr>
<td>44</td>
<td>27</td>
<td>0.5</td>
<td>0.14</td>
<td>22/25</td>
<td>2/0</td>
<td>0.15</td>
<td>0.5</td>
</tr>
<tr>
<td>45</td>
<td>27</td>
<td>0.5</td>
<td>0.12</td>
<td>21/15</td>
<td>2/0</td>
<td>0.13</td>
<td>0.5</td>
</tr>
<tr>
<td>46</td>
<td>27</td>
<td>0.5</td>
<td>0.14</td>
<td>22/25</td>
<td>2/0</td>
<td>0.15</td>
<td>0.5</td>
</tr>
</tbody>
</table>

دانه شده است با افزایش دمای هوا ورودی، چگالی حجمی کاهش و اندازه ذرات افزایش می‌یابد. افزایش دمای هوا ورودی باعث نخوردن عناصر از داخل ذره به بیرون می‌شود. در نتیجه حجم و اندازه ذرات افزایش یافته و چگالی حجمی پودر کاهش می‌یابد. وجود این بیانی بخش روی ذرات، مانند تغییر در داخل ذره و حفره شدید آن می‌شود و درصد جامد غیر همراه پودر و افزایش می‌دهد (6). بهره‌گیری از افزودنی‌های ماتلونوسکرتین، عملکرد پودر تولیدی را تامین و بهتر و در تولید پودر آب پرپتال اصلاح ایجاد کرد و بهره‌گیری از افزودنی‌های ماتلونوسکرتین، عملکرد پودر تولیدی را تامین و بهتر و در تولید پودر آب پرپتال اصلاح ایجاد کرد. در آزمایش دیگری می‌تواند کلیک مایع بر خشک شدن آب پرپتال بررسی شود. آزمایش‌ها مطابق شرایط کاری مندرج در جدول 5 انگیم گرفته و با توجه به اینکه میره‌هایی مهاجم برای خشک کردن کنسانتره پرتقال با افزودنی ماتلونوسکرتین، دمای ورودی، ذرات تولید شده ذوب شده و روی دیواره‌ها

190
بررسی عوامل مؤثر بر رسوب پودر آب پرتابل بر دیواره خشککن پاششی

![شکل 1. دستگاه اندازه‌گیری دما نقطه چسبندگی ذرات پودر آب پرتابل](image1)

![شکل 2. اثر دمای هوا و رطوبت بر چگالی حجمی و اندازه ذرات پودر آب پرتابل](image2)

![شکل 3. اثر دمای هوا و رطوبت بر عملکرد و جامدشل نشدنی پودر آب پرتابل](image3)

تجزیه و تحلیل آماری برای شناسایی عوامل مؤثر بر عملکرد خشککن و رسوب دیواره، اثر پارامترهای کاری خشککن مانند دمای هوای ورودی و مقدار تغذیه بر رسوب پودر و عملکرد خشککن بررسی گردید و نتایج آزمون انگیز و تحلیل آماری شد. نتایج تجزیه واریانس عملکرد خشککن و رسوب دیواره در چندان داده‌ای است، که با افزایش دمای هوا ورودی و چگالی حجمی پودر به تاخیر و از دست داده می‌شود. نتایج مبنی بر تاثیر دمای هوا ورودی، و چگالی حجمی پودر کاهش و اندوزه ذرات و جامدشل عرضه پودر افزایش می‌یابد. همچنین تأثیر دمای هوا ورودی و چگالی حجمی پودر بر عملکرد خشککن و رسوب دیواره در سطح 1% معنادار نبود.

هوای ورودی 120، 130 و 150 درجه سانتی‌گراد بود، برای خشککن دنیا نسبت به پلان‌های اندازه‌گیری گلولق مايع از همین سطح دمایی بهره‌گیری شد.

نتایج نشان می‌دهد که بهره‌گیری از گلولق سایر عامل‌ها عملکرد خشککن را افزایش، بهبود و در نتیجه کاهش می‌دهد. نتایج به دست آمده از اندازه‌گیری و یزجی‌های پودر (جدول 5) نشان می‌دهد که با افزایش دمای هوا ورودی، چگالی حجمی پودر کاهش و اندوزه ذرات و جامدشل عرضه پودر افزایش می‌یابد. همچنین تأثیر دمای هوا ورودی و چگالی حجمی پودر بر عملکرد خشککن و رسوب دیواره در سطح 1% معنادار نبود.

علت آن ایجاد یا سخت روز ذرات است (4).
جدول 5. نتایج تجزیه واریانس عامل ورودی و رضایت مشتریان مصرف‌کننده

<table>
<thead>
<tr>
<th>عامل ورودی</th>
<th>رضایت مشتریان</th>
<th>درجه آزادی</th>
<th>معنی‌دار است</th>
<th>با یکدیگر مقایسه</th>
</tr>
</thead>
</table>
| مصرف‌کننده | مقدار نگهداری | 28/632*** | 2 | A
| | مقدار نگهداری | 28/632*** | 2 | B
| | طبقه بندی | 3 | | A
| | جنس | 5 | | B
| | جنسیت | 6 | | A
| | خانواده | 4 | | B
| | جمع | 35 | | |

**: مقدار درج در سطح 1%
بررسی همایش مؤثر بر رسوپ پودر آب پرتقال بر دیواره خشککن پاشش

در ترتیب میزان پودر تولیدی و عملکرد خشککن کاهش می‌یابد. نتایج نشان می‌دهد که بهره‌گیری از گلورک مایع بهونه آزادی برای خشک کردن آب پرتقال می‌تواند باعث افزایش ام‌دی و عملکرد خشککن در مقایسه با آزادی دیگر بهتر می‌کنند. به‌طور کلی، پودر در ایجاد رسوپ و خشکپذیری پودر احترام دارد که بررسی شده‌اند. نتایج نشان می‌دهد که پودر بر روی دیواره ورودی بر رسوپ شده تأثیر دارد. باینابینی عمل رسوپ غیرکارکننده با یک دیاگ دیواره‌هاست.

برای بررسی پیکسوا هدای دیواره‌ها، با میکروسکوپ الکترونی نمونه‌برداری و توزیع اندازه‌زده، به‌صورت شکل 5 اندازه‌گیری شد. به‌طور کلی در پودر نشان داده شده است. به‌طور کلی در حضور و درصد اندازه‌های نمادینی کم است. از این رو می‌توان گفت که پودر به‌هرنوب درکی به روش بودن و از پکینگی زیادی برخوردار است، همچنین با توجه به اینکه توزیع اندازه در محدوده باریکی قرار دارد، پاشنش به‌صورت یکنواخت انجام شده است.

در این‌صورت نشان دهیل چسبندان و رسوپ ذرات به دیواره‌ها دنیای بالایی دیواره‌های بالا برای آزمایش آن ترمکول‌های بر نقطه مختلف دیواره نصب و آزمایش‌های دیگری انجام شده که نتایج آن در دیدگاه نشان داده شده است.

نتایج آزمایش‌ها نشان می‌دهد هنوز مقدار قابل توجهی رسوپ بر دیواره‌ها و در تمامی نقاط ترمکولی نصب شده بود، وجود داشت، بیانابینی دوای بالایی دیواره برای دیواره‌های مهم در ایجاد رسوپ پودر به دیواره‌ها است.

پژوهش‌ها نشان می‌دهد که عامل مهم برای تعیین جنسیت پودر، دمای نقطه خشکپذیری آن است. در چنین دمای ذرات پودر به‌هم چسبیده و یک‌سازه می‌گردد. جریان تابی برای آب پرتقال، عملکرد خشککن را بالا برده و رسوپ را کاهش می‌دهد و به‌همراهی که در آزمایش‌های مختلف اندازه‌گیری شد، نتایج این آزمایش به‌صورت نموند
جدول 7. دمای دیواره در نقاط نصب ترمومکیل و رطوبت پودر در شرایط مختلف کاری خشک کن

<table>
<thead>
<tr>
<th>رطوبت پودر (%)</th>
<th>دمای نقطه نصب ترمومکیل روي دیواره (°C)</th>
<th>دمای هواي ورودي (°C)</th>
<th>مقدار تغذیه (ml/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/10</td>
<td>88</td>
<td>30</td>
<td>92</td>
</tr>
<tr>
<td>3/05</td>
<td>80</td>
<td>30</td>
<td>92</td>
</tr>
<tr>
<td>3/02</td>
<td>74</td>
<td>30</td>
<td>92</td>
</tr>
<tr>
<td>3/05</td>
<td>82</td>
<td>30</td>
<td>92</td>
</tr>
<tr>
<td>3/02</td>
<td>73</td>
<td>30</td>
<td>92</td>
</tr>
<tr>
<td>3/01</td>
<td>70</td>
<td>30</td>
<td>92</td>
</tr>
<tr>
<td>3/14</td>
<td>120</td>
<td>95</td>
<td>140</td>
</tr>
<tr>
<td>2</td>
<td>120</td>
<td>95</td>
<td>140</td>
</tr>
<tr>
<td>3/10</td>
<td>115</td>
<td>95</td>
<td>140</td>
</tr>
<tr>
<td>3/12</td>
<td>118</td>
<td>95</td>
<td>140</td>
</tr>
</tbody>
</table>

شکل 4. اثر متقابل دمای هواي ورودي و مقدار تغذیه بر عملکرد و روابط

جدول 8. شرایط کاری خشک کن با رابطه‌کن شده

<table>
<thead>
<tr>
<th>دمای نقطه نصب حسکر دما روی دیواره(°C)</th>
<th>دمای هواي ورودي (°C)</th>
<th>مقدار تغذیه (ml/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>38</td>
<td>15</td>
</tr>
<tr>
<td>84</td>
<td>38</td>
<td>20</td>
</tr>
<tr>
<td>111</td>
<td>31</td>
<td>30</td>
</tr>
<tr>
<td>88</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>80</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>109</td>
<td>30</td>
<td>15</td>
</tr>
</tbody>
</table>

وضعیت روابط دیواره

بدون روابط

روابط

194
نتیجه‌گیری

نتایج به‌دست‌آمده از این پژوهش نشان می‌دهد که خشک‌کردن کنسانتره آب‌پراکنال بدون بهره‌گیری از مواد افزودنی، عملیً
خشک‌کن و کاهش رسوب دیواره‌ها می‌شود. نتایج به‌دست آمده از اندازه‌گیری وزن‌های پودر نشان می‌دهد که با افزایش دمای هوا و رودی، ظرفیت پودر کاهش و اندازه ژرات و جامد غیر محلول پودر افزایش می‌یابد.

نتایج تجزیه و تحلیل آماری نشان می‌دهد که آثار مستقل پارامترهای دمای هوا و رودی و مقدار تغذیه و آنار متقابل آنها بر عملکرد خشک‌کن و رسوب دیواره در سطح 1% معنی‌دار است و با افزایش مقدار تغذیه و دمای هوا و رودی، عملکرد خشک‌کن کاهش و رسوب دیواره افزایش می‌یابد. شرایط

مراجع مورد استفاده