مقایسه ترک‌خوردنگی دانه و زمان خشک‌شدن شلوک در شرایط
بسته‌های ثابت و سیال آزمایشگاهی

رضا امیری-چایجان، محمدهادی خوش‌نویس

چکیده
سیستم‌های سنی و قدیمی خشک‌کردن شلوک در ایران شایع‌ترین آن‌ها بوده‌است و در تمام تولید برنج باعث می‌شود. در این پژوهش برای کاهش میزان ترک‌خوردنگی و افزایش سرعت خشک‌شدن در دنیای بالاتر از دنیای متناول، از روش‌های سیال برای خشک‌کردن شلوک بهره‌گیری شده است. برای خشک‌کردن نمونه‌ها از یک دستگاه خشک‌کن آزمایشگاهی بهره‌گیری شد. آزمایش‌های خشک‌کردن، شامل بررسی زمان خشک‌کردن و درصد ترک خوردنگی دانه‌های شلوک در شرایط بسته ثابت، حداکثر سیال‌سازی و سیال کامل در دمای‌های ۴۰، ۶۰ و ۸۰ درجه سانتی‌گراد انجام شد.

نتایج نشان داد که در شرایط حداکثر سیال‌سازی میزان ترک‌خوردنگی دانه نسبت به شرایط بسته ثابت، در دمای‌های ۴۰، ۶۰ و ۸۰ درجه سانتی‌گراد به‌ترتیب حدود ۶۲، ۷۳ و ۸۹ درصد کاهش یافت. در حالی که برای کاهش در شرایط بستر سیال کامل نسبت به بستر ثابت در دمای‌های مذکور به‌ترتیب حدود ۷۹، ۷۸ و ۷۴ درصد کاهش یافت. کمترین زمان خشک‌کردن شلوک در حداکثر سیال‌سازی و بسته ثابت و زمان، در روش بستر ثابت طول‌کشید. نتایج به‌صورت آمیخته داده که روش حداکثر سیال‌سازی دارای کمترین مقدار ترک‌خوردنگی و زمان خشک‌کردن بستر ثابت بود.

واژه‌های کلیدی: شلوک، بستر ثابت، خشک‌کردن، زمان خشک‌کردن، ترک‌خوردنگی دانه، حداکثر سیال‌سازی و سیال کامل

مقدمه
برداشت مستقل ای جدید است، زیرا کارگزاران برنج کریب

موجود در شمال کشور به‌عنوان مقری بودن تکنولوژی

خشک‌کردن شلوک برنج، جایگزین حجم بالای نولید

برداشت مکانیزه شلوک، به‌ویژه در شمال ایران افزایش

چشمه‌گیری فاقد است. از این روش رطوبت بالای دانه‌ها در فصل

1. دانشجوی دکتری و استادیار مکانیک پانزدهمی های کشاورزی، دانشگاه کشاورزی، دانشگاه تبریز. مدرس

۲۳۵
سرعت خشک‌شدن است. اکر و اولوک (۱۴) طی آزمایش مشاهده گردید که در روش خشک‌کردن سیلیکا کامل در دماهای زیر ۲۰ درجه سانتی‌گراد و بالای ۲۵ درجه سانتی‌گراد برخی از خشک‌کردن نادرست آنها تیزه‌گردن که این افزایش سرعت در خشک‌شدن به روش پسترسیال ناشی از افزایش سطح تماس محصولات خشک‌کردن با هواست.

عکس و تیلور (۸) در یک فرآیند خشک‌کردن بستر ثابت و سیال می‌تواند که در حدود ۴ ثانیه ١۲ درجه و ١۶ درجه (پایان تر) را بررسی کرده‌اند. شرایط این آزمایش از طرق بهره‌وری از هوا قرار در یک خشک‌کردن بسترپسیال و ثابت فشار مختص ۴۴ سانتی‌متر بار دماهای ۸۰، ۱۰۰ و ۱۲۰ درجه سانتی‌گراد در زمان‌های ۵ تا ۱۲ دقیقه و مقدار جریان هوا ۱۵۰ لیتر بر ثانیه اعمال شد.

بستر سیال در مقایسه با بستر ثابت نفس بسیار به کاهش ضرایب نسبت به بستر ثابت و بهبود کیفی گندم از نظر جوانزی و وزن‌گیری بهتر داشت. در پژوهش دیگری (سادقی و ازایی (۷۳) خشک‌کردن سریع شلوک تحت شرایط بسترپسیال را در مناطق مرطوب بررسی کرده‌اند. شلوک با رطوبت بالا تنها نسبت به ۱۶ درجه (پایان تر) خشک شد.

بررسی‌های بیشتری انجام گرفته نشان می‌دهد که می‌توان شلوک را به اعمال محدوده دماهای ۴۰ تا ۹۰ درجه سانتی‌گراد از رطوبت ۴ درجه به ۱۸ درجه رساند. بدون اینکه راندمان بستر سیال کاهش یابد. همچنین نتایج به دست آمده نشان داد که به هنگام بهره‌وری کاهش دمای مالر، سرعت کمتر هوا و بستری همکاری دیده شود. هرکدام کمتری صرف می‌شود. پس استیست (۹) در سال ۱۹۹۵ تأثیر محتوای رطوبتی دانه‌های ذرت و سرعت هوا روزی شروع حداصل سیال سازی در طی خشک‌کردن را بررسی کرده‌اند. این آزمایش‌ها در مورد نیاز به مانور سیال‌سازی ذرت است. مشخص کرده که فقط شروع سیال سازی، بستگی به ضخامت هوا مختلف دقت مناسب با رطوبت آن داشت و با تغییر منشی‌های هوا موثر. نظارت بر دریافت (۱۰) معلوم که که با افزایش دمای ذرت خشک‌شدن، شیب تندریپه‌پدیا می‌کند که بیانگر افزایش در
مقایسه ترک خوردگی دانه و زمین خشک در شرایط استرسی

شروع سیال سازی (شناوری) در خشکسازی آزمایشگاهی، از یک مانوتور به شکلی باقر شده شانه، بدایته چنان‌که دیوار در حال طراحی و فرآیند تغییر می‌کند. به‌طور معمول، تاخیری می‌گیرد و مسئولیت در روند مشخص و به‌طور گسترده‌ای را توسط سیال سازی و ضیافت نشان می‌دهد.

مورد تخریب، آزمایشگاهی را انجام دهید.

سرعت هوا خروجی توسط یک سرعت سنج هوا برای مقدار 0.01 لیتر بر ثانیه Loutron A-M-2002 از نوع F5 در مانوتور تغییر نشان می‌دهد. سرعت هواي مورد نیاز از سطح مشخص تغییر دیگر ترک خوردن سطح در مقطع ترک خوردگی، ترک عرضی دانه باعث قابل تشخیص است.

مودهای طبیعی

مواد و روش‌ها

مشخصات خشکساز بسترسی آزمایشگاهی و تجهیزات

مورد پلی‌گری

به‌منظور انجام آزمایش‌ها، از یک دستگاه خشکساز آزمایشگاهی پلی‌گری شده که پیشرفت و همکاران (2) آن را طراحی و ساخته‌بودند (شکل 1). محفظه خشکساز، استوانهای با ارتفاع 22 cm و قطر 4 cm و جنس شفاف پلی‌گری-گلاس (Plexy Glass) بود و سیستم حرارتی آن ۷ هیلو درونی داشت. برای کنترل دمای این ورودی به‌منظور خشکسازی از یک ترمومترات دقیque ساخت کشور به دقت ±1°C بهره‌گیری شد. سیستم ترمومتر مورد استفاده از PT 100 و در زیر محفظه خشکساز نصب گردیده بود.

دبای محیطی، قبل از ورود به دمای دانه، قبل و بعد از محفظه خشکساز توسط یک دماسنج دقیقی از نوع Lutron Tm-915 سنسورهای دما در نقطه 5 دماسنج‌هایی داشت. به‌منظور اندازه‌گیری AC TP-02، دماسنج‌های دما از ناحیه استرس استاندارد انجمن مهندسین کشاورزی آمریکا بهره‌برداری و کاهش وزن به حد ۱۱ ساعت در دوره ای در دمای +120°C استفاده شد. (4). میزان حرارت اولیه شانه ۱۸/۷ درجه برای ۱۰۰ Pa بهره‌گیری شد. برای تشخیص مرحله شروع
شکل 1. خشککن بستر سیال آزمایشگاهی ساخته شده
(ائبی چاپیچان و همکاران، 1380)

شکل 2. منحنی مشخصه سیال سازی شلوک خزر در عمق 2/07 m با محتوای رطوبت 17/5/٪ پایه خشک

\(C = \alpha \beta \gamma \) m/s, \(B = 1 \) m/s, \(A = 1 \) m/s
خشک به‌دست آمد.
فرایند خشک‌کردن در شرایط هوایی با دمای ۹۰ درجه سانتی‌گراد و طول اولیه نسبی ۴۷/۱٪ انجام شد. برای انتخاب سطح مناسب سرعت هوا، از منحنی مشخص شیارلایت شنتوک مورد آزمایش در علم/۲/ام‌های شیرین دوباره در شرایط بسته ثابت، سرعت جریان هوا برای دو طبقه آن (نقاط A و B) در شکل ۲، به‌عنوان حدود این میزان سرعت در خشک‌کن های متناول شمال کشور، که به‌صورت بسته ثابت هستند، نیز گزارش شده است (۱ و ۴). با افزایش سرعت هوا، افزایش تهویه، البته و تا نطفه حداکثر سرعت هوا. B سرعتها (۱/۱ m/s) به‌طور مشخصی به‌سوی داماد یافته است. این مدت می‌تواند به‌عنوان سرعت فشرده بی‌مکانیکی در طی مرحله جابجایی در داخل بسته وارد شود. این مدت فشار پس از نطفه سیال کاملاً پایدار تا نطفه سیال کاملاً دامادی شده که پس از آن با افزایش سرعت هوا مرحله انقلاب مواد شروع می‌شود. با توجه به فرم‌های این سه، فاکتور سرعت هوا برای سطوح a، b از ۰/۱ m/s (به‌عنوان سرعت بسته ثابت) و از ۰/۱۵ m/s (به‌عنوان سرعت حداقل سیال‌سازی) و تا a و b از ۰/۳ m/s (به‌عنوان سرعت سیال‌سازی) در آزمایش‌ها محدود می‌گردد. در شرایط متناول بسته ثابت دمای حدود ۴۰ درجه سانتی‌گراد که خشک‌کردن شنتوک استفاده می‌شود. بنابراین برای ترک خوردن شنتوک در دماهای بالاتر از دمای متناول، علاوه بر سطح دمای b=۰/۶0 درجه سانتی‌گراد (a=۰/۳0 درجه سانتی‌گراد) برای انجام ترک مورد پرویزی، طرح آزمایشی مورد بهره‌گیری می‌باشد. فاکتور ۳۰/۳ باینایی طرح کاملاً تصادفی انتخاب شد. در این آزمایش‌ها دما و سرعت هوا (نوع بسته مواد) به‌عنوان متغیر مستقل و ترک دانه‌ها به‌عنوان متغیر وابسته در هم تکرار اندازه‌گیری و ارزیابی شد. سه‌چنین ضمانت مایبینگ‌های با بهره‌گیری از آزمون چند انتخاب فنکی انجام داده شد. برای انتخاب گیری میزان ترک اولیه نمونه‌های شنتوک مورد

آزمایش‌های ۱۰۰ نمونه دانه و زمان خشک‌کردن شنتوک در شرایط بسته ثابت و...
...
جدول 1. تجزیه واریانس ترک دانه‌های شلوک

<table>
<thead>
<tr>
<th>منابع تغییرات</th>
<th>درجه آزادی (DF)</th>
<th>سرعت هوا (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>دما</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>خطا</td>
</tr>
<tr>
<td>27</td>
<td>کل</td>
<td></td>
</tr>
</tbody>
</table>

در سطح 1% معنی‌دار است.

بررسی روش خشک کردن سریع شلوک در دمای بالاتر از 40°C و در شرایط بستر سیال نتایج مشابهی در جهت کاهش ضایعات برنج مشاهده نموده.

بررسی زمان خشک کردن شلوک

در این بخش، تغییرات محتوای رطوبتی در طی زمان برای ۹ حالت آزمایش در قالب سه نمونه ارائه می‌شود که نتایج آزمایش از جمله بسته کاهش در دمای ۸۰°C مورد نیاز برای خشک کردن شلوک با محتوای ۷/۶٪ رطوبتی خشک به وضعیت مشخص شد. نتایج همگانی مربوط به محتوای رطوبتی در شکل‌های ۵ تا ۷ نشان داده شده‌اند. همان‌طور که انتظار می‌رفت با افزایش دما در تمام

شکل ۲ میزان ترک نیازهای مختلف در سرعت هوا و دمای مختلف هوا

می‌شود از طرف دیگر در شرایط سیال کامل به علت ایجاد کانال‌های هوا در داخل بستر، دانه‌های شلوک در معرض دمای بالا قرار می‌گیرند و این امر نیز به تعداد ایجاد نشان‌های حراتی زیاد، به ایجاد ترک در آن‌ها کمک می‌کند. در مقام مقایسه می‌توان بیان کرد که شرایط سیال کامل نسبت به بستر ثابت در دماهای ۳۰ و ۴۰°C ۸۰٪ توانسته میزان ترک‌خوردگی را بهتری معادل ۱۰/۴ و ۱۵/۵۵ کاهش دهد. در شرایط حداکثر سیال‌سازی نیز نسبت به بستر ثابت و در دماهای مذکور، این کاهش معادل ۵۷/۸۰ و ۷۵/۷۵ بود.

این نتایج مشابه بافته‌های پرورش‌های درمانی و همکاران در سوامور گندم است. همچنین سادزلند و غلی (۱۳) در 241
شکل 5. متحکی محور اولی، شارایت بستر ثابت شلوک در دماهای مختلف (سرعت هوا 10/1 m/s)

شکل 4. مراحل سیالسازی شلوک (الف- حداکثر سیالسازی ب- سیال کامل)

شکل 3. شارایت سرعت و خشکشدن فاقدانه است. بپیمایی شکش شدن تا 30 در دماهای 45 یا 60 درجه سانتی‌گراد می‌باشد. در این شارایت، میزان پذیرش و تغییرات دما در دماهای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایт بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد بوده است. در شارایت بستر ثابت، به طوری که با دمای 30 یا 60 درجه سانتی‌گراد B
مقایسه ترک خورده‌گی دانه و زمان خشک شدن شلنگ در شرایطی ثابت و...

شکل ۱. منحنی محتوای رطوبتی-زمان برای شرایط حداقل سیال‌سازی شلنگ در دماهای مختلف

(سرعت هوا: ۱/۱ m/s)

شکل ۲. منحنی محتوای رطوبتی-زمان برای شرایط سیال کامل شلنگ در دماهای مختلف

(سرعت هوا: ۳/۵ m/s)

سرعت خشک‌شدن در شرایط سیال را نابود می‌کند (۱/۵۰ ـ ۱/۷۰) ضمن این که شرایط بهینه می‌گراید در وضعیت حداکثر سیال سازی معرفی می‌گردد.

بهترین شرایط برای خشک‌کردن سریع شلنگ معمولاً در آزمایش‌های خشک‌کردن سریع شلنگ، عبارت است از ترک دانه و زمان خشک‌شدن بود که در سرعت هوای مختلف و دمایی بالاتر از دمای متدال خشک‌کردن مورد بررسی قرار گرفت. با توجه به موارد فوق، شرایط حداکثر سیال‌سازی (سرعت هوا: ۱/۱ m/s) با دمای ۸۰ °C را به عنوان

طبق نتایج آزمایش‌های انجام شده، زمان خشک‌شدن شلنگ از محتوای رطوبتی ۱۷/۳% تا حدود ۱/۱% پایه خشک برای شرایط سیال کامل نسبت به شرایط بسته شده در دماهای ۶۰ و ۸۰ درجه سانتی‌گراد، بهترین حداکثر ۳۷/۵ درصد کاهش یافته و این کاهش زمان برای شرایط حداکثر سیال‌سازی نسبت به بسته شده در دماهای مذکور، بهترین حداکثر ۳۷/۵ درصد کاهش نشان می‌دهد. بنابراین در تمام دماهای مورد آزمایش شرایط حداکثر سیال‌سازی، کاهش زمان بیشتری نسبت به سایر شرایط حاصل شده است. با این‌حال، نتایج محققین قبلی مبنی بر افزایش

۴۴۳
بهترین حالت ممکن در این آزمایش‌ها، میزان تراکمی در شرایط حداکثری سیال‌سازی کمر از حالت سیال کامل بود.

2. مدت زمان مورد نیاز برای خشک کردن شلوک از محتوای رطوبتی 77٪ تا محتوای رطوبتی 11٪ برای خشک کردن سیال‌سازی کمر تراکم و زمان خشک کردن نیز در دمای 60 و در این شرایط حداکثر مقدار را دارا بود. لازم به ذکر است، در این پژوهش فقط یکی از پارامترهای کیفی (درصد ترک) حاصل از تنش‌های حرازی برونی شد ولی تنش‌های حرازی روی موارد دیگر مثل چون‌انژیس و پی‌مکروکل خواص فیزیکی داشته نیز. تأثیر دارد که باید در این موارد نیز بررسی شود. همچنین می‌توان روش‌های مورد استفاده از این پژوهش را از لحاظ صفر ارزی نیز مقایسه و بررسی دقیق کرد. ولی به‌طور کلی چنین نتیجه‌ی می‌شود که روش بستر سیال می‌تواند، یکی از روش‌های بهینه‌سازی سیستم‌های خشک کردن شلوک برجای باشد.

نتیجه‌گیری

1. به‌عمل‌آوری تنش‌های حرازی، میزان تراکمی در شرایط بستر ثابت با انرژی دما. انرژی‌های اولیه را نشان داد در مصرفی در شرایط حداکثری سیال‌سازی کمر، کمیت نفت از چندانی در ترک دانه‌ها در محصولات دانه‌ای عامل طبیعی، دیده نشد. از طرف دیگر، به‌عمل‌آوری توزیع یک‌نواخت حرازی و حصول حکمت مورد استفاده

منابع مورد استفاده

1. امیری چاپرگان، ر. 1397. طراحی و ساخت خشک‌کن بستر سیال آزمایشگاهی برای محصولات دانه‌ای. پایان‌نامه کارشناسی ارشد، دانشگاه کشاورزی، دانشگاه تربیت مدرس.

2. امیری چاپرگان، ر. م. خوش‌تغذیه، ت. تولکی هششی، ب. و. ح. چاپرگان. 1390. طراحی، ساخت و ارائه‌برای خشک‌کن بستر سیال آزمایشگاهی برای محصولات دانه‌ای. بورس پیش‌بینی و پیش‌بینی کاهش سالانه و پیش‌بینی کاهش سالانه میان‌الکلی مکانیکی، دانشگاه گیلان، رشت.

3. پیامدی، م. ح. تولکی هششی، ب. و. ح. چاپرگان. 1391. تغییرات فاصله نسبت به غلظت‌های در پوست‌کن غلظت‌های لاستیکی برای تبدیل سه رقم برینگ در استان گیلان. مجله علمی پژوهشی علوم کشاورزی 20: 49–60.

4. خوش‌تغذیه، م. 1390. بررسی و ارائه‌برای روش کنترل متناوب فراوان خشک‌کردن شلوک. پایان‌نامه دکتری دانشگاه کشاورزی، دانشگاه تربیت مدرس.
