تأثیر سرعت و جهت جریان در خروجی کاتال تقریب مستطیلی شکل با انتهای مسدود
بر ضریب تخلیه آبگیر قائم

سید محمد علی زمردیان و محمدرضا باقری سبزواری

چکیده
آبگیرهای قائم معمولاً نسبت به دیگر گزینه‌ها سازه‌های اقتصادی بوده و به جهت آن که در تزیع کارگزاران سطح آب کار گذاشته می‌شوند، از ورود رسوبات درشت دانه به داخل سیستم جلوگیری می‌نمایند. از مشکلات اصلی که آبگیرهای قائم با آن مواجه‌اند ایجاد گرداب‌های قوی در دهانه آنهاست. این گرداب‌ها موجب کاهش پذیرفته و سیستم آبگیری می‌شوند. نشانه‌های نهایی و طراحان از عوامل مؤثر بر گرداب، می‌تواند آنها را در طراحی حقیقی و صورتی سازه‌هایی کمک نماید. در این پژوهش به کمک مدل آنالیستیک تأثیر سرعت می‌سنجیم.

جهت جریان در خروجی کاتال تقریب بر ضریب تخلیه C و آبگیر قائم مورد بررسی قرار گرفته و با آنالیز ابعاد داخل داده شده که اعداد بدن بعد ریزند، فروند، ویر، سیرکولاسیون و استراق بر تغییر گرداب در دهانه آبگیر قائم مؤثر بوده. ارتباط بین عده فروند، عدد سیرکولاسیون و عدد استراق ارائه گردیده است که با استفاده از آنها می‌توان عدد استراق را به دست آورد و توسط آن ضریب تخلیه آبگیر قائم را محاسبه نمود.

واژه‌های کلیدی: تخلیه آبگیر قائم، کاتال تقریب، عدد استراق، ضریب تخلیه، گرداب

مقدمه
آبگیر قائم یکی از سازه‌های است که به مظاهر آبگیری مستقیم از رودخانه ای و یا معابر وارد استفاده قرار می‌گیرد. در مقایسه با سایر انواع آبگیرها، آبگیرهای قائم سازه‌ای اقتصادی بوده که در صورت طراحی صحیح و اصولی به‌طور بسیاری از آنها با مشکلات کمتری نیز همراه است. علاوه بر این به جهت آن که

1. استادیار آبیاری، دانشکده کشاورزی، دانشگاه شیراز
2. دانشجوی سابق کارشناسی ارشد مهندسی عمران، دانشکده مهندسی عمران، دانشگاه شهید بهشتی کرمان
ازج و کشش سطحی شکل می‌گردد (۳).

مانند چرخش در جزیره ورودی، ورود هوا ایجاد ارتعاش در آبگیر، خطوط لوله، و پمپیا، سول، کاروئاسیون، بهره‌برداری ناماسی از تأسیسات و در نتیجه آن خطر آسیب به اجزای پمپیا و تورینیکه کاهش عمر می‌کند تأسیسات که ممکن است افزایش هزینه را نیز به دنبال داشته باشد. از عوامل تشکیل گردب می‌توان شرایط نامناسب سازه آبگیر، هندسه آن، کافی نبودن استخر، جدایی جکیها، تغییر ناهنجاری در جهت جریان و سرعت‌های بالاتر از ۱۰ متر بر ثانیه در میدان جریان نزدیک‌تر شونده به آبگیر را آم بریده (۳).

با توجه به اندازه بودن تشکیل گردب، طراحان غالباً در پی یک کاوش این پدیده هستند. باربانی به دلیل شرایط بسیار مختلف در طریق یا متوسط‌های زیاد این پدیده، هنوز آن‌ها مدول‌بری طراحی آن‌ها نشده است که هنوز به دلیل کم‌سود و تقصی در مطالعات تجربی و تروریک بر این پدیده است و این ضعف، ناشی از ماهیت پیچیده‌تری دسترسی می‌باشد.

در بررسی جریان گردب در ناحیه قابل مشاهده است. در ناحیه او، جریان با سرعت بالا متجاوزه‌ای وارد محراب خروجی آبگیر می‌شود و در ناحیه دوم سیال ساق و به‌درون حركت می‌بیند. اختلاف در توزیع سرعت بین این دو ناحیه باعث ایجاد نشانه بریشی در مرز این دو ناحیه می‌شود که این نشان باعث اعمال نتیجه روی کریز از مرکز سطح در مسیاب و در دو ناحیه در دو ابعاد روان خواهد شد. در نتیجه هسته‌ها در محور جریان چرخشی تشکیل می‌گردد. در نتیجه این امر، فشار در اطراف محراب دوان کامیابی و سطح آب پایین می‌افتد و هسته‌ها در عمق آب پایین‌تر بر می‌رود. در آبگیرها کاوش سطح مقطع، جریان سرعت‌آرزی پایه‌ای و فشار در دهانه آبگیر کاهش می‌یابد. در این شرایط به دست آمده که فشار در دهانه اکثر ا妄‌ها و فشار اکثر سرعت‌آرزی است، هسته‌ها تکثیر نمی‌گردد. ولی به محض تقلید فشار به کمتر از فشار افزایش‌نهایاً حتی در دهانه آبگیر شکل می‌گیرد. بنابراین پدیده گردب در اثر اندرکشی هندسه‌سازه خروجی، سرعت جریان، نریزی تقریبی، حركت وضعی زین و خصوصیات سیال مانند
تاثیر سرعت و جهت جریان در خروجی کانال تقریب مستطیلی شکل با...

\[\frac{V}{V_d} \]

در رابطه ۳ مقدار برای عدد باریک و عدد فرود مقدار عدد معکوس عدد ریوندو. مقادیر عدد معکوس عدد فرود عدد معکوس عدد گیرانهای گرددی نسبتاً باعث سطح آزاد نقش مهمی در بررسی فرمان جریان و تعیین فاکتورهای مؤثر بر آن دارد. در این تحقیق با ساخت مدل آزمایشگاهی: ۱- تأثیر سرعت مآعادنی جریان در خروجی کانال تقریب بر قدرت چرخش و ۲- ضریب آبده آبگیر قائم مورد بررسی قرار گرفته است. بدین منظور این یک شبیه‌سازی پارامترهای باد نیز مورد بررسی و ارتباط بین آن پارامترهای پارامترهای و ضریب تخلیه آبگیر قائم از پارامترهای بدند. بعد عدد استقراض محاسبه گردد.

مواد و روش‌ها

آنالیز ابعاد

تشکیل گرداب در یک محور آبگیر یک مسئله کاملاً گروهی دارد به است که با یک خاصیت فرایند ساده کننده در معادلات حرکت مورد بررسی قرار گرفتند. پارامترهای مؤثر بر گرداب اچهای در دهانه آبگیر قائم در این تحقیق عبارت‌اند از:

\[H = f(d, Q, \Gamma, \nu, \sigma, \rho, g) \]

که عمق استقراض (ارتفاع آب روی دهانه آبگیر قائم)، قطر d لوله آبگیر، Q سرعت مآعادنی جریان، \(\Gamma \) پارامتر دوران و برای یک لوله آبگیر قائم به است که در آن \(V \) سرعت مآعادنی جریان در فاصله شعاعی r مجزا از محور آبگیر باشد. Q لوله آبگیر باشد با یک سطح در انتهای سطحی گردان باد باعث کاهش سطحی و تغییرات به عنوان تغییراتی که پیامدهای کشش دارند برای عوامل میدانی می‌توان نوشته:

\[\frac{H}{d} = f_s \left(\frac{\Gamma d \nu d^2 g \sigma d^3}{Q^2 \nu^2 V \rho^2 d^4} \right) \]

با جایگزینی \(V = V \nu d \)

\[\frac{H}{d} = f_s \left(\frac{\Gamma d \nu d^2 g \sigma d^3}{Q^2 \nu^2 V \rho^2 d^4} \right) \]

این مدل (شامل کاهش چرخش کانال) به جویی تأثیر دو عامل پارامترهای جریان \(\alpha \) و هندسه سازه آبگیر را بر عهده

\[N_r = \frac{\tan \alpha}{\sqrt{\frac{B}{L}} \tan \alpha} \]

ثبت تناسب از مرنی ایا با حرکت طول و عرض کانال تقریبی می‌باشد. در این مدل (شامل کاهش چرخش کانال) به جویی تأثیر دو عامل پارامترهای جریان \(\alpha \) و هندسه سازه آبگیر را بر عهده
شکل ۱. شماهی آبگیر قائم همره با کانتال مسدد (۷)

شکل ۲. توزیع سرعت مماسی در گرداب (۸)

در دهانه آبگیر قائم جامد شویی نمود در انتخاب قطر لوله‌های آبگیر و ویژگی آنها از دیواره‌ها از معادلات توزیع سرعت مماسی مختلف ارائه شده توسط محققین استفاده شده است. رانکین، ادگارد و همیشه هر کدام برای توزیع سرعت مماسی گرداب ایجادگر در دهانه آبگیر قائم، معادلاتی ارائه‌ند. نموده انده‌ند (۸ و ۱۳). شکل ۲ توزیع سیرکولاسیون نشان می‌دهد. در این تحقیق نیز به همکاری معالجی مورد نظر و یا ابندی گرفته از کانتال تقریب انتهای مسدد فوق مدل آزمایشگاهی به شرح زیر ساخته شد.

ساخت مدل به منظور آن که بتوان از تأثیر دیواره‌ها بر گرداب ایجادگر
تأثیر سرعت و جهت جریان در خروجی کانال تقریب مستطیلی شکل یا...

در وسعت زمین و شجاعیان (1) به منظور بررسی تأثیر فاصله دیواره‌ها از محور آب‌گیر بر گرداب ساخته شده است که در مرجع 2 کلیه اطلاعات ساخت مدل و تجهیزات مصرفی آن آورده شده است. در شکل 3 پلان و مقطع مدل نشان داده شده است.

لزوم به ذکر است که قطر لوله آب‌گیر و حداکثر آب‌گیرها در این تحقیق به گونه‌ای انتخاب شده است که کلیه معیارهای لازم برای در نظر گرفتن تأثیر اعداد رلنرلد و ویبل بر آب‌گیرها و ارزیابی و سه پارامتر نسبت استغراق، عدد سریکولاسیون و غیره غم در عنوان پارامترهای اصلی مؤثر در نظر گرفته شدند. برای استفاده از مدل موجود در این بررسی، اصلاحات زیر را مدل انجام گردید.

1. طول کانال تقریب مدل موجود 30 متر بوده که با توجه به این که در این پژوهش پایشی جریان در کانال تقریب

سرعت مماسی این معادلات و مقایسه آنها را با نتایج تجربی نشان می‌دهد.

همان کوتاه که در شکل 2 دیته می‌شود، در \(\frac{Rm}{2}\) توزیع سرعت مماسی تقریباً یک نواخت می‌کند. برای شعاعی است که مکرر، سرعت مماسی در آن ایجاد می‌شود و این مقدار در آب‌گیرهای قائم برای شعاع ده‌سنتر آب‌گیر می‌باشد.

با توجه به مطالعات فوق حداکثر 10 در برای مدل مقدار 100 در نظر گرفته شده است که اگر بیشترین قطر لوله آب‌گیر 75 میلی‌متر انتخاب شود، کمترین فاصله محور آب‌گیر از دیواره‌ها به منظور عدم تأثیر دیواره‌ها بر گرداب انجادی است، برای 375 میلی‌متر است. این مقدار در مدل آب‌گیرهای آب‌گیر قائم موجود در آب‌گیرهای هیدرولیک دانشگاه شهید باهنر برای 200 میلی‌متر بوده است. بنابراین این مدل با انجام اصلاحات به منظور استفاده در این تحقیق مناسب دیده شد. این مدل
ب) به منظور جهت دهی جریان ورودی به حوضچه (تغییر سرعت ممسان جریان تقریبی) 5 پر درصدی از اندازه کانال تقریب نصب شد. این پرها به صورت هم‌انگیز با هم عمل کردند و به گونه‌ای ساخته شدند که در هر زاویه دلخواه تنظیم شوند.

۴) در فاصله ۳ متری از ابتدا کانال تقریب یک صفحه مشبک پلاستیکی نصب شده تا تلاطم جریان ورودی به مدل تا حد مورد نظر کاهش پایند.

۵) جهت افزایش دقیقت قرار آب در مدل یک پیوست در گوشه مدل و محله که آب در آنجا کاملاً آرام است قرار داده شده است.

۶) پایان و برش مقطع B-B و A-A از مدل در شکل‌های ۴ و ۵ نشان داده شده است. همچنین شکل‌های ۷ و ۸ مدل و دیگر تجهیزات آن را نشان می‌دهد.
1- منبع ذخیه‌ای نشان دهنده مدل سریز ملتی 3- کانال پایین دست مدل 4- یمپ 5- کانال تقریب مدل 6- حوضه‌بندی ابگیر مدل 7- بلوه ابگیر
8- صفحه مشبک آرام کننده جریان 9- پره‌های اصلی 10- پره‌های عمودی 11- پایه‌های مدل 12- پیژشتر 13- پیج تنظیم زاویه پره‌ها

شکل 4. پلان مدل آزمایشگاهی

1- منبع ذخیه‌ای نشان دهنده مدل سریز ملتی 3- کانال پایین دست مدل 4- یمپ 5- کانال تقریب مدل 6- حوضه‌بندی ابگیر مدل 7- بلوه ابگیر 8- نیشب 9- صفحه مشبک آرام کننده جریان 10- پره‌های اصلی 11- پره‌های عمودی 12- پایه‌های مدل

شکل 5. برش مقطع A-B مدل
شکل ۶ برش مقطع B-B مدل آزمایشگاهی

شکل ۷ مدل آزمایشگاهی با سیستم انتقال آب در حال آزمایش
شکل ۸. مدل در حال آزمایش و گرداب تشکیل

جدول ۱. متغیرهای آزمایش در بررسی حاضر

<table>
<thead>
<tr>
<th>α (°)</th>
<th>H' (mm)</th>
<th>Q (l/s)</th>
<th>d (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱.۰۸/۳۰.۲</td>
<td>۴۰/۶۰/۴۰/۶۰</td>
<td>۴۰/۶۰/۴۰/۶۰</td>
</tr>
<tr>
<td>۲</td>
<td>۲.۰۲/۵۰.۳</td>
<td>۵۰/۵۰/۴۰/۵۰</td>
<td>۵۰/۵۰/۴۰/۵۰</td>
</tr>
<tr>
<td>۳</td>
<td>۳.۵۴/۷۵</td>
<td>۷۵/۷۵/۵۰/۷۵</td>
<td>۷۵/۷۵/۵۰/۷۵</td>
</tr>
</tbody>
</table>

جدول ۲. قطر و حجم بالا و پایین دیب. عدد رنولدز و عدد ویر در آزمایش‌ها

<table>
<thead>
<tr>
<th>عدد ویر W</th>
<th>عدد رنولدز R × ۱۰۰</th>
<th>دیب Q (l/s)</th>
<th>قطر دهانه ابتدایی d (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶۹۹–۱۵۹۶</td>
<td>۳۸۶/۵–۲/۸۶</td>
<td>۱–۲</td>
<td>۳۸</td>
</tr>
<tr>
<td>۷۰۵–۱۵۸۷</td>
<td>۳/۹۷/۵–۵/۹۶</td>
<td>۲–۳</td>
<td>۵۰</td>
</tr>
<tr>
<td>۱۲۹۸–۲۲۰۰</td>
<td>۳/۹۸–۶/۸۲</td>
<td>۳–۵</td>
<td>۷۵</td>
</tr>
</tbody>
</table>
نتایج و بحث

در هر دوی و برای هر لوله آبگیر، نمودار تغییرات نسبت H/d در برای تغییر زاویه جریان تقریب α در (H/d) نسبت استغراق را در برای تغییر زاویه جریان "α" در محدوده آزمایش‌ها خطی و صحیح است. افزایش زاویه جریان خروجی از کانال تقریب منجر به افزایش مؤلفه ماسی جریان شده و باعث افزایش نسبت استغراق آبگیر می‌گردد.

افزایش نسبت استغراق نشان دهنده کاهش پدیده آبگیر است. تغییر ارتفاع دهانه آبگیر از کف مدل نیز بر نسبت استغراق تأثیر گذار است. به طوری که افزایش ارتفاع دهانه آبگیری از کف مدل منجر به کاهش نسبت استغراق (افزایش پزشکی) می‌گردد.

10
تاثیر سرعت و جهت جریان در خروجی کانال تقریب مستطیلی شکل با...

شکل 9 نمودار تغییرات نسبت استغراق $\frac{H}{d}$ در برای تغییر زاویه جریان α در لوله آبیگیر با قطر d=38 میلیمتر و دیگر

1 l/sec و $1/8$ l/sec

شکل 10 نمودار تغییرات نسبت استغراق $\frac{H}{d}$ در برای تغییر زاویه جریان α در لوله آبیگیر با قطر d=50 میلیمتر و دیگر

2 l/sec و $2/5$ l/sec
شکل 11. نمودار تغییرات نسبت استغراق (H/d) در برای تغییر زاویه جریان α در لوله آبگیر به قطر $d=50 \text{ mm}$ و $V=3 \text{ lit/sec}$، 4 lit/sec و 5 lit/sec.

در اینجا نموداری از تغییرات نسبت استغراق (H/d) در برای سرعت مساوی V_0 برای آبگیر با قطر $d=38 \text{ mm}$ نشان داده شده است.
تأثیر سرعت و جهت جریان در خروجی کانال تقریب مستطیلی شکل با...

شکل 13. تغییرات نسبت استغراق (H/d) در پرتاب سرعت میان‌ساخت‌های جریان پرتاب V0 برای آب‌گیر‌ها نظر

شکل 14. تغییرات نسبت استغراق (H/d) در پرتاب سرعت میان‌ساخت‌های جریان پرتاب V0 برای آب‌گیر‌ها نظر

همان طور که با تحلیل ابعادی انجام گرفته و اعمال شرایط
چشم پویی از تأثیر کشش سطحی و ویسکوزیتی بر آزمایش‌ها.
تشان داده شد، عدد سیرکولاسیون، عدد فرد و نسبت استغراق
پارامترهای بسی‌عدد مؤثر بر گرداب می‌باشد. نمودار
شکل‌های 12-14 را می‌توان با استفاده از اعداد بدون بعد به
صورت نمودار شکل 15 خلاصه نمود. در نهایت نمودار

13
نتایج

1. افزایش عدد سیرکولاسیون در یک جریان با عده فرود ناب، منجر به کاهش ضرب تخلیه آبگیر میشود. به همین‌طور، با کاهش عدد فرود جریان، اثر عدد سیرکولاسیون بر ضرب تخلیه آبگیر کاهش می‌یابد و بر عکس.

2. با افزایش عدد فرود جریان، تأثیر بیشتری تغییر سیرکولاسیون بر گرداب نیز پیش می‌شود. این مسئله در مودار 15 یافته شده است.

3. با توجه به اینکه عدد سیرکولاسیون مستقیماً تابعی از نسبت استقلال فرود می‌باشد، عواملی که باعث کاهش

شکل 15. تغییرات عدد چرخش برای اعداد فرود مختلف (H/d) در برابر نسبت استقلال (N_d)

نتیجه‌گیری

آبگیری قابلیت یک‌ارسان‌هایی است که به منظور آبگیری از رودخانه‌ها و مخازن استفاده می‌گردد. از مشکلات اصلی که این نوع آبگیرها با آن مواجه هستند، ایجاد گرداب‌های قوی در دهانه آنهاست که منجر به افت بازدهی سیستم آبگیری می‌شود. در این مطالعه با ساخت مدل آزمایش‌پذیری تأثیر مؤلفه‌های سیرکولاسیون بر گرداب نسبت استقلال آبگیر بر ضرب تخلیه آن با 216 آزمایش بررسی شده است. با تحلیل ابعاد نشا داده شده استفاده بیشتر بعد ریونوالد، فرود، و سیرکولاسیون و نسبت استقلال بر گرداب بیشتر مؤثرند. با عنصر گرفتن
سرعت مخصوص جریان تقریب می‌گردد، باعث افزایش ضریب تخلیه آبگیر خوانده شد. در نتیجه کاهش زاویه جریان تقریب و هم چنین افزایش ارتفاع دهانه آبگیر از کف باعث افزایش ضریب تخلیه آبگیر می‌شود.

عواملی که باعث افزایش سیرکولاسیون جریان تقریب می‌گردد، باعث کاهش بردگی سیستم سیستم می‌شوند. با توجه به این امر در طراحی آبگیرها به مانور افزایش دهانه آبگیر با کاهش به دهانه آبگیر حداکثر ممکن و همچنین ارتفاع دهانه آبگیر از کف در حداقل ممکن باشند، که کاهش می‌تواند باعث تضعیف گرداب و کاهش هزینه‌های تحمیلی بر آبگیر گردد. با توجه به ناتیج فرک اعمال نظرات زیر در طراحی آبگیرها

منابع مورد استفاده

1. زمردان، س. م. ع. و. م. ر. شجاعیان. 1381. مطالعه تأثیر هندسه کانال تقریب بر ضریب آبگیر آبگیر فانی با استفاده از مدل آزمایشگاهی. مجموعه مقالات ششمین سمینار بین‌المللی مهندسی رودخانه‌ها، اهواز، صفحه 554-559.

2. شجاعیان، م. ر. 1381. مطالعه آزمایشگاهی هندسه کانال تقریب بر ضریب تخلیه سریزی تیلوفر. پایان‌نامه کارشناسی ارشد مهندسی عمران، گرایش سازه‌های هیدرولیکی، دانشگاه شهید باهنر کرمان.

3. کیروی سامانی، ع. و. م. مرتضی. 1380. بررسی نحوه فرآیند شکل‌گیری جریان در گرداب بر بازدهی سازه‌های آبگیر. مجموعه مقالات سومین کنفرانس هیدرولیک ایران، تهران، صفحه 27-32.

