تأثیر سرعت و جهت جریان در خروجی کانال تقریب مستطیلی شکل با انتهای مسدود بر ضریب تخلیه آبگیر قائم

سید محمد علی زمردیان و محمددر واقع سپوراری

چکیده

آبگیرهای قائم معمولاً نسبت به دیگر گونه‌ها سازه‌هایی اقتصادی بوده و به جهت آن که در تزئیکی سطح آب کار گذاشته می‌شوند. از ورود رسوبات درشت دانه به داخل سیستم جلوگیری می‌نماید. مشکلات اصلی که آبگیرهای قائم با آن مواجه هستند گردهای قوی در دهانه انتقالی، این گردها باید با کاهش فشار می‌شوند. شناخت هندسی و طراحی از عوامل مؤثر بر گردهای قوی در دهانه انباشته‌ها کمک می‌نماید. در این پژوهش به کمک مدل آنالیگاهی تأثیر سرعت مماسی، جهت جریان در خروجی کانال تقریب ضریب تخلیه Cg آبگیر قائم مورد بررسی قرار گرفته و با آنالیز ابعاد نشان داده شده که اعداد سیرکولاسیون و عدد استرگر ارائه گردیده است که با استفاده از آنها می‌توان عدد استرگر را به دست آورد و توسط آن ضریب تخلیه آبگیر قائم را محاسبه نمود.

واژه‌های کلیدی: تخلیه آبگیر قائم، کانال تقریب، عدد استرگر، ضریب تخلیه، گردهای قوی

مقدمه

آبگیرهای قائم یکی از سازه‌هایی است که به منظور آبگیرهای مستقیم از رودخانه‌ها و به میزان مورد استفاده قرار می‌گیرد. در مقایسه با سایر انواع آبگیرهای قائم، سازه‌ای اقتصادی بوده که در صورت طراحی صحیح و اصولی بهبود برداری از آنها با مشکلات کمتری نیز همراه است. علاوه بر این به جهت آن که

1. استادیار آموزشی، دانشکده کشاورزی، دانشگاه شهید بهشتی
2. دانشجوی سابق کارشناسی ارشد مهندسی عمران، دانشکده مهندسی عمران، دانشگاه شهید بهشتی بانی کرمان
از لرچ و کشش سطحی شکل می‌گردد (3)。

مانند چرخ‌های در جیران‌های ورودی، روده‌ها ایجاد ارتعاش در آن‌ها، خطوط لوله، پیچ‌ها، سرواندا، کاویات، استقرارهای به‌هم‌برداری ناماسب در تأسیسات و در نتیجه آن خطیر آسیب به اجزای پیچ‌ها و توربین‌ها، کاهش عمر میقد تأسیسات که مکان است. افزایش هرزب نیز به دنبال داشته‌باشند از عوامل تشکیل شرایط نامناسب و تأثير قدرت آسیب بر اجزای در جیران و سرعت‌های بالاتر از 56 متر بر ثانیه در میدان جیران نزدیک شویده به آبگیر را اتم‌برد (3) 4 و 7.

با توجه به نامظالم بودن تشکیل شرایط، طراحان غالباً در یی تأثیر که این پتیف تخلیه آبگیر تا 80٪ شرایط که یک باد به‌دست آمده از احتمال محور جیران رابط بزرگی می‌شود و در ناحیه دوم سیال ساکن و بودن جیران، مفصل در توزیع سرعت سیال نیز، هر که در این دو ناحیه سیر می‌شود که این نشانه‌ها واقعی و بازخوردی است که در این ناحیه دوم سیال دنیا از محور جیران‌ها تشکیل می‌گردد. در نتیجه این امر، فشار در اطراف محور دوران کاهش بانده و سطح آب پایین‌تر می‌شود. در آبگیرهای کاهش سطح مقطع جیران سرعت افزایش یافته و فشار در دهانه آبگیر کاهش می‌یابد. در این شرایط تا زمانی که فشار در دهانه افزایش کمتر شود، حالت تخلیه‌ای نیز کاهش می‌یابد و به‌طور قابل توجه افزایشی در فشار از دهانه فشار کمتر شده است. هسته‌ها توسط تخلیه‌ی آب از محور دوران کاهش یافته و سطح آب پایین‌تر می‌شود. در افزایش سرعت افزایش یافته و فشار در دهانه آبگیر کاهش می‌یابد. در این شرایط تا زمانی که فشار در دهانه افزایش کمتر شود، حالت تخلیه‌ای نیز کاهش می‌یابد و به‌طور قابل توجه افزایشی در فشار از دهانه فشار کمتر شده است. هسته‌ها توسط تخلیه‌ی آب از محور دوران کاهش یافته و سطح آب پایین‌تر می‌شود. در افزایش سرعت افزایش یافته و فشار در دهانه آبگیر کاهش می‌یابد. در این شرایط تا زمانی که فشار در دهانه افزایش کمتر شود، حالت تخلیه‌ای نیز کاهش می‌یابد و به‌طور قابل توجه افزایشی در فشار از دهانه فشار کمتر شده است. هسته‌ها توسط تخلیه‌ی آب از محور دوران کاهش یافته و سطح آب پایین‌تر می‌شود. در افزایش سرعت افزایش یافته و فشار در دهانه آبگیر کاهش می‌یابد. در این شرایط تا زمانی که فشار در دهانه افزایش کمتر شود، حالت تخلیه‌ای نیز کاهش می‌یابد و به‌طور قابل توجه افزایشی در فشار از دهانه فشار کمتر شده است. هسته‌ها توسط تخلیه‌ی آب از محور دوران کاهش یافته و سطح آب پایین‌تر می‌شود. در افزایش سرعت افزایش یافته و فشار در دهانه آبگیر کاهش می‌یابد. در این شرایط تا زمانی که فشار در دهانه افزایش کمتر شود، حالت تخلیه‌ای نیز کاهش می‌یابد و به‌طور قابل توجه افزایشی در فشار از دهانه فشار کمتر شده است. هسته‌ها توسط تخلیه‌ی آب از محور دوران کاهش یافته و سطح آب پایین‌تر می‌شود. در افزایش سرعت افزایش یافته و فشار در دهانه آبگیر کاهش می‌یابد. در این شرایط تا زمانی که فشار در دهانه افزایش کمتر شود، حالت تخلیه‌ای نیز کاهش می‌یابد و به‌طور قابل توجه افزایشی در فشار از دهانه فشار کمتر شده است. هسته‌ها توسط تخلیه‌ی آب از محور دوران کاهش یافته و سطح آب پایین‌تر می‌شود. در افزایش سرعت افزایش یافته و فشار در دهانه آبگیر کاهش می‌یابد. در این شرایط تا زمانی که فشار در دهانه افزایش کمتر شود، حالت تخلیه‌ای نیز کاهش می‌یابد و به‌طور قابل توجه افزایشی در فشار از
تأثیر سرعت و جهت جریان در خروجی کانال تقریب مستطیلی شکل یا ...

\[\frac{\nu}{\nu_d} = \frac{\Gamma d}{Q} \]

در رابطه 3 مقدار برای عدد برونی در خجوی، \(N_f \) مقدار
معکوس عدد برونی در خجوی، \(R_e \) مقدار معکوس مجذور عدد
\[\frac{\sigma}{\nu} = \frac{H}{d} \]

عدد استوارت و مقدار
\[f_r = f_r(N_f, R_e, F_f, F_r, W, W^1) \]

در تابعه پارامترهای به بعد مؤثر بر
گردد در در پژوهش عبارت خواهد بود:
\[\frac{H}{d} = f_r(N_f, R_e, F_f, F_r, W, W^1) \]

با توجه به شرایط بیشتری دارک و کلیکان (1974) و یک و
همکاران (1976) از این اعداد برونی و/و برای در این
بررسی صرف نظر شده است (6 و/و 9) پارامترهای مؤثر
بر گردد در این تحقیق عدد استوارت، عدد فرود و عدد
سیرکولاسیون می‌باشد و معادله نهایی برای است است:
\[\frac{H}{d} = f_r(N_f, R_e, F_f, F_r, W, W^1) \]

هم چنین ضریب آبیک قابلیت با توجه به رابطه زیر با جذر
عدد استوارت نسبت عکس دارد (10).
\[C_d = \frac{\nu Q}{\nu d^3 \sqrt{ghH}} = \frac{\nu Q}{\nu d^3 \sqrt{ghH_d}} \]

با توجه به مطالب بیان شده، عوامل مؤثر بر تشکیل گردد در
دهانه آبیک قابلیت عبارت است از: عرضه سازه آبیک، پارامترهای
جریان و چارچوب‌سازی سیال می‌باشند. کالان و کلیکان (1976)
یکن
با استفاده از قانون بقای مواد بدین کانال تقریب با انتها
مدود (شکل 1)، نویس کاهش
چرخش عرض را جهت کاهش چرخش آب
صوتوت زیر مطرح نموده از (7).
\[N_f = \frac{\tan \alpha}{\nu d} \]

تابت تناسب از مرتبه‌ای اما 2. زاویه تقریب سرعت نیز
\[\beta \]

شونده به ترتیب طول و عرض کانال تقریب می‌باشد.
این معادله (نحوه کاهش چرخش کلیکان) به‌خوبی تأثیر دو
عامل پارامتر جریان \(\alpha \) و هندسه سازه آبیک را بر تأثیر
\[H = f_r(d, Q, G, \nu, \sigma, \rho, g) \]

عمق استوارت (ارتفاع آب روی دهانه آبیک قابلیت).
\[V \]

ژریان، \(\Gamma \) پارامتر دوران و برای
\[\nu \]

است. که در آن \(v \) سرعت ممساوی جریان در فواصل شعاعی \(r \)
مجر چاک قابلیت، \(\rho \) کمپرسو، \(\sigma \) جریان، \(\rho \) خاک
نشرال قابلیت با کانکر هم و انتخاب کردن تعیین‌های چنین
\[f_r = \frac{\nu Q}{\nu d^3 \sqrt{ghH}} \]

کناری می‌توان نوشت:
\[\frac{H}{d} = f_r(N_f, R_e, F_f, F_r, W, W^1) \]

با جاگیری (7)\(\rho \) سرعت متوسط جریان در
\[\frac{H}{d} = f_r(N_f, R_e, F_f, F_r, W, W^1) \]

آبیک قابلیت
\[\frac{H}{d} = f_r(N_f, R_e, F_f, F_r, W, W^1) \]

\[\frac{H}{d} = f_r(N_f, R_e, F_f, F_r, W, W^1) \]

\[\frac{H}{d} = f_r(N_f, R_e, F_f, F_r, W, W^1) \]
در دهانه آبیگیر قائم جسم پوششی نمود در انتخاب قطر لوله‌های آبیگیر و فاصله آنها از دیواره‌ها از معادلات توزیع سرعت مماسی مختلف ارائه شده توسط محققین استفاده شده است. رانکین ادکارد و هیت - می‌هند کدام پارامتر توزیع سرعت مماسی گردن ایجادی در دهانه آبیگیر قائم، معادلاتی ارائه‌نموده‌اند (8 و 13). شکل 2 توزیع سیرکولاسیون نشان می‌دهد. در این تحقیق نیز جهت مطالعه مورد نظر و با هدف جریان از دهانه تقریبا مسدود فوق مدل آزمایشگاهی به شرح زیر ساخته شد. ساخت مدل به منظور آن که بتوان از تأثیر دیواره‌ها بر گردن ایجادی
تأثیر سرعت و جهت جریان در خروجی کانال تقریب مستطیلی شکل با...
است. جدول 1 ترکیب آزمایش‌های را نشان می‌دهد که در مجموع 108 آزمایش و با تکرار آزمایش‌های 21 آزمایش انجام شده است.

در انجام آزمایش‌ها مراحل یکسانی به شرح ذیر انجام گرفته است. ابتدا شیر اصلی و رودپرو آب به کانال نمونه وارد و مقدار به ورودی تنظیم می‌گردد. پس از حدود 15 دقیقه و حصول اطمینان از یک نواختن به جهت دهانه جنین و افزایش دهانه آبگیر از اک حذف‌چکی تنظیم شده است. چون ماهیت این ارتقای منجر به تغییر سرعت‌های معمول جنین (سرعت جنین تقریب) خواهد که پارامتر اصلی این تحقیق قرار گرفته است. از ترتیب‌های فوق و طی زمان حداقل 20 دقیقه جهت پایدار شدن گرداب اجاهی شده، شرکت صفحه از بروز خرابی این پیمان گرفته شد. جهت افزایش اطمینان از توانایی آزمایش‌ها و نتایج قبل تکرار بودن آزمایش، هر آزمایش حداقل دو بار تکرار گردیده است.

در جدول 1 فضا لوله‌های آبگیر و حد بالا و پایین دیو عدد ریوند و عدد ورای محضداره فضا لوله و دیب استفاده شده در آزمایش‌ها داده شده و در جدول 3 نمونه نتایج چند آزمایش نتانان داده شده است.

در نهایت جهت ارزیابی و پایداری و نهایت صفر‌کردن حذف‌چکی تنظیم ارتفاع دهانه آبگیر از کنار مدل 25 سانتی‌متر از آنها روزه شده است. در این صورت ارتفاع دهانه لوله آبگیر از کنار مدل 45 سانتی‌متر قابل تنظیم می‌باشد.

پیان و بریش مقطع B-B از مدل به شکل‌های 4 و 6 و نتانان داده شده است. همچنین نشانه‌های 7 و 8 مدل و دیگر تجهیزات آن را نشان می‌دهد.

از آزمایش‌ها جهت بررسی ارتفاع ارتفاع صفحه از کنار آب مدل به صورت تابعی از تغییرات سرعت معمول جریان تقریب 216 آزمایش انجام شده.
تأثیر سرعت و جهت جریان در خروجی کانال نرمال مستطیلی شکل با...

شکل ۱- مخزن آب - ۸- سریز ملانی- ۳- کانال پایین دست مدل - ۴- بمب - ۵- کانال نرمال مدل - ۶- حوضه جریان - ۷- لوله ایگیر

۸- صفحه مشابه آرام کننده جریان - ۹- پرهای اصلی - ۱۰- پرهای عمودی - ۱۱- پایه‌های مدل - ۱۲- پی‌پی‌متر - ۱۳- بج تنظیم زاویه پره‌ها

شکل ۲- نمودار آماری...

شکل ۳- نمودار مقطع - ۸- مدل
شکل ۶ برش مقطع B-B مدل آزمایشگاهی

شکل ۷ مدل آزمایشگاهی با سیستم انتقال آب در حال آزمایش

۱- کانال پایین دست مدل ۲- لوله آکیر ۳- تبدیل ۴- پره‌های عمودی ۵- پیروزتم ۶- پایه‌های مدل
شکل 8. مدل در حال آزمایش و گرداب تشکیل

جدول 1. متغیرهای آزمایش در بررسی حاضر

<table>
<thead>
<tr>
<th>α°</th>
<th>Q (l/s)</th>
<th>d (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>0.6/2.2</td>
<td>25/0.3</td>
</tr>
<tr>
<td>36</td>
<td>0.6/2.2</td>
<td>25/0.3</td>
</tr>
<tr>
<td>36</td>
<td>0.6/2.2</td>
<td>25/0.3</td>
</tr>
</tbody>
</table>

جدول 2. قطر و حد بالا و پایین، عدد ریلندز و عدد ویر در آزمایش‌ها

<table>
<thead>
<tr>
<th>عدد ویر W</th>
<th>عدد ریلندز R x 10</th>
<th>عدد Q (lit/sec)</th>
<th>قطر دهانه آبیکر d (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1595-1596</td>
<td>2.7/2-2.7/3</td>
<td>1-2</td>
<td>30</td>
</tr>
<tr>
<td>705-1587</td>
<td>3.1/3-3.1/5</td>
<td>2-3</td>
<td>50</td>
</tr>
<tr>
<td>1298</td>
<td>3.5/3-3.5/4</td>
<td>3-5</td>
<td>75</td>
</tr>
</tbody>
</table>
جدول ۳ خلاصه نتایج چند آزمایش

<table>
<thead>
<tr>
<th>H/d</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q(l/s)</td>
<td>۱/۲۷</td>
<td>۱/۲۸</td>
<td>۱/۳۷</td>
<td>۱/۳۸</td>
<td>۱/۴۸</td>
</tr>
<tr>
<td>H/d</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
</tr>
<tr>
<td>V(mm)</td>
<td>۲۱</td>
<td>۲۱</td>
<td>۲۱</td>
<td>۲۱</td>
<td>۲۱</td>
</tr>
<tr>
<td>L(P)</td>
<td>۲۱</td>
<td>۲۱</td>
<td>۲۱</td>
<td>۲۱</td>
<td>۲۱</td>
</tr>
<tr>
<td>H(mm)</td>
<td>۲۱</td>
<td>۲۱</td>
<td>۲۱</td>
<td>۲۱</td>
<td>۲۱</td>
</tr>
<tr>
<td>L(P)</td>
<td>۲۱</td>
<td>۲۱</td>
<td>۲۱</td>
<td>۲۱</td>
<td>۲۱</td>
</tr>
</tbody>
</table>

نتایج و بحث

در هر دوی و برای هر لوله آبگیر، نمودار تغییرات نسبت H/d در برای تغییر زاویه جریان تقریب آبگیر در ارتفاعهای مختلف جریان باعث کاهش سرعت جریان در کانال نسبت می‌گردد.

این چاوس سرعت بر مؤلفه ماسی آن نیز تأثیر گذار بوده و در نتیجه کاهش سرعت ماسی جریان تقریب را در بی‌خواه داشت. نمودار شکل‌های ۱۴ تغییرات نسبت استخراج را در برای تغییر سرعت ماسی جریان نشان می‌دهد. تغییر سرعت ماسی در این نمودارها ناشی از تغییر زاویه جریان تقریب و تغییر ارتفاع دهانه آبگیر از کف مدل است. همان گونه که از این نمودارها استنباط می‌شود، تغییر زاویه جریان تقریب و تغییر ارتفاع دهانه آبگیر به دلیل تأثیر مستقل بر مؤلفه ماسی سرعت باعث تغییر نسبت استخراج آبگیر می‌شود.

نمودار رسم شده است (شکل‌های ۹-۱۱).
شکل ۹: نمودار تغییرات نسبت استغراق \((H/d) \) در برای تغییر زاویه جریان تقریباً \(\alpha \) در لوله آبی‌گیر به قطر \(d=38 \text{ mm} \) و \(1 \text{ lit/sec} \) و \(1/5 \text{ lit/sec} \)

شکل ۱۰: نمودار تغییرات نسبت استغراق \((H/d) \) در برای تغییر زاویه جریان تقریباً \(\alpha \) در لوله آبی‌گیر به قطر \(d=50 \text{ mm} \) و \(2 \text{ lit/sec} \) و \(2/5 \text{ lit/sec} \)
شکل 11. نمودار تغییرات نسبت استفراق (H/d) در برای تغییر زاویه جریان α در لوله آمپیره قطر d=۷۵ mm و Q=۱ lit/sec، Q=۲ lit/sec و Q=۳ lit/sec

شکل 12. تغییرات نسبت استفراق (H/d) در برای سرعت مماسی جریان ω برای آمپیره قطر d=۳۸ mm و Q=۱ lit/sec و Q=۲ lit/sec و Q=۴ lit/sec و α=۹۰ درجه
تغییرات نسبت استخراج (H/d) در برای سرعت مماسی جریان تقی Q برای آنگیزه با فیلتر

![نمودار](https://i.imgur.com/123456.png)

شکل 13. تغییرات نسبت استخراج (H/d) در برای سرعت مماسی جریان تقی Q برای آنگیزه با فیلتر

![نمودار](https://i.imgur.com/123456.png)

شکل 14. تغییرات نسبت استخراج (H/d) در برای سرعت مماسی جریان تقی Q برای آنگیزه با فیلتر

همان طور که در تحلیل ابعادی انجام گرفته و اعمال شرایط

چشم پویشی از تأثیر کشش سطحی و ویسکوزیته بر آزمایش ها,

نشان داده شد. عدد سرکولاسیون، عدد فرود و نسبت استخراج

پارامترهایی بر همان طور که در شکل 12-13 را می توان با استفاده از اعداد بدون پیوست

نمودار شکل های 12-13 را می توان با استفاده از اعداد بدون پیوست

نمودار شکل 15 خلاصه نمود. در نهایت نمودار

13
نگاهی که می‌تواند به نظرات دکتر کلوگان (1976) و چین و همکاران (1978) و اکبری (1956) برای تخم‌بوشهر اثر ویسکوزیته و کشش سطحی بر آزمایش‌ها و نتایج گوناگونی در تعریف و نتایج آزمایش‌ها چشم‌پوشی شده است. در شکل 15 نتایج آزمایش‌ها با استفاده از اعداد بعد فرود، سیرکولارسیون و استقامت نشان داده است. با استفاده از رابطة 5 می‌توان نتیج استقامت محسوبه شده از نمودار شکل 15 را به ضریب تخلیه آبگیر تبیین نمود. با توجه به نمودار شکل 15 نتایج زیر استنباط می‌گردد.

1. افزایش عدد سیرکولارسیون در پی جریان با عدد فرود نتایج می‌تواند به کاهش ضریب تخلیه آبگیر می‌شود. همچنین با کاهش عدد فرود جریان اثر عدد سیرکولارسیون بر ضریب تخلیه آبگیر کاهش می‌یابد و بر عکس.

2. افزایش عدد فرود جریان تأثیرگذاری بیشتر سیرکولارسیون بر گرادگذار نیز بیشتر می‌شود. این مسئله در نمودار شکل 15 با افزایش شیب خطوط نسبت استقامت در پی افزایش سیرکولارسیون برای اعداد فرود مشاهده می‌شود.

3. با توجه به این که عدد سیرکولارسیون مستقیماً تابعی از مولفه مناسب سرعت می‌باشد، عواملی که باعث کاهش

نتیجه‌گیری

آبگیر قابلیت یک از اهداف اصلی است که به منظور آبگیری از روختن‌ها و بر علائم قابل انتظار استفاده می‌گردد. از مشکلات اصلی که این نوع آبگیرها از آن می‌باشد افزایش گرداب‌های فروی در دهان آنهاسی که موجب به‌فتادن می‌شود. این تغییر در عدد ایجاد ماهیت آبگیری قابل استفاده است. به مثال‌های سیرکولارسیون با گرادگذاری در این مطالعه با ساخت مدل آزمایشگاهی آن مولفه مراحلی سیرکولارسیون برای اعداد فرود مناسب‌تر می‌باشد می‌شود.

نیروی خشک‌خواهی می‌تواند با استفاده از عدد دهان آنهاسی و تغییرات آبگیر بیشتر ضریب تخلیه آبگیر در به‌کارگیری سیرکولارسیون برای اعداد فرود مشاهده می‌شود.

نتیجه‌گیری: با توجه به این که عدد سیرکولارسیون مستقیماً تابعی از مولفه مناسب سرعت می‌باشد، عواملی که باعث کاهش...
منابع مورد استفاده

1. زمربیان، س. م. ع. و. م. ر. شجاعیان. 1361. مطالعه تأثیر هندسه کانال نفوذ بر ضریب تخلیه آب‌دهی آب‌گیر قائم، با استفاده از مدل آزمایشگاهی. مجموعه مقالات ششمین همایش بین‌المللی مهندسی رودخانه‌ها، اهواز، صفحه 554-559.

2. شجاعیان، م. ر. 1381. مطالعه آزمایشگاهی هندسه کانال نفوذ بر ضریب تخلیه سطحی نیافته‌های پایین‌نامه کارشناسی ارشد مهندسی عمران، گرایش مهندسی سازه‌های هیدرولوژیکی، دانشگاه شهید بهشتی کرمان.

3. تیموری، س. م. ع. و. س. م. برقعی. 1380. بررسی نحوه فرآیندی از صحت میزان نفوذ کننده به آب‌دهی سازه‌های آب‌گیر قائم. مجموعه مقالات سومین کنفرانس هیدرولیک ایران. تهران، صفحه 7-26.

