اثرات تغییر اقلیم بر چریان رودخانه زاینده‌رود اصفهان

چکیده
تحقیق حاصل آثار تاسیس تغییر اقلیم روی دما، بارندگی و روانه با ارزیابی رودخانه زاینده‌رود اصفهان را تحت دو سیستم اقتصادی و برای دو دوره سال‌های 2010-2029 و 2070-2099 میلادی، تجزیه و تحلیل می‌نماید. اطلاعات مورد نیاز از مدل گردش عمومی اغلبی و بارندگی و روانه با دو طرح حرارت (متوسط، دافع و حداکثر) ماهانه در دوره‌ای آنی، تحت دو سیستم‌های A1 و HadCM3 (GCM) شمار مقدار بارندگی و حرارت در مورد نیاز از مدل گردش عمومی SRES تأمین شده است. سناریوی A2 به دلیل تأکید بر رشد صنایع و توجه کمتر به محیط زیست بوده است. سناریوی B2 که توجه به محیط زیست دارد، رفتار در مجموع نشان از کاهش بارندگی و افزایش درجه حرارت در هر دو دوره و به خصوص در دوره میان را داشته، به طوری که در طی این دوره میزان کاهش بارندگی 10 و 16 درصد و افزایش درجه حرارت به میزان 3/4 و 3/7 درجه سانتی‌گراد در سناریوهای A2 و B2 نشان از پیوست پیشنهاد سناریوی A2 در این حوضه دارد.

واژه‌های کلیدی: تغییرات اقلیمی، مدل گردش عمومی، سناریو اقتصادی، شبکه عصی مصنوعی، حوضه زاینده‌رود

مقدمه
گزارش‌های حاکی از آن است که به دلیل افزایش انشاگر اقلیمی IPCC گزارش‌های در بهره‌گذاری جهانی در جوی زمین، خروج اسماع حرارتی (طول موج بلند) از زمین با مواد بیشتری رو به رو شده که افزایش دما را به دنبال داشته است. این افزایش دما چهار تنها را به دنبال داشته است. این افزایش

1. به ترتیب دانشجوی دکتری و استادیار سازه‌های آبی، دانشکده کشاورزی، دانشگاه تربیت مدرس
زرمیه هیدرولوژی در جنده ده اخیر در سطح جهان شده است. به طوری که باندگی و جریان‌های سطحی در عرض‌های بزرگ‌تر با ویلایی بیشتر و در عرض‌های باینی کمتر شده و احتمال مواجهه با رخگاه‌های حذافلات اقیمی مانند سیالپ و خشکسالی افراشی یافته است (11 و 12).

به دلیل اهمیت تغییر اقلیم و آب و هوای متواری چندین منابع گردش زمین مدل‌های روی آب و هوایی مختلف از سطح کره زمین مدل‌گری به این دلیل است. انگل و هیف (1997) در پژوهش تغییرات توزیع نرخ‌های صادف (transition probabilities) تحلیل این اثرات را بر جریان رودخانه‌های تاسیس کرده است. این آب‌های تاسیسی در مدل‌های مدرن در نظر گرفته شده است.

بهترین بخشی از مباحث به مسائلی نسبت به تغییرات اقلیمی به نظر می‌رسد. بررسی‌هایی که در سال‌های گذشته انجام شده‌اند نشان‌دهنده می‌باشند که تغییرات اقلیمی در مدت 50 سال آینده نسبت به مدت 50 سال گذشته تغییراتی بسیاری در بیکاری و بهبود می‌یابد.

مقدمه

تغییرات اقلیمی نسبت به مسائلی به مبنای مدل‌های معمولی گردش علومی (General circulation model, GCM) بررسی شده. این مدل‌ها به جز و مدلهای افراشی و توزیع نرخ‌های صادف (Non stationary) نشان‌دهنده این نکته اکنون در مدل‌های مدرن در نظر گرفته شده است.

در سال‌های گذشته، این امر باعث شده است که تغییرات اقلیمی در مدت 50 سال آینده نسبت به مدت 50 سال گذشته تغییراتی بسیاری در بیکاری و بهبود می‌یابد.

توجه می‌آید که تغییرات اقلیمی در مدت 50 سال آینده نسبت به مدت 50 سال گذشته تغییراتی بسیاری در بیکاری و بهبود می‌یابد.

قسمت نتیجه‌گیری

در این بخش، مدل‌های بررسی شده برای مسائلی به مبنای مدل‌های معمولی گردش علومی (General circulation model, GCM) بررسی شده. این مدل‌ها به جز و مدلهای افراشی و توزیع نرخ‌های صادف (Non stationary) نشان‌دهنده این نکته اکنون در مدل‌های مدرن در نظر گرفته شده است.

توجه می‌آید که تغییرات اقلیمی در مدت 50 سال آینده نسبت به مدت 50 سال گذشته تغییراتی بسیاری در بیکاری و بهبود می‌یابد.

در این بخش، مدل‌های بررسی شده برای مسائلی به مبنای مدل‌های معمولی گردش علومی (General circulation model, GCM) بررسی شده. این مدل‌ها به جز و مدلهای افراشی و توزیع نرخ‌های صادف (Non stationary) نشان‌دهنده این نکته اکنون در مدل‌های مدرن در نظر گرفته شده است.

توجه می‌آید که تغییرات اقلیمی در مدت 50 سال آینده نسبت به مدت 50 سال گذشته تغییراتی بسیاری در بیکاری و بهبود می‌یابد.

در این بخش، مدل‌های بررسی شده برای مسائلی به مبنای مدل‌های معمولی گردش علومی (General circulation model, GCM) بررسی شده. این مدل‌ها به جز و مدلهای افراشی و توزیع نرخ‌های صادف (Non stationary) نشان‌دهنده این نکته اکنون در مدل‌های مدرن در نظر گرفته شده است.

توجه می‌آید که تغییرات اقلیمی در مدت 50 سال آینده نسبت به مدت 50 سال گذشته تغییراتی بسیاری در بیکاری و بهبود می‌یابد.

در این بخش، مدل‌های بررسی شده برای مسائلی به مبنای مدل‌های معمولی گردش علومی (General circulation model, GCM) بررسی شده. این مدل‌ها به جز و مدلهای افراشی و توزیع نرخ‌های صادف (Non stationary) نشان‌دهنده این نکته اکنون در مدل‌های مدرن در نظر گرفته شده است.

توجه می‌آید که تغییرات اقلیمی در مدت 50 سال آینده نسبت به مدت 50 سال گذشته تغییراتی بسیاری در بیکاری و بهبود می‌یابد.

در این بخش، مدل‌های بررسی شده برای مسائلی به مبنای مدل‌های معمولی گردش علومی (General circulation model, GCM) بررسی شده. این مدل‌ها به جز و مدلهای افراشی و توزیع نرخ‌های صادف (Non stationary) نشان‌دهنده این نکته اکنون در مدل‌های مدرن در نظر گرفته شده است.

توجه می‌آید که تغییرات اقلیمی در مدت 50 سال آینده نسبت به مدت 50 سال گذشته تغییراتی بسیاری در بیکاری و بهبود می‌یابد.
مدل‌های تولید داده برای دوره‌های آتی با توجه به تغییر اقلیم بارندگی و در دمای هوا، هدف اصلی هستند که در بررسی تغییر اقلیم نقش تغییر کندل‌های وANCH منظور بررسی. آنها برای دوره‌های آتی تحت آن‌های یک‌پدیده، از مدل‌های اقلیمی مختلفی استفاده می‌شود. این مدل‌ها به دو دسته مدل‌های آماری و مدل‌های گردش عمومی جو (GCM) تقسیم می‌شوند. (12). استفاده از مدل‌های GCM بیشتر مورد تایید و توجه بوده است.

مدل‌های گردش عمومی جو (GCM) مدل‌های مدل‌های عدیدی بوده که فراکسیون ماین‌ها، تمسخر، اتانوس، پنگ کر، و سطح زمین را به Cryosphere (Cryosphere) شامل چگونگی تغییرات طبیعی گازهای در آینده می‌باشد. این اثربخشی شده...
است که آنها را سانترالیزه انتشار (Emission scenario) می‌نامند. در سال 1998 سری جدید سانترالیزه انتشار (Special Report on Emission Scenarios) SRES با نام ارائه داد. در این سانترالیزه میزان انتشار گازهای گلخانه‌ای با توجه به پیش‌بینی مکرها (Drivers) انتصابی، نرخ رشد اقتصادی و میزان اهیجته با محیط زیست برای دو دوره‌های آن تعبیه می‌شود. جدول 1 به این‌جا 4 سانترالیزه شاخص از مجموعه این سانترالیزه را در سال 2100 نشان می‌دهد. 12، لازم به ذکر است که به دلیل هزینه‌بر بودن اجرای تمامی سانترالیزه توسط مدل‌های GCM اجرای تمامی سانترالیزه توسط مدل‌های GCM در این تحقیق از خروجی‌های M3D سانترالیزه A2 و B2 از مجموعه سانترالیزه SRES استفاده کرده که داده‌های آن در میزان 2/5% (عرض جغرافیایی) × 3/75% (طول جغرافیایی) است (11).

در سانترالیزه A2، جهانی، ذهنی می‌باشد و وضعیت فعلی آن خواهد بود. موضوع در برگورندان این سانترالیزه تیروهرهای جمعیتی منطقه‌ای با تأکید بر ارزش خانواده و رسم آن رشد زیاد جمعیت و توسان در سرعت پیشرفت اقتصادی می‌باشد. ولی سانترالیزه B2 جهانی است که تأکید آن بر راه‌حل‌های منطقه‌ای برای تقویت مسئولیت اجتماعی و محیط زیست می‌باشد. این باید از نیاز‌های مخابرات با سرعت تغییرات تکنولوژی کمتر، ولی این نوع بهتر می‌باشد. تأکید قوي در این سانترالیزه بر ایجاد عمل جامعه و نوآوری‌های آن برای پایان راه‌حل‌های منطقه‌ای می‌باشد (12).

(Downscaling) کوچک‌سازی مدل‌های GCM یا پایین‌دادن جهت پیش‌بینی مکرها (Resolution) با توجه به وضعیت مکانی (پایین مدل‌های GCM) از آنها در میزان منطقه‌ای امکان‌پذیر نیست و از طرف دیگر قابلیت‌های خروجی‌های آنها برای دوره‌های گذشته با داده‌های مشاهداتی نشان از وجود اختلاف دارد. از این رو از این استفاده از آنها توصیح‌هایی اعمال کرده‌ای. این
نتایج و بحث

عمده منابع آبی رودخانه‌های زاینده‌رود اصفهان از حوضه‌های بالادست تابی می‌باشند. از این رو متغیرهای ایستگاه‌های این ناحیه برای تحلیل‌های مورد نظر این محققان و بخصوص
فرآیند بارش-روانی بررسی شدند.

شیب‌پایی بارش-روانی بر اساس داده‌های ثبت شده همانگونه که آمده بارش جریان رودخانه‌ها برای دوره‌های آتی و با توجه به بحث تغییر اقلیمی از مدل ANN استفاده شد. به منظور آموزش و صحبت‌پایی شیبکه، ابتدا تمامی ایستگاه‌های هویونسی با استفاده سد چادگان مورد آزمون قرار گرفتند که از این بین داده‌های هویونسی ایستگاه‌های دامنه فریدن و چهل کرد بهترین نتایج را در عملکرد بهتر شیبکه به‌مراتب
داشتند. دوره‌های مورد استفاده از این استگاه‌ها شامل ۱۳۹۶ تا ۱۳۸۰ و اکثر بارش‌ها به سد نیز برای همین دوره تهیه گردید که جریان طبیعی رودخانه و آب انتقالی از تونل‌های ۱ و ۲ هر نگک در شالی‌می‌شد. از این آماده، سال‌های ۱۳۷۸ تا ۱۳۷۵ آزمایش و دوره ۱۳۸۰ نیز برای دوره صحبت‌پایی در نظر گرفته شد. سپس شبکه‌های مختلف عصبی با مدل‌های موردی زیر مورد ارزیابی قرار
گرفت.

\[
Q(t) = f(R(t))
\]
(مدل ۱)

\[
Q(t) = f(R(t), T_{avg})
\]
(مدل ۲)

\[
Q(t) = f(R(t), T_{max}(t), T_{min}(t))
\]
(مدل ۳)

یک سیستم پردارای اطلاعات می‌باشد که از تعداد ANN زیادی عصب‌های پرداراهگر که به طور معمول با یکدیگر در ارتباط هستند تشکیل شده است. مدل شبکه عصبی مصنوعی قادم میانش با استفاده از الگوریتم‌های موجود
فرآیند مورد نظر (در اینجا فرآیند بارش-روانی) روابط
پیچیده بین آنها را شناسایی کرده و یادگیری و در نهایت بر
اساس مجموعه‌های از ورودی‌ها خروجی مورد نظر را
شیب‌پایی بارش-روانی تهیه کرده و به عنوان ورودی به مدل ارزیابی
شد. به علاوه با توجه به برخی بودن حوضه و تغییر موثری
خوش‌افزاری در شیب‌پایی بارش-روانی در این‌گونه حوضه‌ها
(۱) این متغیر هویونسی هم به عنوان ورودی دیگر مورد
ارزیابی قرار گرفت. ولی به دلیل نبود آمار کافی
از آن بر اساس روش هارگریز و سیاسی‌بی‌آرورود
گردید (۱۰):

\[
R_{a} = k(T_{max} - T_{min})^{0.5} R_{a}
\]

در این رابطه

\[
R_{a} = \text{متر تابش خورشید سیاه به سطح زمین و بالای (انرژی)}
\]

\[
T_{min}
\]

درجه حرارت

\[
T_{max}
\]

جراح و حوادث

\[
\mu
\]

ضرب تحریم بوده

\[
R_{a}
\]

که

\[
R_{a}
\]

راه شیب‌پایی مشابه آب و هوایی ظرفیتی می‌کند که

\[
10^{16}
\]

تا ۱۱ به داشته و با توجه به شیب‌پایی

\[
19\%
\]

در نظر گرفته شده است (۳). هم‌چنین شرح

محاسبه

در مجموع ۸ آماده است.
کوکچق میثاق کرد و تصحیح داده‌های مدل گردهش

HadCM3 عمومی

اشتهای شد که بنابر روش‌های طرح بازندگی و دمایی (متوسط، حداقل و چندین) ماهانه مربوط برای داده‌های HadCM3 عمومی B2 و A2 مورد استفاده قرار گرفته است. به‌منظور بالا بردن دقت وضوح مقایسه‌ای این داده‌ها با استفاده از روش کریجینگ (Kriging) (1) بیان شده که شرک آن در مجموع 11 آمد است. همچنین جهت تغییر میان‌دانه مدل GCM بر اساس اطلاعات ایستگاه دامنه فریب در دما و چهل کرگ برای بازندگی داده‌های این مدل برای سال‌های 1990-2001 تغییر نشده و با استفاده از روابط 1 و 2 تصحیح شدند.

تجزیه و تحلیل بازندگی بر اساس داده‌های نگیر اقیمی

با توجه به آنچه آمده مقدار بازندگی برای دامنه‌های زمینی آتی تولید گردیده و با دوره آماری دراز مدت موجود می‌باشد، برای استیگه چهل کرگ میزان متوسط سالانه 30 ساله بازندگی در دوره 2001-2006 میلی‌متر افزایش و در سال‌های 2001-2002 میلی‌متر کاهش نسیب به دوره 2001-2002 داشته است. این تغییرات برای دوره برای دامنه ارتفاعی در سال‌های 2001-2002 و آمار کمتر افزایش نسبت به دوره 2001-2002 قابل پیش‌بینی است (جدول 3). شکل‌های 1 و 3 دانه داده‌های افزایش بازندگی در ماه‌های پاییز و کاهش در سایر ماه‌ها دایمی می‌باشند. علاوه بر میانگین‌ها، فراوانی سال‌های خشک و تواالی آنها نیز بررسی شده و

\[Q(t) = \frac{R(t) + \sum_{m=1}^{K} X_m Y_m}{\sum_{m=1}^{K} X'_m \sum_{m=1}^{K} Y'_m} \] \hspace{1cm} (4)

\[R^{\prime} = \sqrt{\frac{\sum_{m=1}^{K} X_m Y_m}{\sum_{m=1}^{K} X'_m \sum_{m=1}^{K} Y'_m}} \] \hspace{1cm} (5)

\[RMSE = \sqrt{\frac{\sum_{m=1}^{K} (X_m - Y_m)^2}{K}} \] \hspace{1cm} (6)

\[MAE = \frac{\sum_{m=1}^{K} |X_m - Y_m|}{K} \] \hspace{1cm} (7)

سپاس از مسئولان، محققین و منابع

در روابط فوق \(X_m \) مقادیر مشاهداتی \(Y_m \) مقادیر پرآورده

22
جدول ۲. عملکرد مدل‌های ورودی برای شبیه‌سازی بارش-روانگر در ورودی به سد چادگان

<table>
<thead>
<tr>
<th>مدل</th>
<th>معماری</th>
<th>آموزش</th>
<th>صحت پایی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R²</td>
<td>RMSE</td>
<td>MAE</td>
</tr>
<tr>
<td>۱</td>
<td>0/۰۶</td>
<td>7/۸۲</td>
<td>9/۰۲</td>
</tr>
<tr>
<td>۲</td>
<td>۹/۰۸</td>
<td>۷/۸۲</td>
<td>۹/۰۴</td>
</tr>
<tr>
<td>۳</td>
<td>۸/۸۱</td>
<td>۷/۸۲</td>
<td>۹/۰۴</td>
</tr>
<tr>
<td>۴</td>
<td>۷/۸۲</td>
<td>۷/۸۲</td>
<td>۹/۰۴</td>
</tr>
<tr>
<td>۵</td>
<td>۷/۸۲</td>
<td>۷/۸۲</td>
<td>۹/۰۴</td>
</tr>
</tbody>
</table>

جدول ۳. پارامترهای آماری سالانه دما و بارندگی استان گلستان دانه‌فريدن و چهل‌گرد و دیگر ورودی به سد چادگان تحت سانیورهای A2 و B2

<table>
<thead>
<tr>
<th>دوره</th>
<th>پارامتر آماری</th>
<th>درجه حرارت (°C)</th>
<th>بارندگی (mm)</th>
<th>دما (°C)</th>
<th>بارندگی (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۹۷۱-۲۰۰۰</td>
<td>میانگین</td>
<td>۹/۵۵</td>
<td>۱۲۵۸</td>
<td>۹/۵۵</td>
<td></td>
</tr>
<tr>
<td>اندوکیری شده</td>
<td>انحراف معیار</td>
<td>۳۷/۱/۲</td>
<td>۳۷/۱/۲</td>
<td>۳۷/۱/۲</td>
<td></td>
</tr>
<tr>
<td>ضریب تغییرات</td>
<td></td>
<td>۲۵/۵</td>
<td>۲۵/۵</td>
<td>۲۵/۵</td>
<td></td>
</tr>
<tr>
<td>۲۰۰۱-۲۰۰۹</td>
<td>میانگین</td>
<td>۹/۱</td>
<td>۱۵۵</td>
<td>۹/۱</td>
<td></td>
</tr>
<tr>
<td>ضریب تغییرات</td>
<td></td>
<td>۲۱/۱</td>
<td>۲۱/۱</td>
<td>۲۱/۱</td>
<td></td>
</tr>
<tr>
<td>۲۰۱۰-۲۰۳۹</td>
<td>میانگین</td>
<td>۹/۶</td>
<td>۱۲۵۸</td>
<td>۹/۶</td>
<td></td>
</tr>
<tr>
<td>ضریب تغییرات</td>
<td></td>
<td>۳۴/۵</td>
<td>۳۴/۵</td>
<td>۳۴/۵</td>
<td></td>
</tr>
<tr>
<td>۲۰۷۰-۲۰۹۹</td>
<td>میانگین</td>
<td>۹/۱</td>
<td>۱۵۵</td>
<td>۹/۱</td>
<td></td>
</tr>
<tr>
<td>ضریب تغییرات</td>
<td></td>
<td>۲۱/۱</td>
<td>۲۱/۱</td>
<td>۲۱/۱</td>
<td></td>
</tr>
</tbody>
</table>

شکل ۲. توزیع ماهانه بارندگی در این مدت. طی دوره مشاهده شده دو دوره تغییرات اقیمی سیستمی A2
در مدت دمای متوسط ماهانه نشان از افزایش دما در اکثر ماهه دارد (شکل های ۴ و ۵). مجدد برای سناریوی A2 شدت بحرانی تری قابل پیش‌بینی می‌باشد.

برآورد به جریان ورودی به مخزن سد بالا گان بر اساس داده‌های تغییر اقلیمی به منظور برآورد جریان ورودی به سد بالا گان در دوره‌های ۲۰۱۰-۲۰۳۹ و تحت سناریوهای A۲ و ۲۰۰۹-۲۰۷۹ تحت سناریوهای B۲ اینجا داده‌های مورد نیاز مدل ۵ از داده‌های تغییرات اقلیمی به‌طور چگونه باز کرده و از داده‌های متنوع اطرافش شده معرفی شد و مقادیر ورودی به سد بالا گان شیب‌سازی گردیدند. نتایج نشان داد که متوسط دمای سناریوی A2 در دوره ۲۰۳۹-۲۰۷۹ به میزان ۲/۱ مترمکعب در ثانیه در A۲ و ۱/۹ مترمکعب در ثانیه در B۲ نسبت به دوره ۲۰۰۹-۲۰۳۹ به ترتیب کاهش دارد. این مقادیر در دوره ۲۰۰۹-۲۰۳۹ به ترتیب ۷/۷ و ۹/۷ مترمکعب در ثانیه کاهش در سناریوهای A۲ و B۲ می‌باشد (جدول ۳). همان‌طور که اندازه‌گیری میزان جریان در دوره‌های ۲۰۰۹-۲۰۳۹ و میزان فرآیند به نسبت به سناریوی A۲ در دوره ۲۰۱۰-۲۰۳۹ و سناریوی B۲ وضعیت بودتر را نسبت به سناریوی A۲ داراست. همچنین نتایج نشان می‌دهد که میزان ضریب تغییرات دی نیز در دوره‌های آتی افزایش خواهد گرفت. نتایج نشان داد که تعداد سال‌های خشک متوالی در سناریوی A۲ از سال ۲۰۰۹ در دوره ۲۰۳۹-۲۰۷۹ به ۸ سال در دوره ۲۰۱۰-۲۰۳۹ و ۱۱ سال در دوره ۲۰۰۹-۲۰۷۹ افزایش یافته است. این مقدار در سناریوی B۲ برای ۲ سال در دوره ۲۰۱۰-۲۰۳۹ و ۳ سال در دوره ۲۰۰۹-۲۰۷۹ می‌باشد.

بدین ترتیب نتایج می‌کوید که سناریوی B۲ در دوره‌های ۲۰۰۹-۲۰۱۰ تغییرات محسوس تحت سناریوی مطلاعه نداشت باشد. ولی کاهش بارندگی در دوره ۲۰۰۹-۲۰۷۹ تحت هر دو سناریو قابل توجه می‌باشد. مقایسه سناریوهای A۲ و B۲ نشان از وضعیت بحرانی‌تر سناریوی A۲ در منطقه مورد مطالعه دارد.

تجزیه و تحلیل دما بر اساس داده‌های تغییر اقلیمی بررسی تغییرات دما برای منطقه طرح و بر اساس ایستگاه‌های فریبدن برای سناریوهای مختلف اقلیمی نشان از افزایش آن در دوره‌های آتی دارد. به کنونی که می‌تواند متوسط ماهانه دراز مدت در سناریوهای A۲ و B۲ به ترتیب ۱/۱ و ۱/۲ درجه سانتی‌گراد در دوره ۲۰۰۹-۲۰۱۰ نسبت به ۲۰ سال اطلاعات پایه مطالعات افزایش داشته است. این افزایش در دوره ۲۰۰۹-۲۰۷۹ برای سناریوهای A۲ و B۲ به ترتیب ۴/۶ و ۳/۷ درجه سانتی‌گراد پیش‌بینی می‌شود (جدول ۳). همچنین نتایج

24
انرژی تغییر اقلیم بر جریان رودخانه‌زایی‌های اصفهان

شکل ۴. توزیع ماهانه درازمدت، طی دوره مشاهده شده و دوره‌های تغییرات اقلیمی سال‌هایی

(callers, 2010-2039, 2070-2099)

شکل ۵. توزیع ماهانه درازمدت، طی دوره مشاهده شده و دوره‌های تغییرات اقلیمی سال‌هایی

(callers, 2010-2039, 2070-2099)

شکل ۶. میانگین متوسط ماهانه درازمدت دی و ورودی به مخزن، طی دوره مشاهده شده و دوره‌های تغییرات اقلیمی سال‌هایی

(callers, 2010-2039, 2070-2099)
نتیجه‌گیری

در این مقاله اثر نقل‌گری روی منابع آب حوضه زاینده‌رود اصفهان در دوره‌های 1394-1395، به‌عنوان مدلهای نقل‌گری بررسی شد. هدف اصلی این مطالعه، بررسی تغییرات سطح آب در منابع آب حوضه زاینده‌رود اصفهان در دوره‌های 1394-1395 بود.

نتیجه‌گیری‌هایی که می‌تواند جای‌گزینی داشته باشد، بالا رفتن ضریب تغییرات جریان طی دوره‌های آتی است. در حالی که در دوره‌های آتی، ضریب تغییرات حدود 31 درصد است، در دوره‌های 1394-1395، ضریب تغییرات حدود 42 درصد بود.

در صورت ادامه تغییرات جریان در منابع آب حوضه زاینده‌رود اصفهان، نتایج این مطالعه، می‌تواند یک جایگزینی داشته باشد.
اثرات تغییر اقلیم بر چربیان رودخانه زاینده‌رود اصفهان

و کاشف آب کشاورزی و کاهش امینت غذاهای غواه‌بدود. پایه‌گذاری که مراجع (11 و 14) نیز بدان رسيده‌بوده و در مقدمه به آنها اشاره شد.

سیاست‌گزاري

نویسنده‌گان لازم می‌دانند از همکاری و مساعدت سازمان‌های

منابع مورد استفاده

1. سلطانی، س. 1381. ارزیابی شبکه‌های عصبی مصنوعی در پیش‌بینی کلاه‌های مدت و میان مدت جریان رودخانه‌ها. پایان‌نامه کارشناسی ارشد سازمان‌های آب، دانشگاه کشاورزی، دانشگاه تربیت مدرس، تهران.