اثرات تغییر اقلیم بر چرایان رودخانه زاینده‌رود اصفهان

عیبرضا مساح بوانی و سعید مریدا

چکیده

تحقیق حاصل آثار ناشی از تغییر اقلیم روی دما، اثرات ناگهانی مرتبط با دمای دنیا و افزایش میزان بارش‌ها، بخشی از دستورالعمل‌های جهانی در زمینه کاهش کربنی هستند. این تحقیق با استفاده از ادغام منابع مرتبط با دمای دنیا، به اثربخشی بارش‌ها در افزایش میزان بارش‌ها و سطح آب‌های دمای دنیا می‌پردازد.

واژه‌های کلیدی: تغییرات اقلیمی، مدل گردهمایی، سطح بارش‌ها، شرایط مکانی، حوضه زاینده‌رود

مقدمه

گزارش‌های (Intergovernmental Panel on Climate Change) حاکی از آن است که به دلیل افزایش دمای اقلیمی، موقعیت جغرافیایی، طبیعت، گیاه‌شناسی و اقتصادی کلاه‌های در دهه‌های گذشته در جو زمین، در این استان، حاوی امواج حرارتی است و به دلیل بارش‌های سطحی، افزایش در مقایسه با سطح بارش‌های سال قبل را داشته است.

به طور کلی، این آمارها نشان می‌دهند که در حوضه زاینده‌رود، دما و بارش‌ها در طول دهه‌های گذشته بوده که در دهه‌های اخیر شابیده بیشتری یافته است. این اثر در حالتی که اگر انتظار این گزاره‌ها کاهش یابد، می‌تواند به بنیاد متوسط دمای صلحی کره زمین می‌تواند به میزان 1 تا 3 درجه سانتی‌گراد تا سال 2000 افزایش یابد. طبق گزارش‌های IPCC تغییر اقلیمی منجر از افزایش فاصله بین چشمه‌ها و ایستگاه‌های تغییرات در
هریم هیدرولوژیی در جنده دهنده در سطح جهان شده است. به طوری که بازگشایی و جویان به‌طور مقطعی در وضعیت در حرارتی بازیابی و بازیابی شده و اعتماد و بازخوانی با برهم‌خویشتهای پیش‌تر و مکانیک خودکار مانند سیلوپ و خشکسالی در راه‌اندازی‌های است. به دلیل اهمیت برقراری ارتباط و تبانی که می‌تواند روزی باشد، در سالهای اخیر این مهم برای حضور شدید ابریز مختلط در سطح کره زمین می‌باشد. انگل و هاف (1997) در پژوهش تغییرات توسعه بارش‌های شدید

(Non stationary)

یافته‌های این بررسی توسط مدل‌های مختلفی مانند مدل گردش عمومی (GCM) بررسی قرار داده شده است. تمام مدل‌ها به جز دو مدل، از این‌ها داده‌های گذشته بارندگی در این منطقه می‌تواند با اشکال خاصی باشد (9). گلدن و رولین (1998) تأثیر این پدیده را بر جریان و رودخانه‌ام در حوضه بازیکن، تحت خروجی‌های شدید مدل مورد بررسی قرار داد. مدل گردش عمومی (GCM) بررسی قرار دادن. تمام مدل‌ها به جز دو مدل، از این‌ها داده‌های گذشته بارندگی در این منطقه می‌تواند با اشکال خاصی باشد (9). گلدن و رولین (1998) تأثیر این پدیده را بر جریان و رودخانه‌ام در حوضه بازیکن، تحت خروجی‌های شدید مدل مورد بررسی قرار داده شده است.

مکمل و مواد و روش‌ها

میراث طبیعی

حویضه زاینده‌رود با مساحت ۴۱۵۰۰ کیلومتر مربع در استان اصفهان واقع شده است. رودخانه اصلی این حوضه با اسم‌بزرگه‌ای غربی-شرقی از کوه‌های زاگرس می‌فرลงه و به باطقلاه کارخونی ختم می‌شود و در طی مسیر ضمن سطح‌های بخشی از صنعت منطقه شهر اصفهان از آن آرازی کشاورزی را شکست و مسئول برای انتقال مواد و رودخانه‌ام. جریان انتقالی از نقل‌های شماره ۱ و ۲ و ۳ که در منطقه جنوبی بحث و روزی تخریب‌زا مانی آزاد که توسط مرسیسون و همکاران

(Non stationary)

یافته‌های این بررسی توسط مدل‌های مختلفی مانند مدل گردش عمومی (GCM) بررسی قرار دادن. تمام مدل‌ها به جز دو مدل، از این‌ها داده‌های گذشته بارندگی در این منطقه می‌تواند با اشکال خاصی باشد (9). گلدن و رولین (1998) تأثیر این پدیده را بر جریان و رودخانه‌ام در حوضه بازیکن، تحت خروجی‌های شدید مدل مورد بررسی قرار داده شده است.

مکمل و مواد و روش‌ها

میراث طبیعی

 حویضه زاینده‌رود با مساحت ۴۱۵۰۰ کیلومتر مربع در استان اصفهان واقع شده است. رودخانه اصلی این حوضه با اسم‌بزرگه‌ای غربی-شرقی از کوه‌های زاگرس می‌فرลงه و به باطقلاه کارخونی ختم می‌شود و در طی مسیر ضمن سطح‌های بخشی از صنعت منطقه شهر اصفهان از آن آرازی کشاورزی را شکست و مسئول برای انتقال مواد و رودخانه‌ام. جریان انتقالی از نقل‌های شماره ۱ و ۲ و ۳ که در منطقه جنوبی بحث و روزی تخریب‌زا مانی آزاد که توسط مرسیسون و همکاران

(Non stationary)

یافته‌های این بررسی توسط مدل‌های مختلفی مانند مدل گردش عمومی (GCM) بررسی قرار دادن. تمام مدل‌ها به جز دو مدل، از این‌ها داده‌های گذشته بارندگی در این منطقه می‌تواند با اشکال خاصی باشد (9). گلدن و رولین (1998) تأثیر این پدیده را بر جریان و رودخانه‌ام در حوضه بازیکن، تحت خروجی‌های شدید مدل مورد بررسی قرار داده شده است.
مدلهای تولید داده برای دوره‌های آتی با توجه به تغییر اقلیم بارندگی و دما، در انتظار هواشناسی حساسی که در بررسی تغییر اقلیم نقش تعیین‌کننده‌ای را ایفا می‌کند. به منظور شبیه‌سازی آنها برای دوره‌های آتی تحت آن‌اندیه، از مدل‌های اقلیمی مختلف استفاده می‌شود. این مدل‌ها به دو دسته مدل‌های آموز و مدل‌های گردش عمومی گروه (GCM) تقسیم می‌شوند (12). استفاده از مدل‌های GCM بیشتر مورد تایید و توجه بوده است.

مدلهای گردش عمومی گروه (GCM) مدل‌های گردش عمومی عدیدی بوده که فرایندهای مابین اتمسفر، اقیانوس، بخش کره (Cryosphere) و سطح زمین را به

طرح سه بعدی شبیه‌سازی می‌کند. این مدل‌ها با در نظر گرفتن یک شبکه سه بعدی، نوعاً با مقیاس افقی (طول جغرافیایی) ۱۵۰ کیلومتر، ۱۰ تا ۲۰‌ها و عموی در انتخاب بخش خشکی زمین و بیش از ۲۳۰‌ها در اقیانوس‌ها، پارامترهای اقلیمی را تولید می‌نمایند. تاکنون مدل‌های گردش عمومی مختلفی در مراکز مختلف تحقیقاتی تدوین و طراحی GFDL، GFDLT، شده است. از آن جمله می‌توان به مدل‌هاي، گیس UKMO، سویلر، GISS UKMO، MPI، CCC، ECHAM4 اشاره کرد (11 و 17). از آنجا که مهم‌ترین ورودی این مدل‌ها میزان انتشار گازهای گلخانه‌ای در دوره‌های آتی بوده و از طرف دیگر محاسبه و تعیین انتشار این گازها در دوره‌های آتی به طور قطعی اکسانیدر نمی‌باشد، از این رو سناریوهای مختلفی که شامل چگونگی تغییرات این گازها در آینده می‌باشد، ارائه شده

شکل ۱. موقعیت منطقه مطالعاتی و رودخانه زاینده‌رود

اینگاه دانه

روخانه زاینده‌رود

شیل اصفهان

نوقشان ۱ و ۲

سد زاینده‌رود

اینگاه جهنگرد

منطقه کامپوری
تصحیحات شامل دو مرحله کوچک مقیاس کردن و تغییر میدان (Change field) داده‌های IPCC نشان داده می‌باشد (12). در کوچک مقیاس کردن داده‌های IPCC نهایی، پس از تأیید مقایسه اطلاعات بالا، رشد میدان این تحقیق که داده‌ها به روش زمین‌آموزی (Kriging) توسط مرکز ایتک (ITC) به‌کمک اندازه‌گیری (GCM) می‌باشد.

در خروجی این مدل‌ها که برای دوره‌های گذشته اجرای داده‌های انداده‌گیری شده در دوره آماری مشابه استفاده می‌شود در این بررسی تعیین‌کننده صورت می‌گیرد. تعیین‌کننده صورت می‌گیرد که خصوصیاتی از داده‌های میانگین (Médian) داده‌های IPCC از داده‌های انداده‌گیری شده می‌باشد. سپس این تعیین‌کننده برای داده‌های آینده دنباله‌های GCM اعمال می‌گردد. در این پژوهش از روش Kassel (3) استفاده شده و داده‌های IPCC امانی سیاست‌گذاری توسط مرکز ایتک (ITC) استفاده شده است.

\[T'_{GCM,flat} = (T_{ob} - T_{GCM,flat}) + T_{GCM,flat} \]
\[P'_{GCM,flat} = (P_{ob} - P_{GCM,flat}) + P_{GCM,flat} \]

در روابط بالا، \(T_{ob} \) و \(P_{ob} \) به ترتیب برای مقایسه میانگین دما و از داده‌های اندازه‌گیری شده در استانی‌های مورد نظر، بارندگی انداده‌گیری شده در استانی‌های مورد نظر.

شیبی‌سازی باران - روان‌سازی

جفت بررسی آثار تغییر اقلیم بر روی اقتصاد استفاده نشان داده‌های IPCC نشان داده می‌باشد. شیبی‌سازی باران بر روی اقتصاد استفاده نشان داده‌های IPCC نشان داده می‌باشد. زمان‌بندی اقلیم بر روی اقتصاد استفاده نشان داده می‌باشد.

کوچک مقیاس کردن (Downscaling)

با توجه به وضعیت کاقری (Resolution) پایین مدل‌های IPCC استفاده از آنها در مقیاس منطقه‌ای امکان‌پذیر نبوده و از طرف دیگر مقیاس خروجی‌های آنها برای دوره‌های گذشته با داده‌های مشاهداتی مشابه استفاده از وسایل اختلافی دارد. از این رو لازم است هنگام استفاده از آنها تصحیحاتی اعمال کرده. این

(3784)
نتایج و بحث

عمده معاینات آبی رودخانه زایندرود در اصفهان از حوضه‌های بالادست تا نامی می‌باشد. از اینرو گزارش‌های اقتصادی ایستگاه‌های این ناحیه برای تحلیل‌های مورد نیاز این تحقیق و بخصوص فرآیند بارش-روانی بررسی شده‌اند.

شیب‌سازی بارش-روانی بر اساس داده‌های ثبت شده همان‌گونه که آمده برآورده رسیده برای رودخانه‌های با دمای بالا و با توجه به بحث تغییر بارش‌های مناسب، استفاده مدل ANN به منظور آموزش و صحبت با شبکه. این مدل می‌تواند در شیب‌سازی در حال حاضر به عنوان یک روش اپتی‌میک و کاربردی در استفاده از این تکنیک شناسایی و روندی مورد بررسی مورد است. برای این تحقیق بارنگی و دما به عنوان روندی به مدل ارزیابی شد. به علاوه تأکید به بررسی بودن حوضه و تشخیص موثر تاپش خورشیدی در شیب‌سازی رواناب در این ناحیه حوضه‌ها (1) این منگر هوشمندی هم به عنوان روندی دیگر مورد ارزیابی قرار گرفت. ولی به دلیل نیاز ایمنی آمار کانی از آن بر اساس روش‌های هارگریوز و سیاست‌های BR-آورود گردید (100): 3

\[R_s = k(T_{max} - T_{min})^{0.64} R_u \]

در این رابطه به ترتیب تاپش خورشید رسیده به یک تاکید در محدوده‌های T_{min} و T_{max} 34 درجه حرارت حداکثر و حداقل (C) تایید می‌باشد. k تغییر بی‌ریزه بوده که R_s را برای شرایط مختلط آب و هوای تعداد می‌کند که محاسبه محدوده‌ای بین 20 تا 60 داشته و به توجه به شرایط حوضه 19 مورد نظر گرفته شده است (2). همچنین شرح محاسبه R_s در منبع 8 آمده است.
Q(t) = f (R(t), Tmin(t), Tmax(t), Rs(t))

Q(t) = f (R(t), R(t-1), Tmin(t), ...)

\[C(t) = \sum_{m=1}^{K} X_m Y_m \]

\[RMSE = \sqrt{\frac{1}{K} \sum_{m=\min}^{K} (X_m - Y_m')^2} \]

\[MAE = \frac{1}{K} \sum_{m=\min}^{K} |X_m - Y_m'| \]

\[f(t) = R(t), T_{min}(t), T_{max}(t), R_{s}(t) \]

\[f(t) = R(t), R(t-1), T_{min}(t), T_{max}(t-1), T_{min}(t), T_{max}(t), R_{s}(t) \]

\[20\% \text{ (Mean Absolute Error) MAE} \]

\[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \text{ (Median Error) ME} \]
جدول 2. عملکرد مدل‌های ورودی برای شبیه‌سازی پارش-روان‌در در ورودی به سد چادگان

<table>
<thead>
<tr>
<th>مدل</th>
<th>آموزش</th>
<th>صحيح‌پذیری</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R^2</td>
<td>RMSE</td>
</tr>
<tr>
<td>1</td>
<td>0.67</td>
<td>5.24</td>
</tr>
<tr>
<td>2</td>
<td>0.18</td>
<td>4.24</td>
</tr>
<tr>
<td>3</td>
<td>0.36</td>
<td>3.12</td>
</tr>
<tr>
<td>4</td>
<td>0.86</td>
<td>1.27</td>
</tr>
<tr>
<td>5</td>
<td>0.88</td>
<td>0.71</td>
</tr>
</tbody>
</table>

جدول 3. پارامترهای آماری سالانه دما و بارندگی استفاده شده در مدل‌های دامنه فریدن و چهلمید و دی و ورودی به سد چادگان تحت سیارهای A2 و B2

<table>
<thead>
<tr>
<th>پارامتر آماری</th>
<th>دوره</th>
<th>بارندگی (mm)</th>
<th>دمای درجه حرارت (°C)</th>
<th>دمای درجه حرارت (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(اندازه‌گیری شدید)</td>
<td>1971-2000</td>
<td>1458</td>
<td>9.9</td>
<td>1458</td>
</tr>
<tr>
<td>(اندازه‌گیری معتدل)</td>
<td>1971-2000</td>
<td>371</td>
<td>21</td>
<td>31</td>
</tr>
<tr>
<td>(خطرنگ)</td>
<td>2010-2039</td>
<td>255</td>
<td>9.1</td>
<td>255</td>
</tr>
<tr>
<td>(خطرنگ)</td>
<td>2070-2099</td>
<td>124</td>
<td>11</td>
<td>124</td>
</tr>
<tr>
<td>(خطرنگ)</td>
<td>2010-2039</td>
<td>27</td>
<td>124</td>
<td>27</td>
</tr>
<tr>
<td>(خطرنگ)</td>
<td>2070-2099</td>
<td>31</td>
<td>11</td>
<td>31</td>
</tr>
<tr>
<td>(خطرنگ)</td>
<td>2010-2039</td>
<td>31</td>
<td>11</td>
<td>31</td>
</tr>
<tr>
<td>(خطرنگ)</td>
<td>2070-2099</td>
<td>31</td>
<td>11</td>
<td>31</td>
</tr>
</tbody>
</table>

شکل 2. توزیع ماهانه بارندگی دراز مدت، طی دوره مشاهده شده و دوره‌های تغییرات اقلیمی سیاره‌های A2.
در مدت دمای متوسط ماهانه نشان از افزایش دما در أكثر ماه‌ها دارد (شکل‌های ۲ و ۳). محدوداً برای سناریوی A2 شرایط بحرانی‌تری قابل پیش‌بینی می‌باشد.

برآورده جریان ورودی به مخزن سن دادگان بر اساس داده‌های تغییرات اقلیمی به منظور برآورده جریان ورودی به سد دادگان در دوره‌های ۲۰۱۰–۲۰۳۹ و ۲۰۷۰–۲۰۹۹ تحت سناریوهای A2 و B2 ایجاد اعمال سناریوی در مدل نیاز مد از داده‌های تغییرات اقلیمی به‌طور چگالی به مدل شبکه عصبی مصنوعی طراحی شده معرفي شد و مقادیر ورودی به سد دادگان شبيه‌سازی گردیدند. نتایج نشان داد که متوسط دمای سناریوی B2 در دوره ۲۰۷۰–۲۰۹۹ به میزان ۱/۳ متر مکعب در سناریوی A2 به میزان ۱/۱ متر مکعب در نتایج به داشته باشد.

تجزیه و تحلیل دما بر اساس داده‌های تغییرات اقلیمی بررسی تغییرات دما در وضعیت طرح و بر اساس ایستگاه دامنه فری‌دن برای سناریوهای مختلف اقلیمی نشان از افزایش آن در دوره‌های آینده دارد. بهونه که دمای متوسط ماهانه دراز مدت در سناریوهای A2 و B2 به ترتیب ۱/۲ و ۱/۳ درجه سانتی‌گراد در دوره ۲۰۳۹–۲۰۷۰ نسبت به ۰/۳۰ سال اطلاعات پایه مطالعات افزایش داشته است. این افزایش در دوره ۲۰۷۰–۲۰۹۹ برای سناریوهای A2 و B2 به ترتیب ۳/۴ و ۳/۷ درجه سانتی‌گراد به بیشترین میزان مشود (جدول ۱) همچنین توزیع

[۲۴]
شکل ۴. توزیع ماهانه دما در هر دهه، طی دوره مشاهده شده و دوره‌های تغییرات اقلیمی ستارویی A2

شکل ۵. توزیع ماهانه دما در هر دهه، طی دوره مشاهده شده و دوره‌های تغییرات اقلیمی ستارویی B2

شکل ۶. میانگین متوسط ماهانه در هر دهه و دوره مشاهده شده و دوره‌های تغییرات اقلیمی ستارویی A2
شکل 7 میانگین متوسط ماهانه دراز مدت دی و ورودی به منطقه، طی دوره مشاهده شده و دوره‌های تغییرات اقلیمی سناریوی B2

پایتخت‌های که میزان افزایش آب حوضه‌های زاینده‌رود در دوره‌های 2009-2010 و 2012-2013 نسبت به دوره مشاهده‌ای برابر 132 و 143 درصد به ترتیب در سناریوی B2 و سناریوی A2 می‌باشد. این مقدار در دوره 2009-2012 و سناریوی B2 و سناریوی A2 برابر با 140 و 197 درصد افزایش است.

از طرف دیگر تغییرات جریان محدود به میانگین و ضریب تغییرات نشده، بلکه توزیع سالانه جریان را نیز در بر می‌گیرد.

گرفت که این مهم در شکل‌های 6 و 7 نشان داده شده‌اند.

نتیجه‌گیری

در این مقاله آثار تغییرات بارندگی روی منابع آب حوضه‌های زاینده‌رود اصفهان در دوره‌های 2009-2010 و 2012-2013 با استفاده از مدل گردش عمومی HadCM3 تحت دو سناریو تغییرات اقلیمی SRES مورد تجزیه و تحلیل قرار گرفت.

نتایج در مجموع نشان از کاهش میزان بارندگی و افزایش دما درود به طوری که انظار می‌روید میزان بارندگی در دوره 2009-2010 و 2012-2013 تحت سناریوی B2 و در دوره 2009-2012 تحت سناریوی A2 نسبت به دوره پایه‌ای مطالعاتی (2000-2008) مواجه باشد. نتیجه‌گیری و تحلیل‌های داده‌های دما
ماتان مرد استفاده