بررسی کاربرد روش فازی (Fuzzy)

d(طبقه‌بندی خاک‌ها، مطالعه موردی:

چشم‌های سفید کرمانشاه

پروژه شکاری و مجید باقرزاده

چکیده

تغییر در ویژگی‌های خاک عمداً حالت آبی‌از دارد. روشن که، بی‌توجهی این پیشگی‌ها را در نظر می‌گیرد. قادربه‌ارائه تصویر واقعی‌تری از

الگوریتم پرکاشش خاک‌ها در فضای رده‌بندی و هم می‌باشد. فازی چنین گفته‌ها را می‌داند. در این مطالعه، کارآفرینی برای شناخت نوع خورش، پیش‌بینی ورودی‌های جغرافیایی خواهند. بر حسب ایران مورد بررسی قرار گرفت. خوشه‌بندی در

طقس کیفیتی سازی یک نتیجه در تغییر درجه عضویت که در هر یک از کلاس‌ها به‌نام فازی 1/5 تا 1/5 انجام گرفت. پس از

تغییر اعتبار خوشه‌بندی تعداد بهتره‌کلاس‌ها برای زیر مجموعه‌های کل، ریخت شناختی و بافت به ترتیب 40 و 50 تنی شد. نمونه‌های

در حجت عضویت تخصصی بالا به حس پدید می‌آید، این کلاس‌ها به‌پیشگی‌های طبقه‌بندی و پیشگی‌های پیشگی‌های قابل توجه‌بود. با توجه

به نمای کم‌ترین کلاس‌های منطقه و شباهت زیاد خواص آنها، روشن می‌کند از حساسیت بالایی در تشخیص تپه‌های مختلف خاک برخوردار

است. به علاوه این کلاس‌های فازی حاصله و شکل اراضی نیز ارتباط وجود داشت. کاربرد این روش در تهیه سیستم‌های طبقه‌بندی و نیز

تغییر کیفیتی پیش‌بینی با سطح نگرشی در حد پدید قابل بررسی است.

واژه‌های کلیدی: تابع عضویت، خوشه‌بندی فازی، تغییر، پیش‌بینی، ارزیابی طبقه‌بندی

مقدمه

تغییر در ویژگی‌های خاک اغلب حالت تدریجی و پیشگی‌های

(1) اگرچه تغییرات ناهمگنی نیز در خاک‌ها دیده می‌شود، ولی

چنین حالتی استثنایی نیست (11). در برخی مناطق ویژگی‌های

محیط، تغییرات پیشگی‌ها در حاکم‌ها تشکیل می‌کنند و مرز میان

آنها را کاملاً مهم جلوه می‌دهند. به عنوان مثال می‌توان به آنکه

زیاد (تا بیش از 0.5) و مواد مادی ریز یافته در بخش زیبایی

1. به ترتیب دانشجوی دکتری و دانشیار خاک‌شناسی، دانشگاه کاشان، دانشگاه علوم و فناوری محیطی و منابع طبیعی، سال نهم / شماره چهارم / سال 1384

2. مقدمه از ایران و از جمله مناطق غرب ایران کرد

3. در نتیجه، خصوصیات فیزیکی و شیمیایی خاک مانند

4. نگاه، استحکام، وقت، کربنات کلسیم معاد و فریت تبادل

5. کاتیونی و حتی ویژگی‌های خیزش شناختی که از میزان‌ها

6. اصلی در طبقه‌بندی و نقشه برداری خاک‌ها هستند، کمال

7. ندیده به هم است. حتی در مناطق مرطوب که تغییر خاک‌ها

8. در نمای اراضی بیشتر است، مرز بین خاک‌ها اغلب مهم

9. مقدمه

10. یک بیش از 0.5 و مواد مادی ریز یافته در بخش زیبایی

11. به ترتیب دانشجوی دکتری و دانشیار خاک‌شناسی، دانشگاه کاشان، دانشگاه علوم و فناوری محیطی و منابع طبیعی
روش‌های فازی در زمینه‌های بسیاری با موفقیت به کار گرفته شده‌اند. به عنوان مثال کاربرد روش‌های فازی در تهیه نقشه خاک بر اساس تغییرات ازدست، کربن آلی و بافت منجر به ایجاد کلاس‌های شد که ضمن پیوستن به تغییرات خطای کمتر در سلسله مشترک‌ترین روش خاک با طبقات سطحی، ترکیب از روش‌های فازی و دوانی‌های زمین ادامی به کار رفت و نقش مرکز حاصله به خویش تغییرات تاکلیف و تبدیلی علائم‌های را توانسته‌اند. (20) کلاس‌های پیوسته و یکپارچه به دست آمده در طبقه بندی فازی دو مجموعه داده اصلی شاهد دیگری بر سازگاری این روش با سیستم‌های پیوسته طبیعی می‌باشد. (12) هدف این مقاله بررسی توانایی روش خوشه‌بندی فازی در طبقه‌بندی مجموعه‌های مختلف از داده‌های خاکی می‌باشد. از این رو روش‌های مورد مطالعه و پایین‌ترین همکاران خاک در تناوب تغییرات خاک‌هاست.

مواد و روش‌ها

منطقه مورد مطالعه، یک زیر حوزه کوچک در خاکهای غربی رشته کوه‌های زاگرس است. این زیر حوزه در منطقه چشم‌های سفید کرمانشاه با عرض جغرافیایی ۳۶°۴۲' و طول جغرافیایی ۵۴°۳۲' قرار دارد (شکل ۱). این زیر حوزه از نظر زمین شناسی، در منطقه رادیولیت کوک می‌باشد. در این منطقه از سهک تا دو راه‌پیمایی از سیلس (پرت) می‌باشد. به لحاظ جورایزوگرافی، منطقه مشکل‌تر از تیه‌های مردود یا شبب دامنه یکنواخت است که در پایین دست به یک پشت منشعب از می‌باشد. (5) در این پژوهش و در گذشته جز به ایجاد سیستم‌های طبیعی از جمله خاک بهره و از ساختار پیوسته این سیستم‌ها ناشی می‌شود. (۲۰) در این میان، چالش اصلی نحوه برخورداری با اینموجود در پیش‌نشان‌های مرز بین خاک‌های مختلف است. به عقیده سیستم‌های پیوسته، و نقشه‌برداری خاک‌ها در اغلب موارد سازگاری خوبی با به ارزیابی ندارند. شاهد این ناسازگاری وجود ناخالصی در واحد‌های نقشه کشی و مرزهای تاکلیف و اخبار در نقشه‌های خاک و هدر رفت مقدار زیادی اطلاعات در فضای رده بندی است. (11 و 17).

دلایل اصلی ناسازگاری آن است که نکته ماهیت پیوسته Continuum (پیوستگی) خاک را نمی‌داند با مدل‌های به پاینده مطلق دو ارزش و تابع‌های استوانه‌ای، به طور مناسبی تشخیص کرده‌اند. به عنوان مثال در مطلق دو ارزشی فضایی در تعقل یک پیمان به کلاس خاک یک واحد نقشه کشی به دریای مقایسه صفر و یک (هست و نهست) صورت می‌گیرد. در این صورت برای خاک‌هایی با مشخصات مابین دو باند کلاس حالت جد واسط (جاگاهی) وجود ندارد. اصولاً، علت کاربرد منطقه دو ارزشی خاک‌میت آن بر تفکر بیشتر در طول تاریخ و همچنین ساده بودن مدل‌های ساده بر آن می‌باشد. (11) از این جمله این مدل‌ها روشهای سلسله مراتبی (Heirarchical) کلاس‌های فازی با پایین‌ترین همداری خاک‌ها مورد مطالعه و کار رفته‌اند. و در کاربرد آنها در طبقه‌بندی خاک‌ها موفقیت زیادی نیز نداشت. به این کاربردی نیز خود را می‌پذیرد. به همراه دیگر، منطقه دو ارزشی خود احتمال خاصی از درجات عضویت در یک مجموعه فازی است.
مواد مداری خاکها و نقشه‌های خاک‌ها به صورت می‌شود. شب نفاق نمونه‌برداری از کمتر از ۰/۵ تا بیش از ۲ دندان منغسم است. رژیم رطوبتی و حرفه‌ای خاک‌های منطقه به ترتیب زیستی و ترمیمی تبعیض شده است (۱۸).

نمونه‌برداری و آزمایش‌ها
برای پوشش دادن تغییرات در نمای اراضی، نیبرخ‌های خاک در امرداد و مقطع عمود برهم در جهت شمال - جنوب و غرب - شرق، حرف شدند (شکل ۱). الگوریتم نمونه‌برداری مقطع، به عنوان الگوی مناسب در بسیاری از مطالعات تغییرات خاک‌ها به کار رفته است (۱۹ و ۲۰). نمونه‌های خاک به روش آشپزی دو مرحله‌ای که در ان هر زوج نمونه ۲ متر و هر دو زوج نمونه متوالی ۸ متر فاصله داشتند، برداشتند. نمونه‌برداری آشپزی به عنوان یک راهکار مناسب در پژوهش‌های تغییرات محلی و منطقه‌ای خاک‌ها توسعه شده است (۲۱). نمونه‌های خاک از نیبرخ‌های خطر شده (۵۲و) روش روی مقطع شمال – جنوب و ۱۴۰ نیبرخ روی مقطع غرب - شرق از سطح الأرض ۲۰-۴۰ سانتی‌متر و تحت الیا ۴۰-۲۰سانتی‌متر گرفته شد. تشریح شکل شناختی نیبرخ‌ها مطالب روش USDA (۱۹) انجام شد. برای طبقه‌بندی فازی خاک‌ها
برای پردازش داده‌ها از دیدگاه فازی سه نگرش کلی گروهی و شبکه‌های عصبی وجود دارند. روش به کار رفته در این پرسی نوعی تجزیه...
روش تكرار برای حل معادلات فوق در الگوریتم تعمیم شده FCM که در زیر معرفی است، سه مرحله می‌باشد.

1. انتخاب عددی کلاس‌ها یا طوری که \(L < n \).
2. انتخابی که مجموعه داده‌ها را به کلاس‌های شامل تعدادی کلاس معمولی (Normal) و اکثریت اکثریت با آگرازئی (Extragrade) شماره دهی می‌دهد.
3. انتخابی که مجموعه محاسبه‌کننده (مهم‌ترین) مقدار عضویت‌ها بر منابع مقدار تصادیف.
4. محاسبه محاسبه مقدار عضویت‌ها با استفاده از معادله ۶ و مرحله ۵ بالا.
۶. محاسبه مقدار مسایله‌کننده با معادله ۷ با این قید که \(\sum_{j=1}^{C} m_{ij} = 1 \) به‌طور کلی.

\[m_{ij} = \frac{1}{\sum_{k=1}^{C} \left(\frac{1}{\alpha} \sum_{j=1}^{C} d_{ij}^{k} \right)^{-1/(\alpha-1)}} \]

\[d_{ij}^{k} = \sum_{j=1}^{C} m_{ij}^{k} \left(\frac{1}{\alpha} \sum_{j=1}^{C} d_{ij}^{j} \right)^{-1/(\alpha-1)} \]

\[i = \ldots, n; \quad j = \ldots, c \]

برنامه‌ای نوشته شد که بیان‌فرم‌های رود هنگام‌های بهره‌مند شده است. مهم‌ترین یا به‌طور کلی به‌طور کامل خط‌های خوشه‌ای جلوگیر خواهد کرد. در چنین شرایطی که همه اعداد با الگوریتم نمایندگی به‌کار بردند. از جمله خوارزمی‌ها، الگوریتم فازی وابسته به‌طور کلی فازی جای خود را می‌گیرد. نام‌های خوشه‌های در محل داده‌ها و در تحقیق و تولید که مشخصات الگوریتم‌ها می‌باشد. در مورد محدودیت‌های معادله‌ای حالت‌های خارج شده و کلاس‌ها یا فضاهای همبستگی وابسته به‌طور کلی دنیای چونقلیدی می‌باشد.
بررسی کاربرد روش فازی (Fuzzy) در طبقه‌بندی خاک‌ها

تعیین مقدار به‌هینه \(\Phi \) از اهمیت زیادی برخوردار است. چون
میزان تعداد کلاس‌ها و ویژگی‌های آنها را کنترل می‌کند. مقدار متغیرت متقابل توسط محققان گزارش شده است. در بسیاری از کارها داده‌های فرضی \(Q = 2 \) را ممکن \(\Phi \) دانستند (و (11) ولی در سایر مطالعات (8) مقدار به‌هینه

بین \(1/3 \) تا \(1/5 \) گزارش شده است. بر این اساس مقدار متقابل (Mean separation distance) \(\Phi \) در بردای زیر مجموعه‌های مختلف داده‌ها شامل: مجموعه داده‌های کل، مجموعه داده‌های رخت، مجموعه داده‌های بایست مورد بررسی قرار گرفت. در

این بررسی مقدار متقابل \(\Phi \) در دامنه \(1/5 \) تا \(1/15 \) با به

دست آمده. به‌طور معمول تعیین تعداد به‌هینه کلاس‌ها

از بین \(\Phi = 0.5 \) و \(\Phi = 0.1 \) انجام شده برای هر

(Mean partitionentropy) \(H' \)

استفاده شده (4 و (10)). به‌طور عمل بدن ترتیب است که تغییرات

مقدار این توایت با مشتق آنها و بررسی کلاس بنی‌های کلاس به

معین حاصل شدند. مورد بررسی قرار می‌گردد. تعداد به‌هینه

کلاس‌ها با کمیته مسئله‌های اندازه‌گیری دارد. مقدار برای

تغییر به‌هینه کلاس‌ها سه را داشته داد ولی بررسی دقیق مراکز

کلاس‌ها تعداد \(4 \) کلاس را تایید نمود.

در مورد مجموعه‌ای به‌نتای نتایج داده‌ها نو مجموعه

فوق متغیرت بوده به طوری که کلی به‌همان مقدار \(\Phi = 0.64 \) از می‌اندازد. به‌طور کلی به‌طور مداوم

مقدار به‌هینه کلاس‌های قابل قبول گردید. در این امر

میزان محدودیت و واریانس نسبتاً بار در متغیرت این مجموعه

است که مناسب برای مشکلات مربوط به حداکثر سازی و

تغییر به‌همان مقدار \(\Phi = 0.25 \) به‌طور کلی بوده به ازای مقدار \(\Phi = 0.8 \) در مورد مجموعه

است که این بر روی مجموعه مبنی بر عمل سایر می‌گردد.

تعیین به‌همان مقدار (کلاس‌های بایست) \(\Phi = 0.25 \) به‌طور

بسیاری از موارد مشاهدات می‌گردد. به‌طور کلی به‌طور مداوم

در مجموعه‌ای با تغییر داده‌های موجود

برای مجموعه بافت می‌باشد. به‌طور مکان، روشی که توسط

مک برترنی و صورت (14) در طبقه‌بندی فازی در مجموعه داده

تایپ و بحث

در \(1/12 \) به \(\Phi = 0.64 \) و با فاصله قطعی و ماهالینویس، هیچ کلاسی

در مجموعه‌ای کل و رخت شناسی حاصل نشد. به‌طور این

پیدا کرده را می‌توان به تسحویق برای برخی کامپیوتری بی‌ریخت

dاده به‌زیاد زیادی مقدار متقابل \(\Phi = 1 \) نشان داد (و (1) و (4 مقدار

و (4 مقدار همچنین به ازای \(1/15 \) و \(1/15 \) و \(1/15 \) به‌طور مداوم

غذایی و تصادف کلاس‌ها در حساب داد. به‌طور مداوم موارد مشاهدات می‌گردد. به‌طور کلی به‌طور مداوم

است (3 و (10)).

با انتخاب تعداد کلاس‌ها \(n \) بین \(2 \) تا \(10 \) برای مجموعه کل
شکل 2. تغیرات F', H' و S بر حسب تعداد کلاس‌ها برای یاز مجموعه‌های: F', H' و S بر حسب تعداد کلاس‌ها (الف). ریخت شناختی با نمای فازی 27/2 (ب)، و یافته با نمای فازی 16/3 (ج) و 1/4 (د).

با محاسبه مشتق فوق و سپس تعیین مقیاس $[\frac{\partial J_E}{\partial \Phi}](t)c_{ij}^{(t)}$ و رسم آن برحسب مقیاس Φ برای هر یک از تعداد کلاس‌ها قابل قبول به دست آمده، می‌توان تعداد بهینه کلاس‌ها را مشخص کرد. تعداد کلاسی که در آن بهینه‌ترین مقیاس Φ باشد به عنوان تعداد بهینه کلاس‌ها قابل قبول خواهد بود. بر این اساس، مقیاس $[\frac{\partial J_E}{\partial \Phi}](t)c_{ij}^{(t)}$ برای 4 و 5 کلاس در مجموعه بافت، به ازای $\Phi = 15$ محاسبه و ترسیم گردن که در شکل 3 معکوس است.

ملاحظه می‌کنید که عبارت $[\frac{\partial J_E}{\partial \Phi}](t)c_{ij}^{(t)}$ برای $\Phi = 4$ به ازای $\Phi = 5$ به ازای $\Phi = 15$ حداکثر می‌باشد.

امنی به کار رفته است، مورد استفاده قرار گرفت. ثابت شده است که اگر مقیاس Φ بهینه‌ترین می‌شود و این به معنای کاهش یکنوا یک‌کلاس (Monotonic) کرد که بهترین تعداد کلاس‌ها در مجموعه داده مورد نظر همرسم با یک تغییر منفی در شبیه J_E یا مشقت آن همرسم است. با مشقت گردن از J_E نسبت به Φ مشتق ناشی از J_E نسبت به Φ می‌توان نوشت:

$$
\frac{\partial J_E}{\partial \Phi} = \sum_{i=1}^{c} \sum_{j=1}^{m} m_{ij}^{(t)} \log(m_{ij}) d_{ij}^{(t)}
$$

[5]
بیرسی کاربرد روش فازی (Fuzzy) در طبقه‌بندی خاک‌ها

نمی‌خواهیم تغییرات مشتق برای $\frac{c}{c} = 4$ از $\frac{c}{c} = 4$ به کاربرد است. بنابراین، ترکیب بهینه c و برای مجموعه داده‌های بافت خاک به ترتیب $\frac{c}{c} = 4$ و $\frac{c}{c} = 4$ است.

کلاس‌های فازی حاصله

به‌طور کلی طبقه‌بندی فازی یک مجموعه داده منجر به تولید یک ماتریس مقادیر عضویت و یک ماتریس شامل مراکز کلاس‌ها می‌گردد. مقادیر عضویت، درجه تعلق هر فرد را به یک از کلاس‌های فازی که نسبت به مراکز کلاس‌ها محاسبه شده، نشان می‌دهند. مراکز محاسبه شده برای هر کلاس مشخصه‌ای همانندی کلاس‌های بیشتری به منظور بررسی توزیع خاک‌های مختلف در طول مقاطع نمونه‌گیری، نمودار درجات عضویت پدیداری در هر کلاس بر حسب فاصله روی مقاطع ترسیم شده که نتیجه اختراع ت عمده نمودارهای مقطع شمال - جنوب ارائه گردیده (شکل 10). با توجه به نمودارهای مشخص است که از کلاس‌های حاصله بیوسکوپی خوبی دارند و دوماً بین کلاس‌ها همبستگی وجود دارد. بهترین همبستگی و بیوسکوپی در کلاس‌های حاصله به دست آمده از FCM در سایر مطالعات (10) هم به دست آمده است. بیوسکوپی در کلاس‌های نامعلوم نیز مراکز کلاس‌ها قرار گرفته‌اند (شکل 6).

نمودار ۳: نتایج [۵/۵] بر حسب Φ برای تعداد چهار کلاس و پنج کلاس

حالت از طبقه‌بندی فازی مجموعه بافت خاک

نسبت به خوب است. در بخش کلاس‌های مجموعه ریخت شناختی (شکل 4) وجود فرد‌های دیده و روزها دانش مؤید بیوسکوپی کمتر می‌باشد که عضویت یازده از طبقه‌بندی نامعلومه متغیرهای می‌باشد. بنابراین می‌توان آن را در طول مقطع نمونه‌گیری تفاوت داشت. به‌طور دیگر تغییرات خاک‌ها در نمای آمیزی منطقه در دوره تخته‌نگاری متفاوت بود. این تفاوت در تحلیل زمین‌آماری داده‌ها هم تأیید شد. تغییرات نامعلوم خاک‌ها در جهات مختلف معمولاً بی‌دیده می‌شود. در مطالعات زیادی گزارش شده است (۶، ۴ و ۳۴).

مراکز کلاس‌ها

جدول ۱: عناوینی عمده مراکز ۲ کلاس از ۸ کلاس مشخص شده در مجموعه داده‌های کلاس‌ها یک راه نشان می‌دهد. در جدول ۲ مشخص کلاس‌های پیشکار مجموعه بافت آرایه شده است. در جدول آخیر، مقادیر مراکز کلاس‌های بافت برای D و C برخی تغییرهای مانند رسم تحت الارض در کلاس‌های و C مشخص نمی‌باشد. با این حال، پیش‌بینی به روزگاری با پیش‌بینی مراکز این کلاس‌ها در کلاس‌های نامعلوم قرار گرفته‌اند (شکل 6).
جدول 1. تشريیح خصوصیات عمده مراکز در کلاس A و B از مجموعه کل

<table>
<thead>
<tr>
<th>کلاس</th>
<th>A_W</th>
</tr>
</thead>
<tbody>
<tr>
<td>خاکی است. عمیق یا سایر فهم‌های مالی دار در (10YR 3.5/4.9) با واقع زیست و واکنش شیمیایی، 1/2 لایه حاکم در (10YR 3.5/4.9) با واقع زیست و واکنش شیمیایی، 1/2 لایه حاکم</td>
<td>23% ترکیب شده است.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>کلاس</th>
<th>B_W</th>
</tr>
</thead>
<tbody>
<tr>
<td>خاکی است. عمیق یا سایر فهم‌های مالی دار در (10YR 3.5/4.9) با واقع زیست و واکنش شیمیایی، 1/2 لایه حاکم در (10YR 3.5/4.9) با واقع زیست و واکنش شیمیایی، 1/2 لایه حاکم</td>
<td>11% ترکیب شده است.</td>
</tr>
</tbody>
</table>

جدول 2. مراکز پنج کلاس غازی به دست آمده برای مجموعه داده‌های بافت و محل نسبی آنها در جنوب اندام منطقه

<table>
<thead>
<tr>
<th>پوشش اراضی تحت سطح</th>
<th>کلاس A</th>
<th>سطح A</th>
<th>کلاس B</th>
<th>سطح B</th>
<th>کلاس C</th>
<th>سطح C</th>
<th>کلاس D</th>
<th>سطح D</th>
<th>کلاس E</th>
<th>سطح E</th>
</tr>
</thead>
<tbody>
<tr>
<td>سیلت سنگتراش</td>
<td>35</td>
<td>14</td>
<td>19</td>
<td>19</td>
<td>16</td>
<td>16</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>نامه‌دار نیم‌پوش زیست</td>
<td>51</td>
<td>51</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>غیر از 80%</td>
<td>49</td>
</tr>
<tr>
<td>تعادل سیلت در بر روی سیلت - عمدهاً</td>
<td>35</td>
<td>14</td>
<td>19</td>
<td>19</td>
<td>16</td>
<td>16</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>تعادل سیلت در بر روی دامنه - عمدهاً</td>
<td>51</td>
<td>51</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>غیر از 80%</td>
<td>49</td>
</tr>
<tr>
<td>تعادل سیلت در بر روی سیلت - عمدهاً</td>
<td>35</td>
<td>14</td>
<td>19</td>
<td>19</td>
<td>16</td>
<td>16</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

62
شکل ۴. دو جرای عضویت حاصل از طبقه‌بندی فازی مجموعه کل در مقطع شمال - جنوب
شکل 5. درجه‌سنجی عضویت حاصل از طیف‌بندی فازی مجموعه بافت در مقطع شمال - جنوب
شکل 6. درجات عضویت حاصل از طبقه‌بندی فازی مجموعه شکل شناختی در مقطع شمال - جنوب

دبل این امر را می‌توان به تفاوت در میانگین سناریو متغیرها (در اینجا مقدار سنگین‌یاب) در مراکز کلاس‌ها نسبت داد. متغیرهاي که در مراکز کلاس‌های مختلف تفاوت چشمگیر دارند اهمیت زيادي باوردارند (10). به طور كلي تغييرات ناگهانی برخی ويزگي ها و تدریجي برخی ديگر در خاک كاملاً عادي است (9) و لحاظ كردن آن نشانگر حساسيت و نسبت روش فازی مياشده.

به مjtظور ارزیابی عملکرد FCM در اختصاص درجات
جدول ۳ مقایسه مقادیر میانگین در مرکز پنج کلاس فازی بافت با برخی از پدانا و اثر آن بر درجه عضویت

<table>
<thead>
<tr>
<th>شماره پدان</th>
<th>متغیر بافت</th>
<th>متغیر غیر بافت</th>
<th>کلاس و درجه عضویت</th>
<th>مقدار متغیر بافت در مرکز کلاس</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۴/۵</td>
<td>شن سطح ارض</td>
<td>۰/۹۸۱ A</td>
<td>۲۷</td>
<td>۱۵</td>
</tr>
<tr>
<td></td>
<td>رس سطح ارض</td>
<td>۰/۹۸۹ E</td>
<td>۲۵</td>
<td>۴۱</td>
</tr>
<tr>
<td></td>
<td>سپلت سطح ارض</td>
<td>۰/۹۱۱ B</td>
<td>۱۶۵</td>
<td>۳۹</td>
</tr>
<tr>
<td></td>
<td>سنگریزه سطح ارض</td>
<td>۰/۸۵۴ C</td>
<td>۴۵</td>
<td>۶۵</td>
</tr>
<tr>
<td>۱۷</td>
<td>شن تحت ارض</td>
<td>۰/۹۴۴ E</td>
<td>۱۵۵</td>
<td>۶۶</td>
</tr>
<tr>
<td></td>
<td>رس تحت ارض</td>
<td>۰/۹۳۴ B</td>
<td>۱۲۸</td>
<td>۵۰</td>
</tr>
<tr>
<td></td>
<td>سپلت تحت ارض</td>
<td>۰/۹۳۳ D</td>
<td>۱۲۰</td>
<td>۴۳</td>
</tr>
<tr>
<td>۲۰</td>
<td>شن تحت ارض</td>
<td>۰/۹۱۵ D</td>
<td>۱۲۵</td>
<td>۶۷</td>
</tr>
<tr>
<td></td>
<td>رس تحت ارض</td>
<td>۰/۹۶۹ B</td>
<td>۱۲۸</td>
<td>۸۴</td>
</tr>
</tbody>
</table>

نتیجه عملی این نتایج آن است که روش فازی در پیش‌بینی ویژگی‌های خاک هر پدان در واحدهای نقشه کشا به رده‌بندی تغییرپذیری خاک را در نظر گرفته و اصطلاح نوین به واقعیت عمل می‌کند. حال آن که در روش سنتی فرض بر آن است که تمام نقاط موجود در یک واحده نشان دهد که پدان‌های تخصصی باید به این کلاس به ازای یک بار چند متغیر مقادیر بالا داشته باشد. مثال پدان‌های کلاس نامعمول در مجموعه باتف مقدار شن، سیلت ، رس بر سطه‌های خیلی بالا یا خیلی پایین از مرکز کلاس‌های عادی می‌باشد. نتایج مشابه در سایر مطالعات گزارش شده است (۱۱ و ۱۴). به تعبیری این کلاس شامل پدان‌های اسکو شده هم به صورت ناخالصی بین سایر واحدهای طبقه‌بندی پخش شده‌اند. این کلاس با یک واحده در نقشه‌های خاک متعارف قابل مقایسه است (۱۴).
ارتباط کلاس‌های فازی با شکل اراضی

یکی از سوالات اساسی که باید در طبقه‌بندی پاسخ داده شود، آن است که آیا کلاس‌های حاصل اطلاعاتی راجع به فاصله‌های بین جوادر درون آنها در خود دارند یا خیر؟ (11) اگر بین فاصله‌ها و کلاس‌ها رابطه‌ای برقرار باشد، بایستی مشخص شود.

در مرحله بعد باید افرادی بین عوامل پیشنهاد و فاصله‌ها را جستجو کرد. چنانچه این عوامل به راحتی قابل مشاهده و اندازه‌گیری باشند، می‌توان رابطه‌ای بین کلاس‌ها و عوامل پیشنهاد در طبقه‌بندی و نوشتاری یک رابطه اساسی در سیستم طبقه‌بندی است (5). در جدول ۲ \(\text{ 활الو بر میانگین کلاس‌ها موضعی نسبت به منطقه و شیب تیز مشخص شده است. از انجا که مها مادی حاکم در گزارش (به چپ کشته) موقعیت که می‌توان اثر را باعث می‌شود در ادامه تگ کشته‌اند، باید به مه‌ترین عامل مؤثر در تغییر حاکم در منطقه به نظر مرس. ثالث رسم تحت اراضی در شیب‌های کمتر پیشتر است (جدول ۳)، با این که در برخی پنجره در شیب کم دامنه و توزیع مجدد دیده می‌شود (جهت اختصار، مارک کیپ کلاس‌ها در جدول ۱ ارائه نگردید).

بنابراین می‌توان گفت که تغییرات موجود در حاکم و شیب عمداً معلوم اثر تعیین کننده درجه شبیر فاصله‌های خاصی در منطقه است. (21). با این همه، رابطه حاکم - شکل اراضی پراپن در

منابع مورد استفاده

1. مؤسسه تحقیقات خاک و آب. 1360. گزارش مطالعات خاک‌شناسی نهایی اشغال دشت‌های حسن‌آباد، تالان دشت، کرند و بیونج (استان کرمانشاه). نشریه فنی شماره ۴۰۱ وزارت کشاورزی، ۴۵ صفحه.

پرسی کاربرد روش فازی (Fuzzy) در طبقه‌بندی خاک‌ها...