بررسی کاربرد روش فازی (Fuzzy) در طبقه‌بندی خاكها. مطالعه موردی:
چشمه سفید کرمانشاه
پویز شکاری و مجرد باقرزاد

چکیده
تغییر در وزیگی های خاک عمداً حالت پوسته دارد. روشی که تواند این پیوستگی را در نظر بگیرد، قادر به ارائه تصویر واقعی تری از الگوی پراکنش خاک‌ها در بعضی و هیچ در بعضی جغرافیایی خواهد بود. منطق پوسته فازی چنین دیدگاهی را فراهم می‌کند.
در این مطالعه کارآگاهان گزارش می‌دهند که تغییرات خاک‌ها در یک زیر حوزه در غرب ایران یک مورد بررسی قرار گرفت. خوشه‌بندی از طریق کمپیوتر سازی یک تابع عنبی در تهیه درجه عضویتی در پدای در هر یک از کلاس‌ها با نام‌های Fuzzy 1/5 تا 1/15 انجام گرفت. پس از تعیین اعتبار خوشه‌بندی تعداد به خوبی کلاس‌ها برحسب زیر مجموعه‌های کل، ریخت شناختی و بافت به ترتیب ۴/۸۵ تعداد مشخصی در دو زیر‌دست کلاسها با نام‌های خاک‌های برخوردار درجات عضویت تخصیص یافته به سه پدای در نمای اراضی منطقه نشانگر وجود همبستگی بین کلاس‌ها از پیوستگی قابل توجه بود. با توجه به تمایز کم خاک‌های منطقه و شیب‌های خاک خاک‌های مختلف خاک برخوردار است. با علایه بین کلاس‌های فازی حاصله و شکل اراضی نیز ارتباط وجود داشت. کاربرد این روش در تهیه سیستم‌های طبقه‌بندی و تیز
تغییرات به پوسته خاک با سطح نگرشی در حد پدای قابل بررسی است.

واژه‌های کلیدی: تابع عنبی، خوشه‌بندی فازی، طبقه‌بندی پوسته، فضای رده‌بندی

مقدمه
تغییر در وزیگی های خاک اغلب حالت تدریجی و پوسته دارد (۴). اگرچه تغییرات ناگهانی نیز در خاک‌ها دیده می‌شود، ولی
چنین حالیت‌های اشتباهی هستند (۱۱). در برخی مناطق وزیگی‌های محلی، تغییرات پوسته را در خاک‌ها تشخیص کرده و مزرعه‌بان آنها را کاملاً مهم جلوه می‌دهند. به علت صفت سه‌گانه بودن به‌طور اکثر
از ایران و از جمله مناطق غرب اشتر در کرد (۱ و ۱۸) در نتیجه، خصوصیات فیزیکی و شیمیایی خاک مانند
رنگ، استحکام، بافت، کربنات کلسیم معادل و ظرفیت تبادل کاتیون‌ها و وزیگی‌های ریخت شناختی که از معنایی
است در طبقه‌بندی و دقیقه برداری خاک‌ها هستند. کامل‌اً
نودیدگی به هم است. حتی در مناطق مرطوب که تغییر خاک‌ها
در نمای اراضی بیشتر است، مرز بین خاک‌ها طبیعی می‌باشد.

1. به ترتیب دانشجوی دکتری و دانشیار خاکشناسی، دانشکده کشاورزی، دانشگاه شیراز

55
روش‌های فازی در زمینه‌های بسیاری با موفقیت به کار گرفته شده‌اند. به عنوان مثال، کاربرد روش‌های فازی در تهیه نقشه‌های بزرگ اساس تغییرات از، کربن آلی و بافت منجر به ایجاد کلاس‌هایی است که ضمن پیوسته بودن، تغییر زناحیبی خاک را بسیاری از کلاس‌ها در روش متعارف آگاهانه نموده (20). در مطالعه دیگر، طبقه‌بندی فازی مراحل کوچک مرجع بر اساس تغییرات هیدرولوژیک به مساحت نوزده‌گانه تعمیم داده شد. تتابع نشاگر خطی کمتر در کلاس‌ها و قابلیت توجه کشور آنها به تغییرات سطحی، ترکیب از روش‌های فازی و دوپلیهای زمین آلی به کار رفته و نقشه‌های باریک‌محصوله ناپاک‌مانند و تدریجی گسترش آن‌ها را نشان میدارد (8). کلاس‌های بیوسته و بی‌بیشی به دست آمده در طبقه‌بندی فازی در مجموعه داده اقیلی شاهد دیگری بر سازگاری این روش با سیستم‌های بیوسته، بی‌معنی می‌باشد (19). هدف این مقاله بررسی ثناوبی ناشی از طبقه‌بندی مجموعه‌های مختلفی از داده‌های خاک‌های موبیل به طبقه‌بندی و بافت ارتباط بین کلاس‌های فازی حاصله به شکل ارائه‌ای به عنوان مهم‌ترین عامل به‌روند مؤثر در تماز خاک‌های‌است.

مواد و روش‌ها

مطابقه مورد مطالعه، یک زیر خوشه کوچک در دامنه‌های غربی رشته کوه زاگرس است. این زیر خوشه در منطقه سفید کرمانشاه با عرض جغرافیایی ۴۹°۳۷ و طول جغرافیایی ۴۷°۳۶ شرقی، قرار دارد (شکل ۱)، یک زیر خوشه از نظر زمین شناختی، در منطقه رادیولاریت کرمانشاه (۱) قرار داشته و عمدتاً از منابع آتشفشانی کرمانشاه و به‌طور کلی به‌روند می‌باشد. به‌طور کلی، فیزیوگرافی، مطلقه‌هایی از تیپ‌های مدولارا نسبتاً سبیلی‌تر و دیگر با کشور مشابه‌ای است که در یکینا خاصی از جریان عضویت‌های در بیک مجموعه‌های فازی است.
شکل 1. موقعیت منطقه مورد مطالعه و مقاطع نمونه‌برداری

تبیین تیب ساخته‌ای خاک‌ها به متغیرهای کمی از جهات گرد و Flatness, Verticality, Horizontality و فازی به نام‌های استفاده شد (14). گذای روش‌های ابتدا به روش ماناسب به دست آمده و سپس برای یک‌نواختی به‌صورت در مقیاس به روش CIELab (11) تبدیل گردید. پس از گردش سرگردش در نمونه‌های خاک سطحی، در نمونه‌های فازی روش درصد، ساختار، رس (V) و کربن آلی تعیین گردید. pH و قابلیت هدایت الکتریکی به ترتیب در تعیین 5/15 آب/خاک (13) و عرضه 1/5 آب/خاک (16) انداده گریه شدند. کربن کلسیم معادل (15) نیز در نمونه‌های تحت اثرات تغییرات گردید. پایداری شکافک‌های خاک در سه حالت خشک، مرطوب و خیس، نوع مواد مادرهای خاک‌ها و قدرت سولون نیز به‌عنوان متغیر، با مقیاس‌های اسمی (Nominal) و ترتیبی (Ordinal) در تجربه داده‌ها به‌کار رفته‌اند.

طیف‌بندی فازی خاک‌ها

برای پردازش داده‌ها از دیدگاه فازی سه نگرش کلی، Knowledge-based گروه‌بندی و شبکه‌های عصبی وجود دارد. روش به کار رفته در این برسی نوعی تجزیه شناختی نیمه‌رها مطابق روش USDA (19) انجام شد. برای
روش تکرار برای حل معادلات فوق درالگروپرمتی تمثیل شده که در زیر متعکس است. مسیر میباشد:

1. انتخاب تعادل کلاس‌های گروپرمتی به طوری که $\Phi < n$.
2. انتخاب نمای فازی به طوری که $\Phi > 1$.
3. انتخاب یک معیار فاصله.
4. انتخاب یک مقدار برای تعرف محاسبات (میانگین)
5. مقدار دهی متغیر عضوی یا بر مبنای مقدار تصادفی
6. محاسبه مراکز کلاس‌ها با استفاده از معادله ۴ و مرحله ۵ بالا.
7. محاسبه مقدار متغیر عضوی با معادله ۲ با این قید که
8. اگر مقادیر مثبت هستند در محاسبه منویی
9. فاصله آماری مقدار یک و یکایی در یک فرد با مقدار همان وقت یک با مقدار همان
10. برای تعیین کننده میانگین عضوی یا در کلاس‌ها

برنامه FuzM3E که به زبان فرتنر و در محیط ویندوز نوشته شده برای پردازش داده‌های استفاده شده است. مسیر میباشد که تعیین کننده درجه

همبستگی کلاس‌هاست. بدین معنی که چنانچه خیلی پرتره کلاس ها به طرف هم‌پیوسته کامل خواهد رفت و در

نهایت گروپرمتی هم‌پیوسته داده‌ها را در یک کلاس قرار گرفتند. از طرف دیگر در مقیاس توزیعی به باکس خواهد کرد.

روش محاسبات تکراری صورت میگیرد.

$$m_{ij} = \frac{d_{ij}^{-1/(\Phi-1)}}{\sum_{j=1}^{c} d_{ij}^{-1/(\Phi-1)} + \left(\frac{\alpha}{\alpha} \sum_{j=1}^{c} d_{ij}^{-1/(\Phi-1)}\right)^{\Phi}}$$

$$i = 1, ..., n; \quad j = 1, ..., c$$
در مورد مجموعه نتایج نجیب‌دایه با مجموعه فوق متغیردها، به طوری که کلیه مقادیر فاصله‌گذاری به مابین این مقادیر، متغیرهای این مجموعه است. میانگین بین تعداد کلاس‌ها و دو مقدار بهبود ۲/۱۴۷، در (Fuzziness performance index) F، میانگین کلاس‌ها در ۲/۱۵۳ در دامنه هستند. این مقادیر بهبود بهبود در دست آمده، مورد بررسی قرار می‌گیرد. تعداد بهبود کلاس‌ها به کمینه‌های مقدار اندازه‌گیری این انتخابات دارد. مقادیر این تعداد فاصله بهبود کلاس‌ها از بین کل مقدار این انتخابات بهبود در دست آمده از فاکتور خوشه‌بندی مشکل می‌گیرد، بنابراین آن‌ها را می‌توانیم دانشگاهی نیز نامیده‌ایم.

تایپ و بحث

در ۱/۲۵ و با فاصله قطروی و ماهالنوبیس، هر چندک کلاسی در مجموعه‌های کل و ریخت شناختی حاصل نشد. این امر بیش از همه‌ی رفتار مشکلات مربوط به حداقل ماده و تقسم بر صفر می‌شود. به ازای مقادیر ۲/۱۴۷ و ۱/۳۳، میزان بهبود کلاس‌ها به منجر به نبود کلاس‌های قابل قبول گردیده. تعداد بین این مجموعه است و میانگین بین تعداد می‌تواند بهبود در وابستگی این کلاس‌ها به محاسبه و تریم شد (شکل ۲). در شکل ۲ الف، مقادیر مشترک در تعداد ۸ کلاس کمی بهبود و تعداد بهبود کلاس‌ها را برای مجموعه کل نشان می‌دهد. در شکل ۲ ب، مرز موارد مشابه برای مجموعه ریخت شناختی نشان داده شده و تعداد ۴ کلاس به عنوان تعداد بهبود کلاس‌ها قابل انتخاب است. قابل ذکر که تغییرات S بهبود کلاس‌ها را در نشان داد ولی بررسی دقیق مراکز الکن‌ها تعداد ۴ کلاس را تایید نمود.

در مورد مجموعه نتایج نجیب‌دایه با دو مجموعه فوق متغیردها، بوده که کلیه مقادیر Fآزمایش شده مشابه درجی به ایده کلاس‌های قابل قبول گردیده است. این امر به منجر به نبود کلاس‌های قابل قبول گردیده است. در مورد مقادیر Fآزمایش شده مشابه درجی به ایده کلاس‌های قابل قبول گردیده است. این امر به منجر به نبود کلاس‌های قابل قبول گردیده است. در (Separation distance) S و (Mean partition entropy) H انتخابات شد (۲) و (۱۰). با استفاده از (۲) و (۱۰) انتخابات شد (۲) و (۱۰). با استفاده از (۲) و (۱۰) انتخابات شد (۲) و (۱۰). با استفاده از (۲) و (۱۰)
با محاسبه مشتق فوق و سپس تعیین مقادیر $(\frac{\partial J_i}{\partial \Phi})c^{ij/5}$ و رسم آن بر حسب مقادیر Φ برای هر یک از تعداد کلاس‌های قابل قبول به دست آمده، می‌توان تعداد بهینه کلاس‌ها را مشخص کرد. تعداد کلاسی که در آن بهینه‌ترین مقادیر $\frac{\partial J_i}{\partial \Phi}$ کمتر باشد به عنوان تعداد بهینه کلاس‌ها قابل پیش‌بینی خواهد بود. بر این اساس، مقادیر $(\frac{\partial J_i}{\partial \Phi})c^{ij/5}$ برای 4 و 5 کلاس در مجموعه بافت، به ازای $\Phi = 1/15$ و $\Phi = 1/16$ به‌صورت مشابه می‌باشد.

اکثریت به کار رفته است، مورد استفاده قرار گرفت. بنابراین Φ به بیشترین مقدار معادله 1 به صفر تبدیل می‌شود و این به معنای کاهش یکنوا از J_E (Monotonic) Φ با است (2). به همین دلیل می‌توان فرض کرد که بهترین تعداد کلاس‌ها در مجموعه داده مورد نظر همار با یک تغییر بزرگ در شیب J_E ما مشاهده آن همراست. با مشتمل گیری از J_E نسبت به Φ می‌توان نوشت:

$$\frac{\partial J_E}{\partial \Phi} = \sum_{i=1}^{n} \sum_{j=1}^{c} m_{ij}^\Phi \log(m_{ij})d_i^j$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{c} [m_{ij} \log(m_{ij})]m_{ij}^{(\Phi-1)}d_i^j$$

شکل 2. تغییرات F'، H' و S بر حسب تعداد کلاس‌ها برای زیر مجموعه‌های کل با نمای فاژی 1/16 (اف در (b)، و بافت با نمای فاژی 1/16 (f) و 1/3 (g).

شکل 3. تغییرات F'، H' و S بر حسب تعداد کلاس‌ها (c) با نمای فاژی 1/16 (f) و 1/3 (g).
شکل ۳ نمودارهای [\(\frac{1}{6}C_0\)] بر حسب پیوسته برای تعداد چهار کلاس و پنج کلاس

<table>
<thead>
<tr>
<th>پنج کلاس</th>
<th>چهار کلاس</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>1.2</td>
<td>1.3</td>
</tr>
<tr>
<td>1.4</td>
<td>1.5</td>
</tr>
<tr>
<td>1.6</td>
<td>1.7</td>
</tr>
<tr>
<td>1.8</td>
<td></td>
</tr>
</tbody>
</table>

نمایش: خوب است. در خود کلاس‌های مجموعه ریخت شناختی (شکل ۴) وجود قندی مرجع و کوتاه دانه مؤید پیوستگی کمتر می‌باشد که عمده‌نیا ناشی از تغییرات تابعی منجر به‌شدت. لازم به ذکر است که در همبستگی بین کلاس‌ها در طول دو مقطع نمونه کردن تفاوت داشته است. به عبارت دیگر تغییرات خاک‌ها در نمای اراضی منطقه در دو جهت نمونه‌گیری متفاوت بود. این تفاوت در تحلیل زمین‌آماری داده‌ها متأثیر شد. این تغییرات ناموجود خاک‌ها در جهات مختلف معمولاً دیده می‌شود و در مطالعات زیادی کارفرشی شده است (۴، ۹ و ۱۴).

ماوی کلاس‌ها

جدول ۱ خصوصیات عمده مارکر ۲ کلاس از ۸ کلاس

مشخص شده در مجموعه داده‌های کل را نشان می‌دهد. در جدول ۲ مراکز کلاس‌های پیشگوی مجموعه بات کارشناس شده است. در جدول اخیر، مقدار مراکز کلاس‌های بافت برای منابع مختلف می‌گردد (شکل ۵). با توجه به نمودار مشخص است که آن کلاس‌های حاصله پیوسته خوبی دارد و دوباراً پیش‌تر کلاس‌ها همبسته وجود دارد. همین‌طور نشان می‌دهد که به دست آمده است. پیوستگی در کلاس‌های نامعلوم نیز
جدول ۱. تشریح خصوصیات عمدتاً مراکز دو کلاس A و B از مجموعه کل

<table>
<thead>
<tr>
<th>کلاس</th>
<th>(A_w)</th>
<th>(B_w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>خاکی است کم عمق به‌رغم فهودهای مالی به زرد تیره (5.5/6.5) با بافت رسی سنگریزه‌دار (37/35)‌ با ساختن کروی متساوی با قیمت‌های واریانس و واکنش شیمیایی که بر روی لایه‌ای به فهودهای تیره‌وسیل به زرد (4.5) با بافت رسی تقریباً بسیار سنگریزه‌دار (نحوه‌ای) و واکنش شیمیایی ۲/۵ قرار دارد. عمق سولوم ۲۶ سانتی‌متر که بر روی سنگ‌های آهک و در شب‌های تند ۲۵٪ تشکیل شده است.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| خاکی است عمیق به‌رغم فهودهای (5/3) با بافت رسی (10/1) سنگ ریز‌ها ساختن کروی ریز‌با قوم ضعیف و واکنش شیمیایی که بر روی لایه‌ای به فهودهای تیره‌وسیل به زرد (7.5YR 5/3) با بافت رسی و ساختن مکی‌زایی‌دار، متساوی با قیمت‌های واریانس و واکنش شیمیایی ۸/۲ قرار دارد. عمق سولوم ۵۵ سانتی‌متر که بر روی سنگ‌های آهک و با شب‌های ۵-۱۱٪ تشکیل شده است. |}

جدول ۲. مراکز پنجم کلاس قازی به‌دست آمده برای مجموعه داده‌های بافت و محل نسبی آنها در جغرافیا اندازه‌گیری

<table>
<thead>
<tr>
<th>تحت‌الارض</th>
<th>سطح‌الارض</th>
</tr>
</thead>
<tbody>
<tr>
<td>کلاس</td>
<td>شن رس</td>
</tr>
<tr>
<td>A_r</td>
<td>۳۵</td>
</tr>
<tr>
<td>B_r</td>
<td>۲۲</td>
</tr>
<tr>
<td>C_r</td>
<td>۴۰</td>
</tr>
<tr>
<td>D_r</td>
<td>۷۲</td>
</tr>
<tr>
<td>E_r</td>
<td>۲۸</td>
</tr>
</tbody>
</table>

\(A_r \) بر روی دامنه‌های با شب‌های ۱۵-۱۰٪ سنگریزه‌دار،
\(B_r \) بر روی رسی سنگریزه‌دار،
\(C_r \) بر روی رسی سنگریزه‌دار،
\(D_r \) بر روی رسی بارصینه شوری و
\(E_r \) بر روی رسی بارصینه عمیق‌تر و نسبی در منطقه و سه‌پر می‌باشد.
شکل 5. درجات عضویت حاصل از طبقه‌بندی فازی مجموعه یافته در مقطع شمال – جنوب
پروسی کاربرد روش فازی (Fuzzy) در طبقه‌بندی خاک‌ها

شکل ۶. درجات عضویت حاصل از طبقه‌بندی فازی مجموعه شکل‌شناختی در مقطع شمال–جنوب

عضاوت، متغیرهای اندازه‌گیری شده در چند بندان با مقادیر عضاوت بالا و پایین در یک کلاس با مراکز آن کلاس مورد مقایسه قرار گرفت. جدول ۴ نتایج این مقایسه را برای متغیرهای مجموعه بافت دربرخی از بندان‌ها نشان می‌دهد.

توجه می‌شود که درجه عضویت هر بندان در یک کلاس خاص با فاصله مقدار متغیر مورد نظر از میانگین آن در مراکز کلاس مناسب است. این موضوع در سایر مطالعات (۸ و ۱۲) هم گزارش شده و مؤید اعتبار خوش‌بندی انجام شده می‌باشد.

شکل‌اندازی طبقه‌بندی در اختصاص درجات FCM به منظور ارزیابی عملکرد
جدول ۳ مقايسه وافتر در مرکز پنج کل‌های فازی یافته به یک پد عضویت

شماره پد	شدت عضویت	متغیر فازی	متغیر فازی در پد	در مرکز کل‌س	مقدار متغیر فازی در پد	مقدار متغیر فازی در پد	مقدار متغیر فازی در پد	مقدار مشابه در پد					
۱۴/۵	۲۷	۰/۹۸۱A	۰/۹۸۱A	۱۵	۲۲	شن سطح ارض	رس سطح ارض	سیلت سطح ارض	سنگریزه سطح ارض	شن تحت ارض	رس تحت ارض	سیلت تحت ارض	۹۸/۵۴۴E
۲۷	۲۲	۰/۹۴۹E	۰/۹۴۹E	۴۱	۵۱	شن تحت ارض	رس تحت ارض	سیلت تحت ارض	سنگریزه سطح ارض	شن تحت ارض	رس تحت ارض	سیلت تحت ارض	۹۱/۱۲B
۴۰	۲۴	۰/۹۴۸C	۰/۹۴۸C	۳۹	۴۶	شن تحت ارض	رس تحت ارض	سیلت تحت ارض	سنگریزه سطح ارض	شن تحت ارض	رس تحت ارض	سیلت تحت ارض	۸۴/۷۸D
۲۷	۲۰	۰/۹۸۴E	۰/۹۸۴E	۱۷	۲۰	شن تحت ارض	رس تحت ارض	سیلت تحت ارض	سنگریزه سطح ارض	شن تحت ارض	رس تحت ارض	سیلت تحت ارض	۹۷/۲۲D
۵۱	۲۴	۰/۹۳۵B	۰/۹۳۵B	۵۰	۴۳	شن تحت ارض	رس تحت ارض	سیلت تحت ارض	سنگریزه سطح ارض	شن تحت ارض	رس تحت ارض	سیلت تحت ارض	۸۴/۷۸D

نتیجه عملی این نتیجه آن است که روش فازی در پیش‌بینی ویژگی‌های خاک در پدان‌های مختلف از لحاظ کیفی و زیست‌بودن، می‌تواند تغییر کیفیت ها را در نظر گرفته و بسیار زیادی به واقعیت عمل می‌کند. حال این که در روشن‌سازی فرض بر آن است که تمام تقاطع موجود در پدان واحد نقطه کمی دارای خاصیت یکسان و منطقی با لیبر شده هر ویژگی برای تعیین تقاطع یکسان است (2).

قابل ذکر که مقدار عضویت پایین در جدول ۳ به معنی عضویت از پدان در کلاس مربوطه نیست و معمولاً استانه مقادیر عضویت در تعیین یک فرد به یک کلاس ۰/۵ در نظر گرفته می‌شود (11).

کلاس نامعلوم پدان‌هایی که به هیچ کلاس تعلق نداشت یا در جدول ۳ عضویت آنها
ارتباط کلاس‌های فاژی با شکل اراضی

یکی از سوالات اساسی که باید در طبقه‌بندی پایه‌ای داده شود، آن است که آیا کلاس‌های حاصل اطلاعاتی راجع به فاژی‌هایه به وجد و اردنگی آنها در خود دارند یا خیر؟ (11) اگر بین فرایندها و کلاس‌های رابطه برقرار باشد پیشینه مشخص شود در مرحله بعد باید رابطه بین عوامل پاییزی و فرایندها را جستجو کرد. جانشین این عوامل به راحتی قابل مشاهده و اندازه‌گیری پاسخی می‌توان رابطه‌ای بین کلاس‌ها و عوامل پیوسته به دست آورد. رابطه حاصل در طبقه‌بندی و نقشه برداری سریع مجموعه‌های داده می‌خواهد بود و این از اهداف اساسی سیستم طبقه‌بندی است (5). در جدول اول علاوه بر میزان کلاس‌ها موجودیت نسبی آنها در منطقه و شیب نشان شده است. از آنجا که کلاس ماده خاک‌ها در کل منطقه (ب) جریان آبی انتقالی مقاطعه که مواد آببرداری است) تا حد زیادی پیکنیک‌ناخت است، شیب زمین مهمترین عامل مؤثر در تعیین خاک‌ها در منطقه به نظر می‌رسد. مثالی از مکانیزم تغییرات دریافت شده‌ای که می‌توان داشت کپسول یا کپسول حاصل از بزرگی در خاک‌ها (جدول 4) با این که در برخی پدیده‌ها در شیب کم دانه‌ها توزیع مجدداً آنها به شیب نشان می‌دهد (جهت اختصاص، مراسک کلیه کلاس‌ها در جدول 1 راهگیرید). بنابراین می‌توان گفت که تغییرات موجود در خاک‌ها عمداً معلول اثر تغییر کندند درج شیب بر فاژی‌های خاک‌های شکل اراضی اثر کلاس‌های خاک در تیپی شده حاصل از یک خوش‌همه کلاس‌یک (نپونسی) نیز تأیید شده است (21). با این همه، رابطه خاک - شکل اراضی پایین‌تر اثر

منابع مورد استفاده

1. مؤسسه تحقیقات خاک و آب. 1360. گزارش مطالعات خاک‌شناسی نهایی تفصیلی دشت‌های حسن آباد. تالیف دشت، کرند و پورنی (استاد کرمانی‌شاه‌آریا). نشریه فنی شماره ۱۰، وزارت کشاورزی، ۸۵ صفحه.

