اثر مکمل فیتاز بر انرژی قابل سوخت و ساز و قابلیت هضم مواد غذایی سورگوم، ذرت و گندم

جواد پورپرضا و محمدتقی عابدی

چکیده

در طرح کاملاً تصادفی به روش فاکتوریال انرژی قابل سوخت و ساز و قابلیت هضم مواد غذایی سه واریته سورگوم (کم، متوسط و پرتن) و با و بدون مکمل فیتاز تعیین و با ذرت و گندم مقایسه شد. سه واریته سورگوم مورد استفاده از بین 46 واریته مختلف سورگوم بر اساس میزان انرژی نسبت و همراه با ذرت و گندم در 5 روند در شرایط محیطی بسیار مشابه شدند. مکمل فیتاز در سطح صفر، 300 و 600 واحد به هر کیلوگرم از غلات مورد استفاده شد. انرژی قابل سوخت و ساز و قابلیت هضم ظاهری و حقیقی با استفاده از خرخصهای بالغ سنا به روش میانگین تمقید گردید. نتایج نشان داد که غلات مورد استفاده از لحاظ انرژی قابل سوخت و ساز ظاهری و حقیقی و قابلیت هضم ظاهری و حقیقی سه واریته ذرت و ساز ظاهری و حقیقی و سورگوم، پرتنان کمترین انرژی قابل سوخت و ساز را داشتند. قابلیت هضم ظاهری و حقیقی سه واریته ذرت و ساز و 600 واحد میزان انرژی نسبت و همراه با ذرت و گندم مکمل فیتاز به معنی است. نتایج نشان داد که انرژی قابل سوخت و ساز ظاهری و حقیقی و سورگوم، بر اساس فاکتوریال انرژی قابل سوخت و ساز و قابلیت هضم مواد غذایی سه واریته، ذرت و گندم مکمل فیتاز بهبود یافته غلات گوناگونی بود. هزار واحد انرژی فیتاز در اکثر شاخص‌ها موجب کاهش معنی‌دار گردید.

واژه‌های کلیدی: فیتاز، قابلیت هضم ظاهری و حقیقی، انرژی قابل سوخت و ساز، سورگوم، ذرت، گندم

مقدمه

انرژی اولین و مهم‌ترین نیاز حیوانات و از جمله طیور، با خصوص طیور گوشتی است که باید توسط غذا تأمین شود. در نتیجه اثر انرژی بالایی که در بین سایر غلات دارد (24).

استاد علوم دام، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

1. استاد دانشگاه صنعتی اصفهان

2. استاد دانشگاه صنعتی اصفهان

Downloaded from iop.com at 8:04 IRDT on Sunday May 19th 2019
سورگوم که در ایران کشت می‌شود، یکی از اساسی‌ترین اجزای جیره طور به‌وجود آمده و اغلب بیش از 60 درصد از ترکیب غذا را شامل می‌شود.
با توجه به شرایط ترکیب مواد غذایی و انرژی دانه سورگوم با درخت به کمترین مواد غذایی و انرژی دانه. سورگوم با گذاشت به نظر می‌رسد این گیاه بوتان به عنوان یکی از خصوصیات این گیاه (Tannin) نوکلری از تولید پل فلختان بهنگم بنام ‘دانه’ است که بیشتر در پوشش دانه متراکم بوده و معمولاً با رنگ دانه مرتبط است (13). هرچند این ماده بخشن جلوگیری از رشد قارچ‌ها جویان، قبلاً از پرداخت و مقاومت‌گرایی به درابر برندگان مهاجم می‌شود ولی به عنوان یک مواد ضد تثبیت‌برای حیوانات، بخصوص نک تعدادی‌ها محصول می‌گردد. (15) به نوبه خود با این نشانه غذا بالا در ماه‌خوری گیاهان پروتئین و اسیدهای آمینه می‌شود (7) و از فعالیت آنزیمهای هضم نیز ممکن است (13 و 18).

آسان‌سازی غلات به خاطر ارزش انرژی حاصل از نشانه‌ای اساسی‌ترین اجزای جیره طور به‌وجود آمده و اغلب بیش از 60 درصد از ترکیب غذا را شامل می‌شود. این انگیزه متفکر که رسیده است (13 و 18).

سورگوم که در ایران کشت می‌شود، یکی از اساسی‌ترین اجزای جیره طور به‌وجود آمده و اغلب بیش از 60 درصد از ترکیب غذا را شامل می‌شود.
با توجه به شرایط ترکیب مواد غذایی و انرژی دانه سورگوم با گذاشت به کمترین مواد غذایی و انرژی دانه. سورگوم با گذاشت به نظر می‌رسد این گیاه بوتان به عنوان یکی از خصوصیات این گیاه (Tannin) نوکلری از تولید پل فلختان بهنگم بنام ‘دانه’ است که بیشتر در پوشش دانه متراکم بوده و معمولاً با رنگ دانه مرتبط است (13). هرچند این ماده بخشن جلوگیری از رشد قارچ‌ها جویان، قبلاً از پرداخت و مقاومت‌گرایی به درابر برندگان مهاجم می‌شود ولی به عنوان یک مواد ضد تثبیت‌برای حیوانات، بخصوص نک تعدادی‌ها محصول می‌گردد. (15) به نوبه خود با این نشانه غذا بالا در ماه‌خوری گیاهان پروتئین و اسیدهای آمینه می‌شود (7) و از فعالیت آنزیمهای هضم نیز ممکن است (13 و 18).

سورگوم که در ایران کشت می‌شود، یکی از اساسی‌ترین اجزای جیره طور به‌وجود آمده و اغلب بیش از 60 درصد از ترکیب غذا را شامل می‌شود.
با توجه به شرایط ترکیب مواد غذایی و انرژی دانه سورگوم با درخت به کمترین مواد غذایی و انرژی دانه. سورگوم با گذاشت به نظر می‌رسد این گیاه بوتان به عنوان یکی از خصوصیات این گیاه (Tannin) نوکلری از تولید پل فلختان بهنگم بنام ‘دانه’ است که بیشتر در پوشش دانه متراکم بوده و معمولاً با رنگ دانه مرتبط است (13). هرچند این ماده بخشن جلوگیری از رشد قارچ‌ها جویان، قبلاً از پرداخت و مقاومت‌گرایی به درابر برندگان مهاجم می‌شود ولی به عنوان یک مواد ضد تثبیت‌برای حیوانات، بخصوص نک تعدادی‌ها محصول می‌گردد. (15) به نوبه خود با این نشانه غذا بالا در ماه‌خوری گیاهان پروتئین و اسیدهای آمینه می‌شود (7) و از فعالیت آنزیمهای هضم نیز ممکن است (13 و 18).
تجربه‌ی معکولیت پر انرژی سوخت و ساز و قابلیت هضم مواد غذایی...

11- سوئیگوت پر تنان + آنزیم زایلاناز + 1000 واحد آنزیم فیتاباز
12- ذرت + آنزیم زایلاناز + 500 واحد آنزیم فیتاباز
13- ذرت + آنزیم زایلاناز + 1000 واحد آنزیم فیتاباز
14- گندم + آنزیم زایلاناز + 500 واحد آنزیم فیتاباز
15- گندم + آنزیم زایلاناز + 1000 واحد آنزیم فیتاباز

جهت تعیین انرژی قابل سوخت و ساز ارقام سوئیگوت، ذرت و گندم در نمایه‌های غذایی از روش سیبالد (28) در 2 یا 5 تکرار استفاده شد. انواع انرژی‌های قابل سوخت و ساز با استفاده از رابطه‌های ارائه شده توسط سیبالد (28) محاسبه شدند.

جهت انتخاب گیرنده قابلیت هضم ظاهری و حقيقة ماده خشک، تیتروژن و فسفر غلات مورد آزمایش از مجموع جمع آوری شده در روش تعیین انرژی قابل سوخت و ساز استفاده شد.

ماده خشک، پروتئین و فسفر با استفاده از روش انجم
رسوسنجی‌های آسیایی (AOAC) اندازه‌گیری شدند. در برای اندازه‌گیری پروتئین از دستگاه ماکروکلیارد، انرژی از بمب کالریتر و فسفر و تنان از دستگاه اسکیفومتر استفاده شد. تنان به روش نورسنجی چری دایس (5) براساس احیای اسید فسفر مولیبدیک و اسید فسفر نگستیک در محلول قلیل بهبود حاصل آن محلول انرژی برنامه‌ریزی می‌باشد.

شادترین رنگ در طول موج 400 نانومتر توسط دستگاه اسکیفومتر اندازه‌گیری شد.

آزمایش در چارچوب طرح کاملاً تصادفی و به روش فاکوربیل 53 انجام شد و داده‌ها را روش برتری کامپیوتری SAS (22) تجزیه و تحلیل و مورد مقایسه قرار گرفت.

نتایج

ترکیب شیمیایی وارونه‌های سوئیگوت، ذرت و گندم در ذرت جدول 1 ارائه شده است. غیر از سوئیگوت پرنان که پروتئین کمتر و فیبر بیشتری داشت، اختلاف کم‌میزانی در ترکیب شیمیایی سوئیگوت‌های کم و متوسط تنان وجود نداشت بلکه این

CPEIKTA + 12800

کلینگس + 2000

200

آزمایش عبارت است از مقادیر آنزیمی که یک میکرومول
FSmin دیده را در یک دقیقه از فیشات سدیم 15000/100 آزاد
مول در لیتر را در دمای 37 درجه سانتی‌گراد و pH=5.8 آزاد جدید (48 آزاد کنده). فیتاباز در به سطح صفر تا 100 واحد به هم کبک‌پایی به غلبه اضافه شد. در یک واحد آنزیمی زایلاناز
به گونه‌ای که یک میکرومول معادال
زایلاناز را در یک دقیقه از سوئیگوتان در 37 درجه
سانتی‌گراد و pH=7 آزاد کنده (یکده 15000/100 دارای
36000/100 که
گلکاناز بود به عنوان
غلاف آنزیمی با - گلکاناز بوده یک آزمایش استفاده شد.

پانده تیمار آزمایش عبارت بوده از این آزمایش استفاده شد.

1- سوئیگوت کم تنان
2- سوئیگوت متوسط تنان
3- سوئیگوت پر تنان
4- ذرت
5- گندم
6- سوئیگوت کم تنان + آنزیم زایلاناز + 500 واحد آنزیم فیتاباز
7- سوئیگوت کم تنان + آنزیم زایلاناز + 1000 واحد آنزیم فیتاباز
8- سوئیگوت متوسط تنان + آنزیم زایلاناز + 500 واحد آنزیم فیتاباز
9- سوئیگوت متوسط تنان + آنزیم زایلاناز + 1000 واحد آنزیم فیتاباز
10- سوئیگوت پر تنان + آنزیم زایلاناز + 500 واحد آنزیم فیتاباز
جدول 1. ترکیب شیمیایی واریته‌های سورگوم. گندم و ذرت بر اساس ماده خشک (\%)

<table>
<thead>
<tr>
<th>ماده غذايي</th>
<th>پرورش خام</th>
<th>نهري خام</th>
<th>کلیم</th>
<th>فسفر کل</th>
<th>تانن</th>
</tr>
</thead>
<tbody>
<tr>
<td>سورگوم کم‌تانن</td>
<td>11/2</td>
<td>2/9</td>
<td>0/87</td>
<td>1/36</td>
<td>0/1</td>
</tr>
<tr>
<td>سورگوم متوسط تانن</td>
<td>11/2</td>
<td>2/9</td>
<td>0/87</td>
<td>1/36</td>
<td>0/1</td>
</tr>
<tr>
<td>سورگوم پرتنان</td>
<td>9/2</td>
<td>1/3</td>
<td>0/9</td>
<td>1/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

سروگوم‌ها پروتئین بیشتری نسبت به ذرت داشتند. انرژی قابل سوخت و ساز ظاهري و حقيقي تحت تأيير معنی‌دار (P<0.01) نوع غله قرار گرفت (جدول 2). سورگوم متوسط تانن پرتنان انرژی قابل سوخت و ساز و سورگوم پرتنان کم‌تانن انرژی قابل سوخت و ساز را داشتند. بین گندم و سورگوم کم تانن انرژی قابلسوخت و ساز اختلاف معنی‌داری نداشتند. قابلیت هضم ظاهري ماده خشک و نیتروژن تحت تأيير معنی‌دار (P<0.01) نوع غله قرار گرفتند. ذرت پرتنان ضریب قابلیت هضم خشک و سورگوم پرتنان کم‌تانن قابلیت هضم ماده خشک را داشتند. بین گندم و سورگوم‌ها کم و متوسط تانن انرژی قابلیت هضم ماده خشک اختلاف معنی‌دار مشاهده نشد (جدول 2). قابلیت هضم ظاهري نیتروژن در گندم پرتنان از سایر گلاد گندم و گندم پرتنان کم‌تانن ضریب قابلیت هضم ظاهري نیتروژن را داشت. تأثیر غلات مختلف بر قابلیت هضم ظاهري نیتروژن معنی‌دار نبود (جدول 2).

اثر نوع غله بر قابلیت هضم حقيقی ماده خشک معنی‌دار نبود (P<0.01) (جدول 3). ذرت پرتنان و سورگوم پرتنان کم‌تانن قابلیت هضم حقيقی ماده خشک را داشتند (جدول 2). اثر نوع غله بر قابلیت هضم ظاهري نیتروژن معنی‌دار نبود (P<0.01) (جدول 4). ذرت پرتنان و سورگوم متوسط تانن قابلیت هضم ظاهري نیتروژن را داشتند (جدول 4).

اثر نوع غله بر قابلیت هضم نیتروژن معنی‌دار نبود (P<0.01) (جدول 4). ذرت پرتنان و سورگوم کم‌تانن قابلیت هضم نیتروژن را داشتند (جدول 4).
جدول ۲. اثر آنزیم فیتناز بر انرژی قابل سوخت و ساز و قابلیت هضم ماده غذایی نیتروژن و فسفر درخت، گندم و سورکوم.

<table>
<thead>
<tr>
<th></th>
<th>فسفر درخت</th>
<th>نیتروژن</th>
<th>ماده غذایی</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>انرژی قابل سوخت و ساز</td>
<td>21/5</td>
<td>90/7</td>
<td>78/8</td>
<td>26/0</td>
<td>14/0</td>
<td>77/5</td>
</tr>
<tr>
<td></td>
<td>21/2</td>
<td>92/7</td>
<td>87/0</td>
<td>25/5</td>
<td>14/0</td>
<td>77/6</td>
</tr>
<tr>
<td></td>
<td>26/5</td>
<td>91/6</td>
<td>87/9</td>
<td>25/5</td>
<td>14/0</td>
<td>77/6</td>
</tr>
<tr>
<td></td>
<td>26/7</td>
<td>91/7</td>
<td>87/9</td>
<td>25/5</td>
<td>14/0</td>
<td>77/6</td>
</tr>
<tr>
<td></td>
<td>26/8</td>
<td>91/7</td>
<td>87/9</td>
<td>25/5</td>
<td>14/0</td>
<td>77/6</td>
</tr>
<tr>
<td></td>
<td>14/7</td>
<td>92/6</td>
<td>87/9</td>
<td>25/5</td>
<td>14/0</td>
<td>77/6</td>
</tr>
<tr>
<td></td>
<td>NS</td>
<td>NS</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>37/5</td>
<td>91/9</td>
<td>87/9</td>
<td>25/5</td>
<td>14/0</td>
<td>77/6</td>
</tr>
<tr>
<td></td>
<td>27/6</td>
<td>91/9</td>
<td>87/9</td>
<td>25/5</td>
<td>14/0</td>
<td>77/6</td>
</tr>
<tr>
<td></td>
<td>27/8</td>
<td>91/9</td>
<td>87/9</td>
<td>25/5</td>
<td>14/0</td>
<td>77/6</td>
</tr>
<tr>
<td></td>
<td>27/9</td>
<td>91/9</td>
<td>87/9</td>
<td>25/5</td>
<td>14/0</td>
<td>77/6</td>
</tr>
<tr>
<td></td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

* p<0.05
** p<0.01
*** p<0.001

(غیر معنی‌داری) Not Significant: NS
جدول 3: اثر متقابل مکمل فیتیاز و غلات مورد مطالعه بر انرژی قابل سوخت و ساز و قابلیت هضم ماده خشک، نیترژن و فسفر.

<table>
<thead>
<tr>
<th>فسفر</th>
<th>نیترژن</th>
<th>ماده خشک</th>
<th>فسفر</th>
<th>نیترژن</th>
<th>ماده خشک</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/9 ab</td>
<td>8/9 ab</td>
<td>8/9 ab</td>
<td>3/9 ab</td>
<td>2/9 ab</td>
<td>3/9 ab</td>
</tr>
<tr>
<td>5/9 ab</td>
<td>8/9 ab</td>
<td>8/9 ab</td>
<td>3/9 ab</td>
<td>2/9 ab</td>
<td>3/9 ab</td>
</tr>
<tr>
<td>**</td>
<td>***</td>
<td>***</td>
<td>**</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>2/9 ab</td>
<td>8/9 ab</td>
<td>8/9 ab</td>
<td>3/9 ab</td>
<td>2/9 ab</td>
<td>3/9 ab</td>
</tr>
<tr>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>2/9 ab</td>
<td>8/9 ab</td>
<td>8/9 ab</td>
<td>3/9 ab</td>
<td>2/9 ab</td>
<td>3/9 ab</td>
</tr>
<tr>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>2/9 ab</td>
<td>8/9 ab</td>
<td>8/9 ab</td>
<td>3/9 ab</td>
<td>2/9 ab</td>
<td>3/9 ab</td>
</tr>
<tr>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

انرژی قابل سوخت و ساز (کیلوکالری در کیلوگرم) و قابلیت هضم فیتیاز (واحده در کیلوگرم) غله

- فیتیاز: نتیجه‌گیری
- نیترزین: نتیجه‌گیری
- ماده خشک: نتیجه‌گیری

* p<=0.05
** p<=0.01
*** p<=0.001

(نمایشگاهی) Not Significant: NS
اثر مکمل فیتناز بر انرژی سوخت و ساز و قابلیت هضم مواد غذایی ...

انواع انرژی قابل سوخت و ساز سورگوم متوسط نمودان تحت
تأثیر منعی در سطح فیتناز قرار گرفتند. قابلیت هضم ظاهری و
حقیقی ماده خشک و نیتروزن با 1000 واحد فیتناز نسبت به
500 واحد کاهش منعی در (200>3) نمایند. هزار واحد
فیتناز قابلیت هضم ظاهری نیتروزن را نسبت به 500 واحد
به طور منعی دارای کاهش داشت. قابلیت هضم حقيقی نیتروزن و
فسفر تحت تأثیر منعی در هیچ یک از سطوح آنرژی قرار نگرفتند.
(جدول 3).

اثر انرژی قابل سوخت و ساز سورگوم پرتانن تحت تأثیر
مکمل فیتناز بهبود ندادند و حتی با 500 واحد فیتناز به
نیتروزن کاهشی داشت. مکمل فیتناز تأثیر مشابه بر قابلیت هضم ظاهری و
حقیقی ماده خشک، نیتروزن و فسفر سورگوم پرتانن نداشت.

بحث

نوع غله بر میزان انرژی قابل سوخت و ساز موثر بود. اختلاف
در انرژی قابل سوخت و ساز در غلات مختلف و حتی بین
واریته‌های مختلف یک غله توسط سه میکروفیتناز (1 و 2)
گزارش شده است. این اختلاف عمده‌ای به دلیل تفاوت در
قابلیت هضم مواد غذایی غلات مختلف است. در آزمایش
حاصر سورگوم متوسط نن با تابعی هضم ظاهری و حقيقی
پیشرفت از لحاظ نیتروزن درست و انرژی قابل سوخت و ساز
پیشرفت آن را می‌توان با یک موضوع مرتبط دانست. بهبود در
انرژی قابل سوخت و ساز به دلیل مکمل فیتناز به اثر مشابه
بر قابلیت هضم پروتئین، امیدهای، اشتهای و چربی ریخت
داده شده است. (20 و 22) سورگوم پرتانن در مقایسه با
سایر غلات مورد مطالعه کمترین قابلیت هضم ظاهری و حقيقی
ماده خشک، نیتروزن و فسفر را داشت که وسیله‌های فیتوسایام
بالای آن توجه‌پذیر است و به همین دلیل از انرژی قابل
سوخت و ساز ظاهری و حقيقی کمتری نیز برخوردار بود. به
نظر می‌رسد نانی و فیت برای سورگوم پرتانن عامل اصلی
کاهش انرژی قابل سوخت و ساز و قابلیت هضم آن باشد. اثر
منفی کاهش افزایش سطح و ساز و قابلیت هضم مواد غذایی و انرژی سورگوم متوسط
مباحث مورد استفاده
1. بورورضا، ج. و. ه. کلاسمن. 1381. قابلیت استفاده از فسفر و پروتئین در چربی‌های گوشتی تر تغذیه شده با واریته‌های مختلف گندم.

2. عبادی، م. و. ج. بورورضا. م. خوروشی‌ک. ناظرعلی و. ع. المدرس. 1376. ترکیب مواد مغذی و ارزش قابل سوخت و ساز 36 رقم سورگوم دانه‌ای و مقایسه آن با دوم رقم نرم. علوم و فنون کشاورزی و منابع طبیعی (1) 76-76.

3. عبادی، م. و. ج. بورورضا. م. خوروشی‌ک. ناظرعلی و. ع. المدرس. 1378. تعیین ارزش چند واریته سورگوم دانه‌ای و ارزیابی اشکال جایگزینی آن به جای ذرت در جیره‌های گوشتی. گزارش پایانی طرح تحقیقاتی، معاونت آموزش و تحقیقات، وزارت جهاد کشاورزی.

4. عبادی، م. و. ج. بورورضا. م. خوروشی‌ک. ناظرعلی و. ع. المدرس. 1378. بررسی آثار گلابک‌زین در مقدار سوزن دانه‌ای به جای ذرت در تغذیه مرغان تخم‌کش کنار. نمایش تغییر طرح تحقیقاتی، معاونت آموزش و تحقیقات، وزارت جهاد کشاورزی.

