ارزیابی کنترل تلفیقی سفید بالک گلخانه و حشره کرش کونفیدر در شرایط گلخانه با استفاده از بالنری سیز Chrysoperla carnea (Steph.)

۱۷ زینت احتمالی و یپز حاتمی

چکیده
سفید بالک گلخانه یکی از آفات مهم گیاهان زراعی و زینتی در مزارع و گلخانه‌هاست که معمولاً با استفاده از سموم شیمیایی و یا عامل کنترل بالنری گیاهی کنترل می‌شود. در این مطالعه تأثیر استفاده جداگانه و توأم حشره‌کش کونفیدر و Chrysoperla carnea (Steph.) بالنری سیز (Hom.: Aleyrodidae) در تبادل شکارگر تیمارها شاخص شکارگر تیمارها و چهار تیمار تلفیقی حشره‌کش بالنری سیز و بالنری سیز پیوند که در آنها رهاسازی شکارگر به ترتیب در فواصل ۵، ۱۰ و ۲۰ روز پس از تبادل آغاز شد. آب پاشید در شاهد و سم پاشید در تبادل حشره‌کش تیمار رهاسازی شکارگر تیمارها در سایر تبادل‌ها ۱۰ روز پس از تبادل می‌گردد. در تیمارها استفاده توم سیز و بالنری، سم پاشید فقط یک بار در ابتدا آزمایش انجام شد. نتایج نشان دادند که تیمارهای مختلف، اختلاف معنی‌داری وجود دارد. یک دو تیمار سیز پاشید و یک تیمار بالنری بالنری باعث کنترل آف‌ت نگردید. هر چند جمعیت این تربیت بعد از سم پاشید سم در تبادل حشره‌کش تیمار رهاسازی شکارگر تیمار بالنری پیوسته در روی بیستم بعد از سم پاشید مشاهده شد. این دو تیمار نشان داده که تأثیر یکسانی در کنترل آف‌ت دارند. همچنین در تبادل حشره‌کش + رهاسازی بالنری در روز پنج بعد از تبادل پس از نتیجه رهاسازی جمعیت آف‌ت کنترل شد. بین تیمار شکارگر تیمارها + رهاسازی بالنری و تبادل بالنری که اختلاف معنی‌داری وجود داشت، هر دو کلی می‌توان اظهار نمود که اعمال تیمار تلفیقی حشره کش بالنری سیز مناسب‌ترین و مطلوب‌ترین گزینه ممکن در کنترل آف‌ت در مدت محدود تبادل است.

واژه‌های کلیدی: سفید بالک گلخانه، بالنری سیز، حشره کرش کونفیدر، مدیریت تلفیقی

مقدمه
یکی از مشکلات تویید محصولات جهانی، زینتی و صنایع چای در گلخانه‌های شاخص آفات (Hom.: Aleyrodidae) مهم مانند سفید بالک گلخانه (1). به ترتیب داشته‌شده سایق کارشناز ارشد و دائم حشره‌شناسی دانشکده کشاورزی، دانشگاه صنعتی اصفهان
به مرحله به مظهر نگهداری و بالایی شدنی در یک اکوسیستم کشاورزی و استفاده آنها در برنامه‌های مدیریت نشان‌گرفته‌است که جمعیت آنها به‌طور متوسط از آفرینگان مبتنی سفیدالبیک‌ها اگرچه روش معامله کنترل نسبی سفیدالبیک‌ها مبارزه شیمیایی است ولی بر اثر میزان پیشرفته‌ای مقاومت و خطرات به مجموعه افراد در اثر استفاده مقرر حشره‌کش‌ها (4 و 11) کنترل شیمیایی این آفت را با مشکلاتی مواجه کرده است. از طرفی در کنترل بهترین آفات، عامل حیاتی کش‌ها از جمله نام‌های ویژه زمانی فعالیت دماغ طبیعی و مشووع آفت، کارایی نسبتاً کمتر آن در تراکم‌های بالایی آفت، تحمیل بسیاری گردیده‌های سفید‌البیک‌ها به این آفت‌ها.

به دیل پایین بودن سطح استاندارد پایایی ایمن‌گذاری حیاتی مهدودیت‌های مربوط به شیرینه‌ای و تاثیر سوء‌احماسی نیز در دنبال و ایران برخورد این آفت از نظر می‌رسد که هیچ کدام از دو روش شیمیایی و بیولوژیک به تنهایی به‌کار رفته کاملاً برای کاهش مورث جمعیت این آفت نیست و نیازمند تلفیق این دو روش با سایر روش‌های کنترل و یا با یکدیگر است. بنابراین اگری که به‌طور یک کرنال طبیعی در این روایت تعرفه‌ای مداوم، روش‌های کنترل شیمیایی از جمله گسل‌های بیولوژیکی و بیولوژیکی استوار به‌عنوان روش تلفیقی گاهی (15) تأثیر‌های اولیه در جهت کنترل تنگ عامل کلی تلفیقی سفیدالبیک‌ها نیست کلرالی (9) از کانادا در سال 1870 آغاز شد که در رابطه با مولکول‌های جدید حشرات کش مانند این‌ها و اکسی‌توکوئینکسیس (Oxytinoquinox) بین بسیاری از نیازمندگی‌های خانواده Apheleinidae و بین‌رده‌های نام‌های دیگر نیز در کنترل خود از تشخیص و حشرات کاملاً سفیدالبیک‌ها اما تعداد زیب‌های به دست آمده. در پژوهش‌های Enarsia formosa Gahan بعده در چندین سال حشره کش مانند این‌ها و اکسی‌توکوئینکسیس (Oxytinoquinox) بین بسیاری از نیازمندگی‌های خانواده Apheleinidae و بین‌رده‌های نام‌های دیگر نیز در کنترل خود از تشخیص و حشرات کاملاً سفیدالبیک‌ها اما تعداد زیب‌های به دست آمده. در پژوهش‌های Enarsia formosa Gahan بعده در چندین سال حشره کش مانند این‌ها و اکسی‌توکوئینکسیس (Oxytinoquinox) بین بسیاری از نیازمندگی‌های خانواده Apheleinidae و بین‌رده‌های نام‌های دیگر نیز در کنترل خود از تشخیص و حشرات کاملاً سفیدالبیک‌ها اما تعداد زیب‌های به دست آمده. در پژوهش‌های Enarsia formosa Gahan بعده در چندین سال

مواد و روش‌ها

اين آزمایش در غلظت‌هاي به مساوات تقريبي 300 متر مربع در دمای 25 ± 5 درجه سانتي گراد رطوبت نسبی 50-60 درصد و دوره نوري 14 ساعت روش‌نماي و 10 ساعت ناريزي در E. formosa

عکس و فون کشاورزي و ميازدي طبیعی / سال نهم / شماره چهارم / زمستان 1384
گلدان انجام شد. گیاه میزبان در این آزمایش، یعنی گوجه فرنگی در مراحل ۱۰–۱۵ برگ و به ارتفاع ۵۰–۷۵ سانتی‌متر بود. آلوه‌سازی هر گیاه در وضعیت آزمایشی (شکن‌های چوبی) به ابعاد ۵۰/۶۰ سانتی‌متر و پوشش از بارجه توری ۴۰/۵۰ (затه) از حدود ۱۰ تا ۲۰ روز قبل از شروع آزمایش انجام گردید. در ابتدا سعی شد حتمیتِ آن‌ها هم اندامه و با شرایط یکسان در تکرارِ انجام شود. به منظور ندیم کردن شرایط آزمایش به شرایط طبیعی و حصول نتیجه دقیق تر و واقعی تر، هدف پوشه‌های آفت برای تعبیه تعداد مشخصی از آنها روی گیاه انجام شد. بنابراین آغاز آزمایش گیاه جمعیت آفت‌دار و در شرایط آزمایش جمعیت آفت وقعاشن. بنابراین آغاز آفت در اولین شمارش جمعیت آفت به‌عنوان تعداد نسبتاً کم برگ‌هایی که گوجه فرنگی تعداد پوشه‌های موجود در پشت سه برگ‌های از گیاه میزبان که در جهان و نقاط مختلف بودند (بالا، وسط و پایین) با استفاده از پیونکولا بررسی و شمارش شدند. این تعبیه به تعداد کل برگ‌های گیاه جمعیت پوشه‌ها در آن تکرار تعیین زده شده و در شمارش‌های بعدی برای محاسبه درصد مقری و نبیعین انداده جمعیت آفت شست برگ‌چه (در برگ‌های بالایی، در برگ‌چه از برگ‌های وسطی و در برگ‌چه از برگ‌های پایینی) به صورت تصادفی از بونه جدا و به‌طور انفرادی درون کیسه‌های پلاستیکی محصور تعداد برداری به‌عنوان ۸/۱۲۳۳ قرار داده شدند. پس از اتصال به آزمایش‌گاه، ژریبکولا شمارش شده و میانگین تعداد پوشه‌های زنده موجود روز یک برگ‌چه محاسبه شد. با توجه به تعداد کل برگ‌هایی که موجود در هر گیاه در زمان تعداد برداری، جمعیت آفت در هر نمونه‌برداری و برای هر تکرار تعیین زده شد.

از آزمایش در قالب طرح بلوک کامل تصادفی با ۳ تیمار و ۷ تکرار انجام شد. نتایج آن‌ها به صورت زیر بودند:

۱- تیمار شاهد (بدون حشره کشنده و شکارگر)
۲- تیمار استفاده از شکارگر
۳- تیمار استفاده از حشره کشنده
شمیپاشی، نسبت به دور تیمار تلفیقی دیگر موثرتر بود (شکل 2). این نتیجه‌گیری بر تاثیب‌کننده‌ی پیش‌بینی یافته بود که در آن بیشترین تأثیر حشره سیستمیک کنیفیر دیروز دهم و در فاصله ۷ تا ۱۱ روز از کاردیش آن بود (۱). بنابراین در تیمار چهار بین حشره‌کش و رهاسازی بالتریک ۵ روز بعد از سمپاشی، به دلیل این که هنوز زمانی لم برای بیشترین تأثیر حشره‌کش وجود نداشت و نهایاً پنج روز از کاردیش آن می‌گذشت تأثیر کمتری در ایجاد مارک و میر مشاهده شد. در تیمار هفت بین حشره کش و رهاسازی بالتریک ۲۰ روز بعد از سمپاشی نیز به عنوان کاهش اثر حشره‌کش در این زمان (بین ۲۰ روز پس از سم پاشی) فرض مناسب برای افزایش موثر و جزئی جمعیت‌آفت پیش آمد که در نتیجه نسبت افراد باقی مانده به جمعیت اولیه (جمعیت قبل از سم پاشی) تا حذف‌دیست نسبت به دیگر تیمارها نیز تردیت. از میان تیمارها مختلف، تیمار سه (حشره‌کش تنها) و تیمار چهار (حشره‌کش + رهاسازی بالتریک) ۵ روز بعد از سم پاشی به ترتیب در اولین سم پاشی و رهاسازی بیشترین تأثیر را در کاهش جمعیت آفت داشتند که میزان آن به ترتیب ۲/۱ و ۲/۸ بیش از افراد باقی مانده بود. سایر تیمارها بعیض تیمار دو (شکارگر تنها)، تیمار پنج (حشره کش + رهاسازی بالتریک) ۱۰ روز بعد از سم پاشی، تیمار شش (حشره کش + رهاسازی بالتریک) ۱۵ روز بعد از سمپاشی و تیمار هفت (حشره کش + رهاسازی بالتریک) ۲۰ روز بعد از سم پاشی نیز با هم اختلاف معناداری نداشتند (شکل ۱). به نظر می‌رسد این مقدار تأثیر در تیمار چهار، نه مربوط به اثر شکارگر نبود بلکه ناشی از عمل مجموع حشره‌کش و شکارگر بود. چرا که هنوز جمعیت بورگوی اولیه در زمان اولیه رهاسازی بالتریک بین پنج روز بعد از سمپاشی نیز تا حدودی وجود داشت و از طرفی تأثیر حشره‌کش کنیفیر در ایجاد مارک و میر آفت نیز در زمان رهاسازی شکارگر که پنج روز بعد از کاردیش حشره‌کش بود هنوز به شود. در ضمن در تیمارها تلفیقی بین تیمارهای جهارتا هفت فقط یکبار در ابتدا آزمایش سم پاشی انجام شد. بنابراین ترتیب با توجه به شروع همزمان آزمایش در کلیه تیمارها و با نظر گرفتن تأخیر زمانی که از نظر انجام رهاسازی در تیمارهای تلفیقی مقصودی در تیمارهای حشره کش تنها و شکارگر تنها وجود داشت پایان آزمایش بایستی آب پاشی در تیمار یک (شاهد)، شش پار رهاسازی در تیمار دو (شکارگر تنها)، شش پار سم پاشی در جامعه سه (حشره کش تنها)، پنج پار رهاسازی در تیمارهای جهارتا و پنج و چهار پار رهاسازی در تیمارهای حشره کش و پنج و چهار پار رهاسازی در

نتایج و بحث

نتایج به دست آمده از تجربه و تحلیل و مقایسه مانگیون داده مربوط به تعداد افراد باقی‌مانده نسبت به جمعیت قبل از آن در هر مرحله نشان داد که در تمام مراحل رهاسازی شکارگر با اکثریت تیمارها و تنی یک در مجموعه داده با ۰/۵ مETER کمک بر نامه کامپیوتری تجربه و تحلیل آماری شدن و مانگیون‌های توسط آزمون SAS

چند نامه‌ای دانک مقایسه شدند.

Downloaded from ijcp.iut.ac.ir at 16:17 IRST on Tuesday September 29th 2020
ارزیابی کنترل تلفیقی سفید بالک گلخانه

شکل ۱ نسبت افراد باقیمانده آفت به جمعت قبل از آن پس از انجام مراحل مختلف رهازاسی شکارگر با سم پاشی در تیمارهای مختلف آزمایشی. مراحل اول تا چهارم رهازاسی و سه پاشی در همه تیمارها، مرحله پنجم در پنج تیمار و مرحله ششم در سه تیمار انجام شد.

شکل ۲. تأثیر حشره‌کش کونفیدر روی آفت در فاصله زمانی سه پاشی و رهازاسی شکارگر در فواصل زمانی معین در تیمارهای تلفیقی
حرکتی حدود نسبی است (1و 2). بنا برای نهایت تعداد بیشتری پورههای زدن در ادراک ابزارهای شکارگر قرار داشت و در نتیجه زمان برای فعالیت اولویت شکارگر مسافت بوده و در نهایت شکارگر این لازم همراه با این آماری حرکت کننده احتمالاً باعث کاهش بیشتر جمعیت آفت نسبت و در نتیجه تأثیر بیشتر این تیمار گردیده است. به طوری که نسبت جمعیت باند مانده 20/0 به بهای 28 درصد جمعیت قبل از رهاسایی بود که در حالی که در تیمار یک (شاهد) جمعیت باند مانده 1/3 برای جمعیت قبلی با اولیه بود. در تیمار شش (حرکت کش + رهاسایی بالاتری 15 روز بعد از سم پاهی و تیمار هفت (حرکت کش + رهاسایی بالاتری 20 روز بعد از سم پاهی) اگر چه اثر بهانه سم کاهش یافته و به ظاهر زمینه برای فعالیت اولویت شکارگر مساعده داشت ولی به دلیل کاهش سطح جمعیت اولیه پیوسته ناشی از تاثیر تدريجي حشره کش و همچنین تغییر ساختن سنی شکار که در این زمان اغلب به صورت حشره کمال و تخم مانندی می شدند، جمعیت آفت در این تیمارها نسبت به تیمار چهار که در این پنج روز بعد از سم پاهی راهاسایی بالاتری انجام شده بود، کمتر کاهش یافته بود. تیمار دو (شکارگر تنا) نسبت به تیمار یک (شاهد) کاهش معنی داری را در جمعیت آفت باعث شد. ولی کاراکتر آن نسبت به سایر تیمارها به ویژه تیمار هفتم (حرکت کش) نشنا. کمتر بود (شکل (7) در حالی احتمالی آن ممکن است که زنی نهال و تغییر گامه میزان و مورفولوژی و ساختار آن مثال وجود کردهای فراوان در پیش برگه‌های کوه فرنگی و نیز شرایط دمای آزمایش برای فعالیت شکارگر بوده باشد (13و 14). به حال انجام این یکی بار راهاسایی یا سهمیه با صورت جدالها یا توأم در هیچ کدام از تیمارها باعث کنترل جمعیت آفت نشد و بر این اساس راهاسایی و سهمیه به عنوان انجام گردید.

رهاسایی و سم پاهی دوم، سم پاهی مجدد در تیمار سه (حرکت کش) و رهاسایی بالاتری 20 روز بعد از سم پاهی جمعیت آفت به صفر رسید و کنتروئید از جمعیت آفت در این تیمارها مانده شد. در این مرحله بین تیمارهای یک (شاهد) و دو (شکارگر تنها) اختلاف معنی داری نبود و حتی در تیمار دو از مقدار یک (شاهد) افزایش جمعیت مانده بود که احتمالاً دلیل خور تصویب حشرات کامل بود (در این مرحله حدود 30 روز از شروع آزمایش)
Trialeurodes vaporariorum West. رضایی کنترل تلقیفی سفید بالک گلخانه‌ای
گذشته بود که باعث تخویضداری مداوم روی گیاهان موجود در تکرارهای این تیمار شد و کارایی شکارگرها را پایین آورد. بود در رهاسازی و سرمایه‌های چهار، نیز اختلاف معنی‌داری بین تیمارها مشاهده شد. در این مرحله نیز در هر دو تیمار سه و هفت، جمعیت آفت همان در حد صفر نگهداری شده بود و بین سایر تیمارها (به جز تیمار شاهد) از لحاظ کاشت جمعیت، اختلاف معنی‌داری مشاهده نشد. در تیمار یک (پشتی) در این مرحله رهاسازی، بر خلاف سایر مراحل رهاسازی، افزایش جمعیت آفت دیده نشد (شکل 1) دفعه چهارم رهاسازی و سم پاشی باعث خشکسازی بود، گرگشه فندکی و تغییرات در ناحیه حاشیه از تیمارها را می‌توان به این سم پاشی تا فاصله زمانی اولیه رهاسازی شکارگر ارزیابی داد. نتیجه قابل ذکر این است که در هر چهارم، از زمان کاربرد حشره کش تا قبل از اولین رهاسازی شکارگر، کاهش جمعیت آفت به طور مطلوب به اثر حشره کش می‌باشد ولی از بعد از آن کاهش در تعداد افراد موجود، در اثر تأثیر متقابل و توأم حشره کش و شکارگر می‌باشد. در این میان، مکان است تخم‌های شکارگر و حتی لوراهزی آن، به عنوان یک عامل وابسته به ترکم شکار تحت تأثیر اثر باقی مانده حشره کش قرار گرفتند (8). این مناظر می‌تواند نتایج متوقف به دست آمده از تیمارهای تلفیقی را تا حدودی توجیه کند.

تأثیر تعداد دفعات رهاسازی با سم پاشی در تیمارهای مختلف بر کاهش جمعیت آفت
روند تغییرات جمعیت آفت نسبت به جمعیت اولیه آن ناشی از تعداد دفعات مختلف رهاسازی و با سم پاشی است (شکل 3) نشان داده شده است. از آنجا که کمبود معیاری تعداد افراد جمعیت اولیه بود، نتایج در ارزیابی تأثیر تیمارها برای
جمعیت اولیه نسبت 1 در نظر گرفته شد و تغییرات بعدی جمعیت ناشی از اثرات عمده تعداد دفعات رهاسازی و یا سام پاشی بر اساس عدد محبوب شد. در تیمار یک (شده)، به عنوان یک تیمار استنداز که در آن پنج پارآ پاشی شده به دست آمده رهاسازی، گروه مجتمع مشاهده شد. به طوری که در پایان آزمایش هم یعنی پس از پارآ پاشی، تعداد افراد بالقوه مانده 7/37

برای جمعیت اولیه بورگیک (شکل 3-ف به چنین نشان داد. این مقدار بعد از یک بار رهاسازی بیشترین بوده است. در تیمار دو (شکل 7) نمایش داده شد که این سه نشان دهنده جمعیت اولیه آلت مورثی بوده.

جمعیت آلت به حدود نصف جمعیت اولیه رشد، با این وجود تعداد دفعات بیشتر رهاسازی بعث کاهش جمعیت آلت نشده و شکل کارایی بینشانگ در خود نشان داده شده است. در پایان

بنچ بار رهاسازی جمعیت بالقوه مانده 14/37 % برابر با 14 درصد جمعیت اولیه. شکل 3) شاید رهاسازی های بیشتر منجر به کنتن حمی و کامل آفت در این تیمار می‌گردند. در تیمار شش (شهر عال + رهاسازی بالقوه) 15 روز بعد از سام پاشی نیز مقدار تیمار نشان دهنده مشاهده شد که کم‌ترین مربوط به اثر کم رهاسازی بود (شکل 3-ف). صرف نظر از این افزایش، با رهاسازی به بعدی، این مقدار کاهش یافته و در تعداد پس از چهار بار رهاسازی جمعیت بالقوه مانده روی گیاه به ۱۵/۱۳ درصد جمعیت اولیه قبل از رهاسازی ردی (شکل 3-ج). این مقدار تأثیر در این تیمار مناسب و مطلوب بود و جنین استیمات

می‌شود که رهاسازی به بعدی بیان جمعیت آلت و آئودیگی ناشی از آن را حذف کند. در تیمار هفت (شهر عال + رهاسازی بالقوه) 20 روز بعد از سام پاشی) کاهش نسبت افراد بالقوه مانده به جمعیت اولیه قبل از هر رهاسازی با افزایش

1384/1279

فلسفه و فنون کشاورزی و منابع طبیعی / سال نهم / شماره چهارم / دویام
شکل 3. تأثیر تعداد دفعات آب باشی، رهاسازی و یا سپاشی در تیمارهای مختلف آزمایشی. با توجه به مدت زمان یکسان آزمایشی، شکل با رابطه آب باشی، سپاشی یا رهاسازی در تیمار تخت (ب) بین یک تیمار (رهاسازی در دو تیمار چهار و پنج و چهار) چهار بار رهاسازی در دو تیمار شش و هفت، انجام شد.

247
تعداد دفعات رهاسازی کامل محصول بود و پس از سه بار
راهاسازی شکارگر در این تیمار، کنترل مورث و کامی از آن شهرت دست آمد و تا پایان آزمایش بدون رهاسازی شکارگر و نه نا آپ پاشی (برای حفظ خطای آزمایشی و برای مقایسه با تیمار شاهدی) در این تیمار فقط آپ پاشی شد) جمعیت آفت صفر بود.
(شکل ۳ج)

به هر حال جمعیت آفت در بعضی از مدل سوم رهاسازی با یا اپ پاشی ماهش داده که به مدل سوم رهاسازی (حشره گر) پس از سه بار یا تیمار هفت (حشره گر + رها سازی بالاتر) ۲۰ روز بعد از سپارش، (پس از سه بار یا رها سازی بالاتر) تیمار چهار (حشره گر + رها سازی شکارگر ۵ روز بعد از سپارش) سپس از پنج گزینه رهاسازی جمعیت آفت کنترل شد (یادآوری: در تیمارهای تلفیقی مین و شکارگر، فقط یک بار در شروع آزمایش سم پاشی شد) (شکل ۳)

در سایر تیمارها به جز تیمار یک (شاهد) نیز جمعیت آفت به مقدار قابل توجهی نسبت به جمعیت اولیه قابل شاهدی، کاهش یافت. به طور کلی اگر در این بررسی از بیش سپارشی و رهاسازی بالاتری در طول مدت آزمایشی، حداقل نتایج (چهار دفعه رهاسازی شکارگر در تیمار دو (شکارگر تنها) و نیز در تیمارهای استفاده توانای حشره کش و شکارگر (تیمارهای چهار، پنج، شش و هفت) و همینطور چهار دفعه سم پاشی در تیمار سه (حشره کش تنها) در نظر گرفته شود (شکل ۳) مشاهده می‌شود که در تیمار حشره کش تنها، پس از سومین مرتبت سم پاشی (۳۰ روز پس از شروع آزمایش) و در تیمار هفت (حشره کش + رها سازی بالاتر) ۲۰ روز بعد از سم پاشی مین و شکارگر (شکل ۳) نیز به طور که تأثیر استفاده از حداقل مین و شکارگر در سه بار سم پاشی به وابسته قرار دارد (شکل ۳ اف ج) به طوری که در این پژوهش گرچه استفاده از حداقل سم پاشی سه بار سم پاشی در فواصل هر دو روز یک بار در تیمار سم پاشی نه تفاوت در نتایج تیمارهای استفاده از حداقل سم پاشی سه بار سم پاشی به‌طور کلی در نتایج انجام یکپاره سم پاشی
ارزیابی کنترل تلفیقی سفید بالک گُلخانه

(شکل‌های ۱ و ۲-الف) و تناها باعث نگهداری جمعیت آفت و
ممانعت از گسترش آن شد. ولی احتمالاً رهاسازی شکارگر در
نسبت‌های بالای مثلث ۱:۱ تخم شکارگر به شکار، با کم کردن
فاصله بین رهاسازی‌ها از ۲۰ روز به ۷ روز و نیز تداوم
رهاسازی‌ها می‌تواند باعث کنترل مؤثر و قطعیت مجمعمت
شکارگر می‌باشد (۱۲-۱ و ۱۴).

به هر حال مطالعات بیشتر رهاسازی‌های گستره‌نی برای
است نتایج کامل‌تری به دست آید. بخصوص بررسی ارزیابی
در مورد امکان اجرای عملی این تاکید در گلخانه‌های
تجاری و حتی مواردی به‌جزی این آفت‌های ضروری است. بنابراین
مطالعه و ضروری به نظر می‌رسد که این گونه پژوهش‌ها در

 история

بی‌دین و سیله از آقای دکتر عبداللہ گرامی استاد زراعت و
اصلاح نباتات دانشگاه کشاورزی بخاطر همکاری در آنلاین
آماری داده‌ها و تفسیر آنها و نیز از آقای هنری مسایل
کارشناس فضای سیز دانشگاه صنعتی اصفهان به سبب همکاری
در ایجاد امکانات گلخانه‌ای تکریک و قدردانی می‌شود.

مانیع مورد استفاده

1- احمدزاده، ز. و ب. حامی. مقاله‌ای در مورد
رهاسازی تخم بی‌پروش‌های شهرکریک گلخانه
Chrysoperla carnea (Steph.)
علیه سفیدبالک گلخانه
Trialeurodes vaporariorum West. طبیعیه ۷ (۳۲۲-۳۲۳).
2- رفیعی، ر. ۱۳۸۰. در روش رهاسازی بی‌پروش‌های شهرکریک
Chrysoperla carnea (Steph.) برای یک کنترل بیولوژیکی
علیه شته جالیز Aphis gossypii (G.) پایان نامه کارشناسی ارشد
سرپرستی دانشگاه صنعتی اصفهان.
3- حامی. ب. ۱۳۷۹. یک روش سریع و مؤثر رهاسازی
Chrysoperla carnea (Steph.) با یک میزه با یا به‌جزی این
فناوری تجربیات در مورد مطالعات تجاری است.

خلاصه مقالات چهاردهمین کنگره گامب‌پرک‌های ایران، دانشگاه صنعتی اصفهان.