چکیده
طرحی مناسب کالاهای بهره‌مند سازی مناطق روستایی به طور قابل توجهی کاهش هزینه اقتصادی و امکان توجهی اجرای پروژه‌ها را فراهم خواهد ساخت. در این راستا توریزم، امکان بررسی تجزیه و تحلیل طراحی کالاهای پایدار را که در اینجا فدراسیون و انتقال رسوب در حال تعامل است، فراهم می‌سازد. هدف این تحقیق بررسی و مقایسه تأثیر نوع چرخانی یکنواخت و غیر یکنواخت در پیشینه مشخصات یک کالا پایدار می‌باشد. در بررسی اجرای یکنواخت از روابطی که برمی‌گردد به اساس معادله‌های تجزیه و نیمه تجزیه (فرضیه حذفی) توسط زبان‌شناسی، استفاده به عمل آمده است. برای بررسی تأثیر چرخان یکنواخت معادلات تجزیه و نیمه تجزیه (فرضیه حذفی) لیس شیلات، کنندگی و گردش و چانچت انتخاب شده، مقایسه و برآورد قدرت مبتکرین هر یک از معادلات فوق با استفاده از روش‌های ترسرش (گرافیکی) و آماری و 44 کالای طبیعی واقع در آمریکا که در شرایط زیست فرار داشتند، صورت پذیرفت. به منظور بررسی ساختار چرخان یکنواخت روش مشخصات کالای پایدار از 21 گرخ سرعت ادغام گیری شده در رودخانه‌های اقتصادی استفاده گردید. با کاربرد توریزم به مرزی، سرعت برای برای هر یک از نیروهای سرعت محاسبه شد. برای چرخان غیر یکنواخت، پارامتر شیلدز که در آن نش برخی به کمک روش لا از مرزی مشابه استفاده می‌گردد، به عنوان مؤثرترین پارامتر مبتکرین مشخصات کالای چرخان شناخته شد. در نظر گرفتن هر میزان اثر چرخان غیر یکنواخت و توریزم به مرزی نه تنها خطر هپسی‌کگا ساختکی را از بین می‌برد، بلکه دقت پیشینه مشخصات مقطع کالای پایدار را نیز افزایش می‌دهد.

واژه‌های کلیدی: توریزم، مقطع کالای پایدار، لیس شیلات، کنندگی

مقدمه
دستیابی به رودخانه و کالاهای طبیعی که در آن میزان انتقال رسوب و فرسایش در حال تعادل دینامیکی مناسب باشد، یکی از مهم‌ترین دستاوردهای شناخته مهندسی رودخانه‌های یکصد سال گذشته می‌باشد. به دلیل پیچیدگی بیش از حد

1. به ترتیب استادیاران و دانشجوی سابق کارشناس ارشد آپاری، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

حسین افاضلی مهر، مهندس حیدرپور و سید حسن فرخی

تموری رزیم و کاربرد آن برای چرخان یکنواخت و غیر یکنواخت

مسأله در این راستا فقط مسئله برای شرایط فرضی چرخان

یکنواخت توصیه پایه است (1). اگر چه بخش عمده‌ای از مطالعات انجام شده صرف انجام پروژه به روش انتقال نیروهای شبکه گرفته است، ولی بخشی از تحقیقات بر پایه روابط تحلیلی با استفاده از قوانین ترمودینامیک مانند...
فرضیه حذف (که هنوز برای شرایط صحیحی به طور کامل مورد تصویب قرار گرفته است) مورد توجه قرار گرفته است.

توضیح فضیل، قابلیت روند رشد فيزیکی در تخته آهن دارد (۳). این روش در واقع از تجارب مختلف مهندسین روخته شانگ در شیکاگو آیپی، به وجود آمده است. به نظر یوگاری مدی ساخته می‌شود. این تجربه را از مسیل انتقال سرور جدایی می‌پذیرد. برای اینکه هدف عملکرد روشن، مطالعه رفتار آب‌ها به است که به سیستم مدل‌سازی این انتقال سرور جدایی می‌پذیرد.

اگرچه به دلیل محتوای تجربی توری روشن که براساس داده‌های صحیح باشد، است. ضریب و نمایه‌های معلامه‌های رژیم اثر نشان دهند. در محتوای مختلفی، به طور متناوب تا به امور دیگر تعیین و تغییر شده‌اند.

تصمیم بین‌المللی که یک مهندس هیدرولوژیک با نام روی ه، به عنوان این است که در تجربیات کالانی‌های پایدار، بستر کالانی، می‌باشد متعلق به با نتیجه پاسخ این مسئله و می‌باشد. این تجربیات به دست آمده می‌باشد. بودن آن که در ذرات بعد بر درد یافته آب اثر دارد. همچنین نتایج بررسی یافته به نشان می‌دهد که کالانی‌های پایدار نیز قابلیت حمل سرور را دارند. بسیاری از روخته‌های نیز ضمن انتقال مواد وابسته رشد سیستمی می‌کند. ذکر مطالعات فوق شاهد است که تصورات کالانی‌های این نمی‌توانند به اندازه انتقال سرور روند رو به کالانی‌های پایدار می‌باشد. بنابراین به تخته آهن آتی را انتقال سرور سازگار نیست. زیرا هیچ گونه انتقال سروری از هیچ بخش آن
کرد. کاربرد معادلات لیسی در کشورهای هند و پاکستان (بس از ۱۹۵۴) نشان داد که مکان‌ها فوق به خویی می‌توانند برای مشخص کردن کانال‌های پادیام مناسب باشد. از عمده عوامل موثر بر روابط لیسی عبارتند از: ۱- پیش بینی مقطع پادیام هیچ نیازی به اطلاعات در مورد کمیت رسواد ندارد. ۲- این روابط فقط تابع دی جیران و قطع دره رسو (قطع دره رسو در پارامتر ۱ به کار گرفته شده است) می‌باشد. در این حالت از نقاط ضعف روابط لیسی می‌توان به منطقه‌ی بودن آنها که تابع شرایط جغرافیایی و ملی‌شناسی خاص هستند و عدم در نظر گرفتن دی‌گر رسو (پوشش گیاهی و شرایط موضعی جیران) هم در این جامعه به صورت قابل توجه به شمار می‌رود.

روابط شیبان (۵) که در این مطالعه از آن استفاده می‌شود به همان شکل رافی‌پای روابط لیسی می‌باشد که در ضرایب و توانا آنها کمی با هم تفاوت دارند. لیسی در تجربه‌ی خود از فاکتور که در واقع می‌گوید حکمت جیران در پی روابط لیسی می‌باشد و پنا بر تجربه‌ی وی در تعیین پیچ و تایید است، استفاده می‌کند. این فاکتور به صورت زیر تعریف می‌شود:

\[F_{1} = 1 / \sqrt{d_{n}} \]

که در آن

\[d_{n} = \text{فاکتور رسو} \]

\[r_{n} = \text{خطر میانه دربار رحیم میلی‌متر} \]

کندب و گدار (۸) با استفاده از آنالیز استاندارد و در نظر گرفتن عواملی مانند چگالی رسو و آب و آبی که در فرآیند رسو در روابط عرض و عمق کانال تلاقی کردن ناپایینی بیشتر بحث و نشان دهنده یا بهبود بخشیدن نه چند روابط آنها کاربرد برابر دو چهارم رطوبت حیاتی راه‌داری را به شمار می‌رود. خاصیت سربازی یا جغرافیایی می‌باشد.

لازم به ذکر است که به دلیل عدم دقت پیش‌بینی شیب کف کانال باید به روش لیسی شتاب، گدار و کندب بهره‌برداری از ارائه تحلیل آنها در این پرس قرار ن.dt نمایش داده شد. از علل عدم این ضعف می‌توان به عدم شناسایی پارامترهای متغیر مسئول از پیش‌بینی شیب کانال، نبودن دقت مناسب در اندازه‌گیری‌های
کاتال، معادله مقاومت جریان برای عمق جریان و فضای حید برای بسیاری جلک هر سنتر نسبت برای عضو کاتال است.

از نقطه قطع این روش به کارگیری مقاومت توربین برای تجزیه و تحلیل داده‌های تجربی و ارائه جزئیات بیشتر مکانیزم تعیین کاتال نسبت به روش تجزیه‌ای مشابه است. از نگاه ضعف این روش عدم تطبیق نتایج با مدل توربین به ویژه در رودخانه‌ها و محدودیت کاربرد آن در شیپ‌های نیک و مواد داخلی ریز سرچسب است (12 و 13).

از طرف دیگر در نظر گرفتن جریان غیر یکنواخت در طراحی کاتال‌های پایدار برای نخستین بار در این تحقیق بر اساس توئیزی هر مزی سوزرت به دلیل ضعف کامل مقاوت جریان غیر یکنواخت از جریان یکنواخت و نوع و شکل توسعه نشان‌برنی برای این دو جریان، تغییر قابل توجهی در مدله‌گیری و نتایج پیش‌بینی می‌شود. در واقع هدف از کاربرد جریان یکنواخت و غیر یکنواخت بررسی امر کاربرد جریان غیر یکنواخت نسبت به جریان یکنواخت برای بهبود پیش‌بینی مشخصات کاتال‌های پایدار می‌باشد. در این مطالعه با اشاره محتمل به مبانی کاربرد هر یک از این دو جریان در کاتال‌های پایدار، نقاط قوت و ضعف آنها را ارائه کرده و نیاز مس شد تا راهنماهای اولیه در انجام تحقیقات و برنامه زیان قرار داده شود.

مواد و روش‌ها

الف) معرفی داده‌ها

در این مطالعه برای مقایسه روش‌های تجربی و نیمه تجربی در شرایط جریان یکنواخت از پارامترهای هیدرولوژیک کاتال‌های پایدار، عادت‌کننده که برای کارکرد عضو در سیستم‌های بزرگشان و شن در آمریکا که در جدول 1 ارائه شده‌اند استفاده گردید (13). برای مطالعه و درک تأثیر جریان غیر یکنواخت در طراحی کاتال‌های روی دم بسته‌های شنی از 21 نیم‌ساخت اندام‌های ریز سرعت ایجاد شده در باره‌های مختلف رودخانه‌های کاماسیاب با

ب) معادلات انتخاب و تحلیل داده‌ها

همان طور که قبل اشاره گردید در این مطالعه برای شرایط جریان یکنواخت از معادلات لیپس، شبیه‌سازی، نیوتن و مکانیک به منظور تجزیه و تحلیل و مقایسه قدرت پیش بینی کاتال‌های روی دم کاتال نسبت به جریان یکنواخت برای مشخصات کاتال‌های پایدار می‌باشد. در این مطالعه برای مشخصات کاتال‌های پایدار می‌باشد. در این مطالعه با اشاره محتمل به مبانی کاربرد هر یک از این دو جریان در کاتال‌های پایدار، نقاط قوت و ضعف آنها را ارائه کرده و نیاز مس شد تا راهنماهای اولیه در انجام تحقیقات و برنامه زیان قرار داده شود.

برای انتخاب مدلی برای بازیابی داده‌ها از معادلات فوق برای داده سپس تابع گنگ از معادلات با خط‌های ترسیم شده و حدود اطمنی 25/2٪ مقاومه می‌باشد.

در بررسی و درک اثر ساختار جریان غیر یکنواخت در پیش‌بینی پایداری یک رودخانه شنی از نظر لیتیم‌یک حرکت اکثر استفاده گردید. همچنین با استفاده از روش رگرسیون غیر خطی معادلاتی برای عرض، عمق و شیب مقاطع مختلف رودخانه گاماسیاب ارائه گردید.
جدول ۱. پارامترهای هیدرولیکی اندازه‌گیری شده در کانال‌های آبرسانی

<table>
<thead>
<tr>
<th>d، (mm)</th>
<th>w(ft)</th>
<th>h(ft)</th>
<th>S×10^3</th>
<th>u(ft/s)</th>
<th>Q(ft^3/s)</th>
<th>شماره کانال</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/580</td>
<td>27/0</td>
<td>2/40</td>
<td>0/0100</td>
<td>2/24</td>
<td>1/77</td>
<td>1</td>
</tr>
<tr>
<td>0/608</td>
<td>62/0</td>
<td>5/40</td>
<td>0/1130</td>
<td>2/28</td>
<td>0/73</td>
<td>2</td>
</tr>
<tr>
<td>0/653</td>
<td>80/0</td>
<td>8/29</td>
<td>0/0868</td>
<td>1/17</td>
<td>0/31</td>
<td>3</td>
</tr>
<tr>
<td>0/796</td>
<td>24/0</td>
<td>5/10</td>
<td>0/0330</td>
<td>1/92</td>
<td>0/25</td>
<td>4</td>
</tr>
<tr>
<td>0/846</td>
<td>74/0</td>
<td>0/81</td>
<td>0/0770</td>
<td>2/10</td>
<td>0/50</td>
<td>5</td>
</tr>
<tr>
<td>0/850</td>
<td>85/0</td>
<td>7/66</td>
<td>0/0580</td>
<td>1/79</td>
<td>0/95</td>
<td>6</td>
</tr>
<tr>
<td>0/878</td>
<td>34/0</td>
<td>3/51</td>
<td>0/1250</td>
<td>1/36</td>
<td>0/24</td>
<td>7</td>
</tr>
<tr>
<td>0/917</td>
<td>53/0</td>
<td>4/93</td>
<td>0/390</td>
<td>1/58</td>
<td>0/19</td>
<td>8</td>
</tr>
<tr>
<td>0/940</td>
<td>44/0</td>
<td>4/93</td>
<td>0/140</td>
<td>1/39</td>
<td>0/16</td>
<td>9</td>
</tr>
<tr>
<td>0/945</td>
<td>39/5</td>
<td>0/37</td>
<td>0/210</td>
<td>1/74</td>
<td>0/18</td>
<td>10</td>
</tr>
<tr>
<td>0/958</td>
<td>46/0</td>
<td>7/68</td>
<td>0/268</td>
<td>1/98</td>
<td>0/14</td>
<td>11</td>
</tr>
<tr>
<td>0/968</td>
<td>46/0</td>
<td>7/21</td>
<td>0/181</td>
<td>2/16</td>
<td>0/83</td>
<td>12</td>
</tr>
<tr>
<td>0/977</td>
<td>60/0</td>
<td>6/88</td>
<td>0/186</td>
<td>2/57</td>
<td>0/75</td>
<td>13</td>
</tr>
<tr>
<td>1/011</td>
<td>91/0</td>
<td>8/50</td>
<td>0/120</td>
<td>2/51</td>
<td>0/13</td>
<td>14</td>
</tr>
<tr>
<td>0/575</td>
<td>54/0</td>
<td>3/90</td>
<td>0/349</td>
<td>3/55</td>
<td>0/40</td>
<td>15</td>
</tr>
<tr>
<td>0/173</td>
<td>14/0</td>
<td>2/01</td>
<td>0/253</td>
<td>1/84</td>
<td>0/55</td>
<td>16</td>
</tr>
<tr>
<td>0/193</td>
<td>13/0</td>
<td>3/01</td>
<td>0/378</td>
<td>1/78</td>
<td>0/55</td>
<td>17</td>
</tr>
<tr>
<td>0/239</td>
<td>12/5</td>
<td>2/94</td>
<td>0/294</td>
<td>1/56</td>
<td>0/43</td>
<td>18</td>
</tr>
<tr>
<td>0/215</td>
<td>28/5</td>
<td>3/21</td>
<td>0/302</td>
<td>2/42</td>
<td>1/68</td>
<td>19</td>
</tr>
<tr>
<td>0/360</td>
<td>3/0</td>
<td>0/285</td>
<td>0/112</td>
<td>1/58</td>
<td>0/36</td>
<td>20</td>
</tr>
<tr>
<td>0/399</td>
<td>2/0</td>
<td>0/233</td>
<td>0/110</td>
<td>2/01</td>
<td>0/13</td>
<td>21</td>
</tr>
<tr>
<td>0/446</td>
<td>2/32</td>
<td>0/218</td>
<td>1/65</td>
<td>0/22</td>
<td>1/65</td>
<td>22</td>
</tr>
<tr>
<td>0/420</td>
<td>2/45</td>
<td>0/288</td>
<td>1/90</td>
<td>0/39</td>
<td>0/39</td>
<td>23</td>
</tr>
<tr>
<td>0/244</td>
<td>35/2</td>
<td>3/87</td>
<td>0/216</td>
<td>1/86</td>
<td>0/18</td>
<td>24</td>
</tr>
</tbody>
</table>
جدول 2. خلاصه متغیرهای اندوزه‌گیری شده و پیش‌بینی شده مقاطع هیدرولیکی رودخانه گاماسیاب

<table>
<thead>
<tr>
<th>شماره</th>
<th>پیش‌بینی شده</th>
<th>پیش‌بینی شده</th>
<th>U_0</th>
<th>d_r</th>
<th>Q</th>
<th>S</th>
<th>W</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.23</td>
<td>0.76</td>
<td>0.154</td>
<td>0.3</td>
<td>0.154</td>
<td>0.76</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0.32</td>
<td>0.84</td>
<td>0.164</td>
<td>0.4</td>
<td>0.164</td>
<td>0.84</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0.43</td>
<td>0.92</td>
<td>0.17</td>
<td>0.5</td>
<td>0.17</td>
<td>0.92</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0.53</td>
<td>1.0</td>
<td>0.176</td>
<td>0.6</td>
<td>0.176</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>0.63</td>
<td>1.06</td>
<td>0.18</td>
<td>0.7</td>
<td>0.18</td>
<td>1.06</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>0.73</td>
<td>1.1</td>
<td>0.182</td>
<td>0.8</td>
<td>0.182</td>
<td>1.1</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>0.83</td>
<td>1.16</td>
<td>0.184</td>
<td>0.9</td>
<td>0.184</td>
<td>1.16</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>0.93</td>
<td>1.2</td>
<td>0.186</td>
<td>1</td>
<td>0.186</td>
<td>1.2</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>1</td>
<td>1.22</td>
<td>0.188</td>
<td>1.1</td>
<td>0.188</td>
<td>1.22</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>1.1</td>
<td>1.26</td>
<td>0.19</td>
<td>1.2</td>
<td>0.19</td>
<td>1.26</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>11</td>
<td>1.2</td>
<td>1.3</td>
<td>0.192</td>
<td>1.3</td>
<td>0.192</td>
<td>1.3</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>12</td>
<td>1.3</td>
<td>1.34</td>
<td>0.194</td>
<td>1.4</td>
<td>0.194</td>
<td>1.34</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>13</td>
<td>1.4</td>
<td>1.38</td>
<td>0.196</td>
<td>1.5</td>
<td>0.196</td>
<td>1.38</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>14</td>
<td>1.5</td>
<td>1.42</td>
<td>0.2</td>
<td>1.6</td>
<td>0.2</td>
<td>1.42</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>15</td>
<td>1.6</td>
<td>1.46</td>
<td>0.201</td>
<td>1.7</td>
<td>0.201</td>
<td>1.46</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>16</td>
<td>1.7</td>
<td>1.5</td>
<td>0.203</td>
<td>1.8</td>
<td>0.203</td>
<td>1.5</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>17</td>
<td>1.8</td>
<td>1.54</td>
<td>0.205</td>
<td>1.9</td>
<td>0.205</td>
<td>1.54</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>18</td>
<td>1.9</td>
<td>1.58</td>
<td>0.207</td>
<td>2</td>
<td>0.207</td>
<td>1.58</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>19</td>
<td>2</td>
<td>1.62</td>
<td>0.209</td>
<td>2.1</td>
<td>0.209</td>
<td>1.62</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
<td>2.1</td>
<td>1.66</td>
<td>0.211</td>
<td>2.2</td>
<td>0.211</td>
<td>1.66</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>21</td>
<td>2.2</td>
<td>1.7</td>
<td>0.213</td>
<td>2.3</td>
<td>0.213</td>
<td>1.7</td>
</tr>
</tbody>
</table>

شامل: مطالعه گاماسیاب
جدول ۳. معادلات روش‌های انتخابی برای مقایسه کانال‌های ماسه‌ای

<table>
<thead>
<tr>
<th>عمقد گرفته</th>
<th>عرض کانال</th>
<th>سال انتشار</th>
<th>محقق</th>
</tr>
</thead>
<tbody>
<tr>
<td>h = 0.67\left(\frac{Q}{F_r}\right)^{0.33}</td>
<td>w = 2.47Q^{0.5}</td>
<td>1958</td>
<td>Lacey</td>
</tr>
<tr>
<td>h = 0.67\left(\frac{Q}{F_r}\right)^{0.33}</td>
<td>w = 0.43Q^{0.57}</td>
<td>1966</td>
<td>Chitale</td>
</tr>
<tr>
<td>h = \frac{16d}{\sqrt[4]{d^0.5}} & w = \frac{0.112d}{\sqrt[5]{d^0.5}} & Q^{0.5}</td>
<td>1985</td>
<td>Chang</td>
<td></td>
</tr>
</tbody>
</table>

\[h = \frac{16d}{\sqrt[4]{d^0.5}} \]
\[w = \frac{0.112d}{\sqrt[5]{d^0.5}} \]
\[Q^{0.5} \]

\(v = 1.07 \times 10^{-4} \text{ m/s} \) و \(\rho = 1000 \text{ kg/m}^3 \)

نتایج و بحث

الف) عرض کانال

فرآیند محاسبه عرض کانال به‌صورت تابع \(d = d_0 \) در اینجا \(d_0 \) قطر دره بین بد می‌باشد.

توجه ۱: \[\frac{1}{v} \]

توجه ۲: \[\frac{238d^{0.5}}{Q^{0.5}} \]

توجه ۳: \[\frac{3 - 0.75Q}{d} \]

تشکل ۱. برآزنده مقادیر انتزاعی در خر دهم و تابع معادلات حقیقی کانال

مشخص شده‌بها گنجایش بیشینه در واحد متر مربع و دارای عرض کانال ۲/۵ متر در تابع معادلات زیر ذکر شده‌است:

\[v = 1.07 \times 10^{-4} \text{ m/s} \]
\[\rho = 1000 \text{ kg/m}^3 \]

\[\frac{1}{v} \]

\[\frac{238d^{0.5}}{Q^{0.5}} \]

\[\frac{3 - 0.75Q}{d} \]
شکل 1. مقایسه عرض اندازه‌گیری شده با عرض محاسبه شده توسط معادلات جدول ۳

دو کانال شنی (\(v_{\text{in}} = \sqrt{0.5}\)) کامل‌الغیر منطقی و سبب پیوستگی از مقدار اندازه‌گیری شده، تخمین می‌داند. به دلیل پیوستگی بین دو کانال، برآورد عرض این دو کانال توسط معادله شنتال، مقادیر آنها از شکل ۱ حذف گردیدند.

(ب) عمق جریان

شکل ۲. همانند شکل ۱ پرازش مقادیر اندازه‌گیری عمق جریان به‌طور یکپارچه شتاب‌نشان شده توسط معادلات عمق جریان در جدول ۳ را به همراه خط ابتدال و خطوط حدود اطمنان در ۲۵٪ به نشان می‌دهد. بر اساس شکل ۲، معادله لایس در هیچ موردی عمق جریان را برآورد یک‌همبستگی از حد اطمنان ۲۵٪/+ تخمین نمی‌زنند. اگرچه در ۱۰ مورد عمق جریان را کوچکتر از حد اطمنان ۲۵٪/– برآورده می‌شود، معادله شنتال در بک مورد تخمین برگر یک طرف، و در ۱۱ مورد عمق جریان را کوچکتر از مقدار اندازه‌گیری شده با حدود اطمنان ۲۵٪/– برآورده می‌کند. معادله کنداب و گارد با ۶ مورد برآورد خارج حد اطمنان ۲۵٪/– و ۱۰ مورد خارج از حد اطمنان ۲۵٪/– نامناسب‌ترین معادله پیشنهاد می‌باشد. بر این اساس معادله شنتال مقادیر عرض کانال را برای

\[\text{Lacey, Chitale, Kondap, Chang} \]
شکل 2 مقایسه عمق جریان اندازه‌گیری شده با عمق جریان محاسبه شده توسط معادلات جدول 3

عمق جریان در این تحقیق می‌باشد. معادله چانگ با مقدار تخمین بزرگتر و مقدار تخمین کوچکتر از حدود اطمینان 25% مناسبترین معادله برای محاسبه عمق جریان در این مطالعه می‌باشد. از طرف دیگر معادله RMSE چهار معادله نتایج عم‌عی جریان یعنی لامی، شیتال، کنداب و گارد و چانگ به ترتیب 7/9672499، 0/27 و 0/960 می‌باشد. ملاحظه این مقدار

نتایج به دست آمده از مشاهدات گرافیکی شکل 2 را تأیید می‌نماید.

لازم به ذکر است که وابستگی معادله عمق جریان چانگ به
شیب (S) و شیب بحرانی (S ک) کاربرد آن را محض و نیز احتمال می‌نماید به طوری که هر گاه S > 5 باشد نمی‌توان به
مقاومت معین بارای عمق جریان توسط این معادله دست یافت.

نتهایی قابل توجه در پیش‌بینی های انجام شده براساس چهار معادله انتخابی برای عمق عدم تأثیر بی‌گونه ظاهری آنها به دلیل کاربرد
مغزه‌های بیشتر در بهبود نتایج می‌باشد. به عبارت دیگر اگرچه
معادله کنداب و گارد از قطع‌های و مشخصات رسوب و آب

مانند، 0 و 17 به عنوان ورودی استفاده می‌کنند ولی نتایج
حاصل بسیار ضعیف‌تر از معادله لا ای است که فقط از دیب
جریان به عنوان ورودی استفاده می‌نماید. در واقع نتایج حاصل
از مقایسه معادلات عرض و عمق جریان در این پژوهش نشان
می‌دهد قدرت پیش‌بینی معادلات بیشتر از آن که به شرایط سیال
ورسوی و باشند، به شرایط جغرافیایی و هیدرولوژیکی
داده‌های اندازه‌گیری شده است. این شرایط به صورت
ضرایب و توان‌ها در معادلات ظاهر می‌شوند به طوری که با
وجود یکسان بودن ورودی معادلات لا ای و شیتال (هر دو فقط
از دیب جریان استفاده می‌کنند)، نتایج پیش‌بینی آنها کاملاً
متفاوت است. مقدار معین Bز (RMSE) برای معادلات انتخابی
عرض و عمق ارائه شده در جدول 3 نشان می‌دهد که دیب
جریان و قطر ذره باران‌های ورودی کافی برای بزرگ
پیش‌بینی مناسب مقیاس پایدار نیستند

2. جریان غیر یکنواخت

این روش توسط افعال مهر (1) براساس توری لایه متری با

Lacey Chitale Kondap Chang
A< b.
الف) عرض کانال
برای تعيين عوامل موثر در پيش بيني عرض کانال با استفاده از آنالیز واحدي از تمام متغريات اندازهگيري شده در جدول 2 استفاده گردید که در تجربه فقط در جريان پارامتر شيلدلز و فقط در اثر دو عامل پيش بيني عرض کانال نشان دادند.
پارامتر، با استفاده از روش آناليزي رگرسیونی برای نمی‌خور جريان اندازهگيري شده در اين مطالعه معادله زير برای عرض جريان ارائه مي‌گردد:

\[w = -0.74d_{ch}^{0.6} - 0.74d_{ch}^{0.15} \] \[(R^2 = 0.95) \] \[\text{ضビジネス تعيين} \]

\[Q = -0.74d_{ch}^{0.6} - 0.74d_{ch}^{0.15} \] \[(R^2 = 0.95) \] \[\text{وي توان تکن} \]

\[\frac{\varphi_0}{\varphi_s} = \frac{\rho_s - \rho}{\rho} \] \[\text{ميکانيک ساختي مي‌گردد.} \]

ب) عمل کانال
با استفاده از روش همگيني آمليه برای 11 نیم‌سرعت و
با نظر غرفه‌نشدن انتخاب مدل در نرم‌افزار SAS، معادله زير برای عمل متوسط جريان پيشنهاد گردید:

\[h = 0.9 + 0.11 \] \[h_{0.5} = 0.9 + 0.11 \] \[(R^2 = 0.85) \] \[\text{ميکانيک ساختي مي‌گردد.} \]

\[\text{میان معادله نشان مي‌دهد که نمای مي‌خور در معادله فوآ به مورد قابل ملاحظه می‌خور. معادله انتخابي در جدول 3 مي‌باشد و همچنين عمق جريان به طور معکوس ممکن مي‌باشد با پارامتر شيلدلز مي‌باشد. لازم به ذكر است که در صورت عدم استفاده از روش لايه مزيار مي‌خور جريان سرعت برشي مي‌باشد و

داده‌های ناحيه داخلی نیم‌سرعت در برآوردو پارامتر شيلدلز،
تشن برشي به صورت \(\frac{\varphi_0}{\varphi_s} \) تعريف مي‌گردد که به دليل

کاربرد \(h \) در طرف راست و حسب معادله \(h \) دو و \(5 \) ضريب تعيين به طور ساختي افزایش مي‌باشد.

استفاده از پروپيل سرعت توسط دانشگاه است. فرض نوبتلي كه

اين جريان به دو ناحيه داخلی و خارجي تقسيم كرده و برآوردو مي‌باشد.

قانون نگارشی در ناحيه داخلی به حدود 20% عمق جريان در

نزديکيت بستگي را لحاظ مي‌شود به دست آورده.

قانون

نگارشی توزيع سرعت در ناحيه داخلی امکان محاسبه سرعت

برشي و در پي آن امکان محاسبه پارامتر شيلدلز که به مهندرین

پارامترهای هيدرولوغي سرعت بوده و به صورت زير تعريف

مي‌گردد:

\[\frac{\varphi_0}{\varphi_s} = \frac{\rho_s - \rho}{\rho} \] \[\text{را فراهم مي‌كند كه در آن \(\varphi_s \): پارامتر شيلدلز، \(\varphi_0 \): درشت برشي پرست، \(\rho_s \): پرست، \(\rho \): شتاب داشت، \(g \): فشار مي‌خور، \(h \): توناده، \(\rho \): ته و \(\varphi_s \): ته اندامه اين}

به‌صورت فرگن سخورت مي‌گردد. پارامتر شيلدلز به طور قابل توجه كالبست پيش بيني

مشخصات هندسي مقطع پايان و مناد عمق جريان و تشنيع تنش

برشي و شيب کف کانال را بهود مي‌خشي. علت عمدسه اين

به‌صورت فرگن سخورت مي‌گردد. از طرف دیگر کاربرد فقط

داده‌های عمق جريان در محاسبه تنش برشي تخته هر نوع

سرعت (Spurious correlation)

زيرا در اين حالت به جای کاربرد تمام داده‌های نيم‌سرعت

بروس به يك عمق جريان، \(h \) خطيت توزيع مي‌خور. در تجربه برشي به دست

آورده‌يک معادله مي‌باشد. معادله 4 در طرف عمق جريان،

استفاده نمي‌شود تا وجود اين متغير مشترک باعث فايز

سارشي بعد ساختي تعريف مي‌گردد.

پارامترهای به دست آمده از تعداد 21 نيم‌سرعت

اندازه‌گيري شده تحت جريان دابلی غير پيکنواخت در

روتخته شت غامبيس در جدول 2 ارائه شده. نتایج حاصل

براي جريان غير پيکنواخت به صورت زير ارائه مي‌گردد:
ج) شیب کف کانال
بدون کاربرد نیرویی لا Jeżeli امکان ارائه یک معادله مناسب برای شیب کف کانال وجود ندارد و در بهترین شرایط برای
داده های ۱۸۰ رودخانه در نقاط مختلف چهار تا،

ر=۰/۲ داده داشت (۱). ولی کاربرد این روش به اختیار که امکان تخمین مناسبی از
تنش بررسی نشده و در پی آن پارامتر شیلدز را فراهم می‌گردد
ایجاد شیب(۱) به طور قابل توجهی دارای پیش بینی نبوده می‌باشد.
معادله شیب کف براساس داده‌های رودخانه گاماسیاب به

\[S = \frac{\sqrt{5/2} \cdot 5}{a} \times Q^{1/4}, \quad a < a_0 \]

در این معادله می‌ده که در نظر گرفته پارامتر شیلدز در

تخمین شیب کانال نه نیازی به توانان قدرت پیش بینی مشخصات

مقطع کانال پایدار را فراهم کند. بلکه قادیر اسم به دیزل

کاربرد روش لا می‌زد این دست، اثر ه氓اژ نتیجه‌گیری را که

مختل از جهتی یک کوانه در محبوس سرعت بررسی بیشتر

می‌باشد در غالب ضریب و نمای حاصل از معادله همبستگی

تصویر کند.

نتیجه‌گیری

بر اساس این تحقیق می‌توان نتایج زیر را استنتاج نمود:

۱. معادلات مطالعه می‌تواند در این مقاله براساس توری زیر ریز

نحوه مختلف که تکانه پایدار با جریان یک کوانه داده می‌باشد

پیش بینی مناسب برای تمام پارامترهای مقطع پایدار شامل

عرض و شیب و عمق و نیستند.

۲. هر در روش تجاری و نیمه تجاری قادر به پیش‌بینی

یافتن نسبتاً مناسب منطقه‌ای بدون توضیح فردی توریک

بررسید. بنابراین ضرورت ارائه روابط منطقه‌ای به ویژه در

ایران اجتنابی نیست.

۳. کاربرد توری زیر مزیت و در نظر گرفتن جریان غیر

یکنواخت که در پارامتر سرعت گری ۰ در معادلات ۳ و ۵ مورد استفاده قرار

گرفت به طور قابل توجهی کاند، پیش بینی مشخصات

مقطع کانال پایدار به ویژه عمق و عرض کانال را افزایش

می‌دهد.

۴. کاربرد داده‌های در دسترس نشان داد مطالعه شیب چانگ نیز

تخمین مناسبی از این پارامتر به دست نمی‌دهد بنابراین در

این مقاله از روش تحلیل‌زا یا روش تجربی و تحلیل

عمق و عرض جریان استفاده گردید و از ارائه تخمین شیب

صرف نظر شد.

۵. معادلات مورد مطالعه برای جریان یکنواخت در این تحقیق

و سابر پوژه‌ها از یک جریان و فرکذر در عناصر عموم

اصلي پیش بینی مقطع کانال پایدار استفاده می‌کنند. برای

بهبود قدرت پیش بینی مقطع کانال پایدار از این استساب

عوامل و پارامترهای هیدروالیکی مانند پیشین کیفی کانال و

دی رسوپ در مطالعات بعید مورد توجه قرار گیرند. در

این راستا مطالعه توزیع نش بینی بستر می‌تواند کمک کافی

توجه به درک مکانیزم تعداد و بهبود پیش‌بینی طراحی

کانال‌های پایدار نماید.

۶. نیاز موجود برای مکانیزم تعداد و پیش بینی شیب کانال

پایدار هیوز کافی و مناسب نیست. تحقیق در این زمینه برای

کاهش هزینه نگهداری کانال پایدار بسیار ضروری و اجتناب

نابرد. است.