مطالعه آزمایش‌گاهی ساختار جریان متلاطم و ناحیه جداسازی و مقایسه با مدل‌های تلایمی در
دهانه آبی‌گر ۴۵ درجه با انتهای مسود

علیرضا کشاورزی، محمدجواد کاظم زاده پارسی

چکیده
ساختار جریان در آبی‌گرها ساختاری متفاوت است و به‌رغم تغییرات مکانی و نمایش باعث ایجاد قسمت‌های مختلف در آبی‌گرها می‌شود. در این پژوهش مدل‌سازی ساختار جریان و ناحیه جداسازی شده از یک کانال اصلی به داخل کانال فری قرار گرفت و نتایج به دست آمده با مدل آزمایش‌گاهی مقایسه شد. در این مطالعه از دو مدل برای مدل‌سازی جریان متلاطم استفاده گردید و محل جداسازی و توزیع سرعت به دست آمده از این مدل‌ها مبنایی برای مدل‌سازی آزمایش‌گاهی استفاده شد. نتایج نشان داد که مدل ساختار جریان ابتدا تا ناحیه جداسازی را در دهانه آبی‌گر بهتر تخمین می‌زند. علاوه بر این، در مدل‌های مسود و آزمایش‌گاهی دیده شد که در ابی‌گرها ۴۵ درجه محل جداسازی جریان در پایین دست دهانه آبی‌گر اتفاق می‌افتند.

RNG K-ε, Standard K-ε

واژه‌های کلیدی: آبی‌گر ۴۵ درجه، جداسازی جریان، شبیه‌سازی مسود

مقدمه
در بسیاری از تأسیسات هیدرولیکی تعمیم ساختار جریان از یک کانال اصلی به کانال‌های جانین از اهمیت بالایی برخوردار است. آبی‌گرها عمدتاً در شبکه‌های توزیع آب، کانال‌های آبی‌گر، شبکه‌های فاضلاب، تنابیس مربوط به تصفیه آب‌های آب و فاضلاب و رویکرد به تأسیسات تولید برق و غیره مورد استفاده قرار می‌گیرند. معمولاً جریان در این نوع سازه‌ها از ساختاری

1. دانشیار آبی‌گر، دانشکده کشاورزی، دانشگاه شیراز
2. دانشجوی سایه کارشناسی ارشد مکانیک، دانشکده مهندسی، دانشگاه شیراز
در واقع این ناحیه از کانال جانبی تأثیری در مقدار تخلیه جریان نخواهد داشت. به عبارت دیگر تخلیه جدایشذگی از سطح مقطع مؤثر آینه گی می‌باشد.

بررسی‌های زیادی در خصوص جریان‌های یک کانال اصلی به فرعی با زاویه 90 درجه صورت گرفته است که از آن جمله‌ها می‌توان به لاسکمان و همکاران (3) تیپور (11) پاب و سالمت (8) شناس و مورتون (9) جن و لیان (2) تیری و اتگارد (6) و تیری و همکاران (5) اشاره نمود. در صورتی که خصوصیات جریان‌های یک‌گیره 25 درجه ناکوند کمتر مورد بررسی گرفته است.

بررسی دیدگاه تلاطم در دینامیک سیالات از جمله مسائلی است که در دهه‌های اخیر توجه بی‌پایانی از پژوهشگران در زمینه‌های مختلف مهندسی را به خود جلب کرد. این طریق که ناکوند یک توده ریاضی کاملاً با جامع که بوتاند پیشگیری تلافی‌های این رابطه و وجود نکاتی، بنابراین معمول‌اکثر بررسی‌های گیره‌های تلافی‌های انجام‌شده از روش‌های آزمایشگاهی و انجام آزمایش‌ها در شرایط کنترل شده استفاده می‌شود. از جمله این جریان‌هایی که به ترتیب و وجود ندارد، برای تحلیل عدیدی چنین جریان‌هایی معمول‌اکثر به شبه سازی این پدیده‌ها برداخته می‌شود.

به عبارت دیگر به توجه به ناکوندی یک‌گیره‌های یک‌سری برای روی پدیده‌های تلافی‌های وجود ندارد، برای تحلیل عدیدی چنین جریان‌هایی معمول‌اکثر به شبه سازی این پدیده‌ها برداخته می‌شود.

پدیده‌های تلافی‌های انجام‌شده، مدل‌های بی‌پایان آنها پیشنهاد می‌گردد و مسی این مدل‌ها برای شبه سازی جریان استفاده می‌شود. عبارت دیدگاهی که امروزه استفاده می‌شود سعی دارد به نحوی سرعت‌های لحظه‌ای سیال را به مقدار سرعت میانگین میانگین دقت می‌کند و از این طریق اقدام به حل مسائل می‌کند. این این انتخاب از طریق تعیین یک دست معادلات جریان و یا دیفرانسیلی که به معادلات تلافی‌های معرف شده صورت می‌گیرد و مسی این معادلات به همراه معادلات حاکم بر جریان سیال با معادلات ناب‌ایستاکس حل می‌شوند. این معادلات اکتشافی حاصل دریافت نتیجه‌های هم‌سازی که به نوبه خود با پیستویک توسط داده‌های تخریب معین و بهینه شوند.
مطالعه آزمایشگاهی ساختار جریان متلاطم و ناحیه جدانشگی و...

هدف مطالعه حاضر بررسی و مقایسه ساختار جریان خصوصاً جدانشگی جریان در ایجاد 45 درجه از طرق اندازه‌گیری‌های آزمایشگاهی و حاصل عددهای بین‌دیواره جریان می‌باشد. در نهایت نتایج مدل‌های مختلف عددهای با مقدار آزمایشگاهی مورد مقایسه قرار گرفت.

مواد و روش‌ها

معادلات حاکم بر جریان سیال

معادلات حاکم بر جریان سیال عبارت است از معادلات تغییر بقای جرم و بقای اندازه حرکت که به همراه معادلات تغییر حل می‌شوند. معادلات میانگین تقریبی شده بقای اندازه حرکت (معادلات نیوتن-استوکس) و معادله بقای جرم به فرم زیر نوشته می‌شوند:

\[
\begin{align*}
\frac{\partial \bar{u}_i}{\partial t} + \bar{u}_j \frac{\partial \bar{u}_i}{\partial x_j} &= -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 \bar{u}_i}{\partial x_j^2} \quad i, j = 1, 2, 3 \\
\frac{\partial \bar{u}_i}{\partial x_j} &= 0 \quad i = 1, 2, 3
\end{align*}
\]

در این معادلات \(\kappa \) مؤلفه‌های سیستم مختصات و \(\bar{u}_i \) مولفه‌های سرعت میانگین در جهتهای محورهای مختصات است. \(\rho \) چگالی سیال، \(\nu \) فشار میانگین، \(\bar{u}_i \) و از لجست نتایج هستند که از رابطه زیر به دست می‌آید:

\[
\nu = C_{\mu} \frac{k^3}{\varepsilon}
\]

\[
k = \gamma \frac{1}{\gamma - 1} \bar{u}_i^2 \bar{u}_j^2
\]

\[
\varepsilon = \nu \frac{\partial \bar{u}_i}{\partial x_j} \frac{\partial \bar{u}_i}{\partial x_j}
\]

در معادلات فوق \(k \) انرژی جنبشی سیال، \(\varepsilon \) تغییر بین \(C_{\mu} \) است و \(\gamma \) تغییر بین \(\kappa \) ضریب تغییر بدون است. معادلات جانجایی برای \(\nu \) و \(k \) در روابط‌های بالا به صورت زیر (Convective) است:
جدول 1. شرایط فیزیکی جریان

<table>
<thead>
<tr>
<th>کانال اصلی</th>
<th>کانال فرعی</th>
<th>Fr</th>
<th>Fr</th>
</tr>
</thead>
<tbody>
<tr>
<td>عمق 14 سانتی متر</td>
<td>24000</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>عمق 20 سانتی متر</td>
<td>24000</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

یک گیرنده در هر نقطه مجموعه برای 3 عمق متغیر است

اندازه‌گیری‌ها در هر نقطه مجموعه برای 3 عمق متغیر است

قرار گیری پروب استوانه/اندازه‌گیری به صورتی تنظیم شده که

مولفه X سرعت در انتهای کانال ابیگیر و در جهت جریان قرار گیرد.

مولفه Y سرعت در جهت عمود بر ابیگیر و جریان قرار گرفته است.

سمت بالا دست به پایین دست قرار گرفت. نقاط که سرعت

در آنها اندازه‌گیری شده به نحوی انتخاب شدند که تا

چاپ اگر به طور مناسبی پوشش داده شود، به عبارت دیگر

هدف بررسی ساختار جداسازی است. بنابراین نقاط

اندازه‌گیری در مناطقی با پوشش مناسب که احتمال وجود

چاپ اگر داشته باشند، انتخاب شدند.

شیب متری بررسی کیفی قابلیت جریان و اندازه‌گیری ابعاد

ناحیه چگالشگذگی از مجموعه‌ای از نیزه‌های مناسب که در

میان های متغیر اریکه به فاصله مساوی روی یک میله

به این صورت که تخلیه از آنها در انتهای کانال ابیگیر

باید نسبت شده و به قرار دادن این میله به صورت افقی در

عمق‌های متغیران جریان، یک صندلی به‌دست می‌آید. این ابیگیر

یک ناحیه از جریان بشنوی قرار داده شده و در مخاطب کانال ابیگیر

با خود در گرفتند. عکس برداری شد. عکس برداری توسط یک

دوربین CCD که در بالای قلم و در محل کانال فرعی نصب

شد جهت بود انجام گرفت. تعداد 25 عکس در ناحیه از جریان کرتشه

تعداد زیادی ناحیه از پیش تعیین شده اندازه‌گیری شد.

شیب و 4/8 عمق کل از سطح آزاد جریان انجام شد. در این مطالعه

نها مقادیر مربوط به عمق 0/4 برای مقایسه ارائه می‌گردید.

شکل 2 محل اندازه‌گیری سرعت‌ها در دو دهانه ابیگیر دقیقاً

نشان داده شده است. سرعت سیال در هر نقطه برای مدت 40

ثانیه و با فرکانس داده برداری 10 داده در ناحیه اندازه‌گیری شد.

مقاومت سرعت‌های لحظه‌ای اندازه‌گیری شده توسط سخت‌افزار

ور نمایان میزانی است که کامپیوتر منتقل و برای تحلیل یک

بعدی ضروری گردید.

به منظور بررسی کیفی میدان جریان و اندازه‌گیری ابعاد

ناحیه جریان شگذگی از مجموعه‌ای از نیزه‌های مناسب که

هم زمانی این جریان نصب شد. استفاده گردید. به این صورت که

به یک صندلی مشابه که در محل ابیگیر نصب شد و به یک میله

در مقابل اندازه‌گیری ابیگیر در دهانه ابیگیر به وقوع خواهد پیوست و نقاط

اندازه‌گیری باشد به طور مناسبی در این ناحیه مناسب می‌شود.

بنابراین سرعت در هشت نقطه متغیران که عبارتند از نقاط

صرف، 0.1، 0.25، 0.3، 0.5، 0.75 و 0.8 سانتی‌متر از انتهای

کانال فرعی اندازه‌گیری شد. همان طور که گفته شد انتخاب

مقاطع به نحوی انجام شده که ناحیه جداسازی به طور کامل

پوشش داده شد. در هر نقطه نیز سرعت سیال در 9 نقطه که

به فاصله پکسایی از یکدیگر قرار گرفته‌اند اندازه‌گیری شد.
شکل ۲. شیب‌های نقاط اندازه‌گیری سرعت در کانال فرعی

شکل ۳. ناحیه جداشده‌گی جریان در کانال فرعی

شکل‌های حله عده‌ای

یکی از اهداف این تحقیق حل عده‌ای جریان متالام درون
درون آبخور و مقایسه آن با نتایج آزمایشگاهی است. شیب سازی
عده‌ای مداخله‌ای است که با می‌خوردگی و برقراری مستقل
و پس از مشکلات روشن‌سازی آزمایشگاهی به پایه مورد نظر
دست یافت. در این مقاله توانایی مدل‌های تلاطمی برای
شد و توسط سخت‌افزار و نرم‌افزار مخصوص به کامپیوتر اندازه‌گیری گرفته شده و در مقطع ورودی کانال فرعی را نشان می‌دهد.
جدول ۲. شرایط جریان استفاده شده در مدل‌ها در حل عددهای

<table>
<thead>
<tr>
<th>مدل</th>
<th>عددهای (cm)</th>
<th>Lit/Sec (cm³/س)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard K-ε</td>
<td>12</td>
<td>35</td>
</tr>
<tr>
<td>RNG K-ε</td>
<td>16</td>
<td>25</td>
</tr>
<tr>
<td>Standard K-ε</td>
<td>20</td>
<td>35</td>
</tr>
<tr>
<td>RNG K-ε</td>
<td>16</td>
<td>25</td>
</tr>
</tbody>
</table>

شیب سازی جریان متالاک درون ایگی‌ها بررسی شده است. برای این مظور، شبیه‌سازی سازی عددهای ۳ بعنوان مدل‌ها در حل عددهای این متلاک در درون کانال با انتخاب ۷ درجه توسط روش حجم محصور و با استفاده از نرم‌افزار Fluent ۶.2۳ انجام گردید. در این شبیه‌سازی، در مدل‌های سازی دی‌ب‌س۲ دی‌ب‌س۱۵ و ۲۵ لیتر در ثانیه و برای ۲ عددهای ۲۰ و ۲۰ سانتی‌متر انجام شد.

الا، ماتن نورین شکل، با دلخذگی که در شرایط این مقاله نیز به دلیل کم‌‌سازی این تحقیق مشاهده شد. باید بنا برای این مقاله دیگری در حلشانگ شده است. برای تحقیقات شکلی که راهی برای انتخاب ابزار درمورد شکل و رئیس سول‌هاست در حل شکل‌برداری سعی در بهبود و گرفت. این پژوهش برای انتخاب تعداد سول‌ها، عملیات تحلیل شبکه تها بای یکی از حالت‌های انجام شد و پس از معیارآوری شبکه مناسب، از آن برای دیگر حالت‌ها نیز استفاده شد. باید بنا برای انتخاب سول‌ها ایجاد شده در سالیانه ۴۶۲۳۴۰۰ سول انتخاب شد. توزیع گردها به نحوی انتخاب شد که در نتیجه این سول‌ها و با مناطقی که جدیدی رخ می‌دهد، تمرکز گردها به استطلاع کافی باشد. شرایط مورد برای سطح آب عبارتند از صفر بودن سرعت عمود بر سطح و صفر بودن فشار. در حالی که در صورتی‌ها می‌توان چنین شرایطی را اعمال کرد که ماهیت به صورت بی‌کم‌التبین سطح آزاد حل شود. به این صورت که پرورش سطح آب از این اهمیت فرض شده و با اعمال شرط دینامیکی فشار صفر، در طول حل به

۲۰
مطالعه آزمایشگاهی ساختار جریان متلاطم و ناحیه چاوشدگی و...

![شکل 4: شکل ناحیه چاوشدگی (الف): مدل گروه‌های RNG K-ε و Standard K-ε]

جدول 3: ابعاد ناحیه چاوشدگی

<table>
<thead>
<tr>
<th>مدل آزمایشگاهی</th>
<th>مدل عددي K-ε</th>
<th>مدل عددي RNG K-ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>پهناو ناحیه چاوشدگی</td>
<td>8.9 سانتی‌متر</td>
<td>7 سانتی‌متر</td>
</tr>
<tr>
<td>طول ناحیه چاوشدگی</td>
<td>31.2 سانتی‌متر</td>
<td>30 سانتی‌متر</td>
</tr>
</tbody>
</table>

نتایج و بحث

همانطور که گفته شد، مدل های Standard K-ε و RNG K-ε مجموعه‌ای از نهای و مقاطع ذکر شده نسبت به سرسره قرار دادن تغییرات مربوط به آماده‌سازی جریان نهایی جدار داشته‌اند. گروه‌های شد (شکل 3) در اینجا به دلیل رعایت اختصار شده در در آزمایش چنین الگویی دیده شد.

همانطور که گفته شد سرعت‌ها در 9 مقطع در کانال فرعي و در دو راستای هم‌جهت و عمود بر جریان اندازه‌گیری شد. در هر مقطع مقدار سرعت‌ها در نقطه‌ها با فاصله 25 میلی‌متر از یکدیگر از دیواره‌ها قرار داشتند، اندامگیری شده است. همان‌طور که گفته شد از بین سه عملکرد که اندامگیری سرعت در آنجا انجام شد، نهایا مقادیر مربوط به همین سرعت برای مقایسه استفاده گردید. مقادیر سرعت‌ها از مدل‌های عددي استخراج گردید. مقدار میزان رابطه RNG K-ε و Standard K-ε در میانه‌سازی سرعت‌های Tree و 0 و 8 می‌باشد. مقادیر گروه‌های شده با روش RNG K-ε و مدل عددي K-ε در طول واحد سرعت به همراه اندامگیری شده با تریکور در شکل های 4 و 5.9 نشان می‌دهد.

21
شکل ۵ مقایسه سرعت محاسبه شده در جهت جریان از مدل Standard K-ε با مقادیر اندازه‌گیری شده در کانال فرعي و در مقاطع مختلف از ورودی براي عمق ۱۴ سانتی‌متر
شکل ۶ مقایسه سرعت محاسبه شده در جهت جریان از مدل RNG K-ε با مقادیر اندازه‌گیری شده در کاتال فرعي و در مقاطع مختلف از ورودی براي عمق ۱۴ سانتی‌متر

23
شکل ۷ مقایسه سرعت محاسبه شده در جهت جریان از مدل Standard K-c با مقادیر اندازه‌گیری شده در کانال فرعی و در مقاطع مختلف از ورودی برای عمق ۲۰ سانتی‌متر
شکل 8 مقایسه سرعت محاسبه شده در جهت جریان از مدل RNG K-ε با مقادیر اندازه‌گیری شده در کانال حفری و در مقاطع مختلف از ورودی برای عمق ۲۰ سانتی‌متر
شکل 9. خطای SEE در محاسبه سرعت در مقاطع مختلف کانال فرعتی و برای عمق ۲۰ سانتی‌متر.

شکل 10. درصد خطای نسبی در محاسبه سرعت در مقاطع مختلف کانال فرعتی برای عمق ۲۰ سانتی‌متر.

رسم شده است.

همان‌گونه که از شکل ۶ و ۷ پیدا می‌شود در Standard K-۶ اندازه‌گیری شده و محاسبه شده از محل ۶ در ابتدا کانال فرعتی نسبتاً با یکدیگر همخوانی دارند. ولی به تدریج در مقاطع ۵ و ۱۵ و ۲۵ و ۳۰ سانتی‌متر اختلاف زیادی در تزیینی دوره‌ها دیده می‌شود و این اختلاف به خاطر تغییرات ناحیه جداسازی است که طول آن نا‌معنی‌دار است.

سانتی‌متر از ورودی کانال ادامه دارد و به تدریج به ناحیه جداسازی می‌شود و مشابه سانتی‌متر انداده‌های اندازه‌گیری شده با محاسبه شده با یکدیگر نزدیک خواهد شد.

در شکل ۶ و ۸ سرعت‌های محاسبه شده از حل عدید و از مدل K-۶ با داده‌های حاصل از آزمایش‌ها مقایسه شده.
نتیجه‌گیری
در این بررسی ساختار جریان در یک آبگیر جانی با زاویه ۴۵ درجه مورد بررسی قرار گرفت. این بررسی توسط مدل فیزیکی و مدل اعضا انجام شد. جهت مدلهای اعضا از نرم‌افزار RNG K-ε و Standard K-ε انتخاب گردید. نظرات حلالکی جریان مدل اعضا شهیده و دوگان، نسبت گرندیدگی و سرعت‌های متوسط زمانی در نقاط مختلف عمق جریان ملاک با سرعت مدل گرفت. از نظر دوگان، سرعت گرندیدگی جریان، آبیاره و ابعاد ناحیه جریان، از سرعت‌های انتخاب‌گرندیدگی که در تخمین دوگانگرندیدگی و سرعت‌های استفاده برخوردار است و وضعیت جریان را بشر شیب‌سازی می‌کند.

\[
\text{SEE} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{U_{\text{exp}} - U_{\text{num}}}{U_{\text{exp}}} \right)^2
\]

\[
\text{AAE} = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{U_{\text{exp}} - U_{\text{num}}}{U_{\text{exp}}} \right|
\]

در روابط فوق، \(U_{\text{num}}\) و \(U_{\text{exp}}\) به ترتیب سرعت‌های ساختارگرندیدگی شده از آرایه‌گرندیدگی و محاسبه شده از مدل‌های عدید است. در تعداد نقاط ساختارگرندیدگی در هر نقطه حاصل گردید.

منابع مورد استفاده