پرآورد فرساسی و رسوب حوضه آبخیز تنگ کشیده با مدل‌های تجربی
GIS EPM و MPSIAC

سعید راستگو، پژوهنده قم، حسینثنائی‌نژاد، کامران داوری و سعیدرضا خداشات

چکیده
حوضه مورد بررسی در شمال شرق کرمانشاه قرار گرفته است. ساحل حوضه ۱۴۲۸ هکتار، حداقل ارتفاع آن ۳۳۰۰ و ارتفاع آن ۱۴۰۰ متر می‌باشد. بر اساس طبقه‌بندی آبی‌پوشی به روش آمریزه و دمارتن، اقلیم حوضه از نوع مرطوب و پوشش زندگی گیاهی در آن از ۲۵ تا ۵۵ درصد ممکن است. بر اساس مطالعات قابلیت اراضی و خاک شناسی، چهار تیپ اصلی اراضی کوهستانی، نیمه‌بادی، آبرفت‌های به دست‌یافت. شکل سطحی رسوب‌دار و دشت‌های دامنه‌ای در این محیط نیز به‌صورت مربوط به سطح مایعی اصلاح می‌شوند.

Erosion Potential Method (EPM) و (Modified Pacific Southwest Inter Agency) MPSIAC

شبنم و سپس با استفاده از نرم‌افزار Arc-Info برای ایجاد اطلاعات توبولوژی ساخته شد. بعد از انجام این مرحله عملیات مدیریتی و Arc-View انجام شد. بر اساس روش MPSIAC میزان فرساسی و رسوب سالانه حوضه ۱۳۳۷/۸ m³/کیلومتر مربع انجام شد. بر اساس روش EPM این مقدار ۱۳۷۹/۲ m³/کیلومتر مربع دست آمد. همچنین میزان رسوب سالانه در روستا به ترتیب بر اساس این دو مدل (EPM و MPSIAC) محاسبه شد. نتایج نشان می‌دهد که در حوزه‌های اطراف روستا و به طور کل مدل EPM متفاوت با MPSIAC می‌باشد.

واژه‌های کلیدی: فرساسی، رسوب، EPM و MPSIAC

مقدمه
امروزه شهرشدن تدریجی اراضی، از بین رفتن پوشش گیاهی، کاهش حاصل خزی خاک، افزایش فرساسی و رسوب کاذب و آلودگی شیمیایی خاکها باعث بروز مشکلاتی مانند کشاورزان و مدیران شده است. غلظت زیاد رسوب باعث کندورت آب و...
مواد و روش‌ها

1. موضع‌بندی محلی و مفهوم مطالعه

حوزه آبخیر نگ‌کنشت در شمال شهر کرمانشاه و در بین طول‌های جغرافیایی ۳۷°۷۰ً۵۰ً تا ۳۷°۵۰ً۰۰ دقیقه و عرض‌های جغرافیایی بین ۴۷°۳۳ً۲۶ً تا ۴۷°۳۲ً۲۹ دقیقه قرار گرفته است. این حوزه از شمال به کوه روبنی و کوه گلزور و از جنوب به کوه واسه و شهر کرمانشاه محدود می‌شود. مساحت حوزه ۱۴۳۸۸ هکتار و مساحت اطراف آن ۵۷۲۰ هکتار و حداقل ارتفاع آن ۱۴۰۰ متر است. ارتفاع متوسط ورود حوضه نیز ۱۸۳۷ متر ب‌های درجه است. حوزه آبخیر نگ‌کنشت از دو ابعاد وضعیت شیب و پیوست و بلندی آن به ۱۹۱ هکتاردویی تقسیم‌بندی شده است. موقعیت حوضه نگ‌کنشت و زیروحی‌های حوضه آب‌انبار‌هایی در شکل‌های ۴ و ۲ مساحت‌شاند. منشأ اصلی برادرگان‌های حوضه مورد مطالعه و نواحی اطراف آن، سیستم‌های کم‌فشار مدیریت‌های است که از سمت غرب وارد کشور می‌شود. بنده‌های برادرگان‌های کوهستانی‌نشین از ناحیه‌های معلول نیز بخشی از برادرگان‌ها را تشکیل می‌دهد که روتیس این برادرگان‌ها نیز ناشی از عبور هم‌اکنون شکل‌برداری و مدیریت‌های است. سیستم‌های مذکور ۲۷ ساله‌برادرگان (مختوم به سال آی ۱۹۸۰) حوضه ۸۹۸ میلی‌متری و اقلیم آن بر اساس طبقه‌بندی اقلیمی به روش همزه و دماین (۸۹)، از نوع مطروح می‌باشد. منطقه مورد مطالعه، بخشی از قسمت دگرباش نشده زون سنندج - سیرجان‌خووب و شورود به دو بخش تقسیم می‌شود که شامل سده‌های آهکی پیشین و رادیولایت که در شرایط مختلف سکوئه و روستای‌های و پوشش‌های این حوضه مواد تعیین دام‌های آن بوده که در نتیجه مرتع رو به ضعف گذشته بودند. ولی بعد از شروع جنگ تحلیلی و تناوب منطقه از نظر استراتژیکی، ساکنان منطقه آنها را ترک کردن و در نتیجه پوشش‌های گیاهی سد سفرودی رو به رشد ۹۸ میلیون مترمکعب می‌باشد (۲۵). برنامه تولید سازمان شمال (۲۰) فرسایش خاک در ایران را به حال حاضر توصیف به ۲۰ درصد در هکتار تمیز قبلاً کشت نسبت به کل خشک‌شیپ زمین به ۳/۵ می‌باشد. بنابراین هر کیلوتر مربع زمین قبلاً کشت یا جواب‌گوی اختیارات خاکی ۹/۰ نفر باشد. ولی سرانه زمین باید کشاورزی در نقاط مختلف جهان پیکان نیستن و سرانه آن در آسیا ۲/۲ هکتار در آمریکا ۲/۵ هکتار بین خانگی است از شرایط آسیا می‌باشد (۸).

۱/۲۵ هکتار بین خانگی است از شرایط آسیا می‌باشد (۸).

بیشتر حوزه‌های کشور فاقد ادغام‌گیری بوده و به این منظور دست‌یابی به مدل‌های مبتنی بر شرایط ویژه حوضه‌های کشور مرزدار است. ابزار اینی از روش‌های به‌کارگیری نوین تاکید کرده که مربوط به فیزیک آب‌های و یا مکانیزم‌های انتقال فرسایش‌های می‌باشد، منگرین (۱۸) و چند سالی است که کاربرد سیستم‌های اطلاعات جغرافیایی (GIS) در جهان رویانه و در دنیای صنعت میلی‌گرافی برای هنگامه بزرگ و تحقیق به چشم گرفته شده است که این نیز به عنوان سیدکش در حال بازی‌گرایی است. در سیستم‌های می‌توان به نیستن و وزارت کشاورزی در به کارگیری سیستم‌های اطلاعات جغرافیایی پیش قدم بوده است (۱۲).

۱/۲۵ هکتار بین خانگی است از شرایط آسیا می‌باشد (۸).
برآورد فرسایش و رسوب حوضه‌های آبیگیر نگ کشته با مدل‌های...

شکل 1. موقعیت حوضه نگ کشته در استان کرمانشاه

منطقه‌ی تا مرحله کلیماکس پیش‌رفت فرآیند نگ کشته‌ای از نظر
پوشش گیاهی به 10 تک تغییر می‌شود و پوشش زنده گیاه در
آنها از 25 تا 55 درصد متغیر می‌باشد (۳). درصد اراضی لخت
در این تک تفاوت بین ۶ تا ۲۵ درصد برآورد شده است.

براساس مطالعات قابلیت آرایی و خاک‌شناسی، همراه تپ
اصلي اراضی کوهستانی، تپه‌ای، بادبزنی شکل
سنج ریزداری و دشت‌های دامنه‌ای در حوضه مشخص شده‌اند
(۴). چهار تیپ اراضی نام برجش شامل ۲۶ جزء اراضی
می‌باشد. این واحدها از نظر همگنی و محدودیت درای
اختلاف‌های مانند ارتقاء، شبیع و عمق خاک هستند (۵).

MPSIAC

شکل 2. نسبت زیب حوضه‌های موجود در نگ کشته

مدل، حاصل جمع اندازه‌ی درجه رسوپ‌دهی (R) خوانده
می‌شود. با استفاده از درجه رسوپ‌دهی این امکان ایجاد می‌شود
که میزان تولید رسوپ در واحدهای مطالعاتی محاسبه شود.
رابطه ۱ برابر منظم پیش‌نهاد شده است (۶).

\[Q_s = 3AVV e^{-0.33T} \]

که در آن \(Q_s \) میزان رسوپ‌دهی سالانه (مترمکعب در
کیلومتر مربع) و R درجه رسوپ‌دهی به عنی مجموع امتیازات
عوامل مختلف در نظر گرفته شده در مدل PSIAC و E عدد تیر
(۶۲۷۸) می‌باشد. تکنیکی که تا پیش از تابع دور داشت این
است که در روش اولیه عوامل پوشش گیاهی و کاربری
اراضی امتیازی بین ۱۰ تا ۱۰ را به خود اختصاص می‌دهند
ولی در روش اصلاح شده امتیاز این عوامل بین ۵ تا ۲۰ متغیر
است ولی رابطه‌های محاسبه فرسایش و رسوپ به‌هر دو
روس اولیه و جدید یکسان می‌باشد و این در حالت است که با
توجه به نمایند برجش رابطه نهایی به تغییر درجه رسوپ‌دهی
به میزان 10 واحد تغییرات زندی در میزان رسوپ محاسبه شده
به میزان ۳ تا ۵ (۶). بعد از تعیین درجه رسوپ‌دهی برای
هرکدام از واحدهای همگن کلری رسوپ‌دهی مطلق جدول ۲
به دست می‌آید.

همانطور که در جدول ۲ دیده شد پارامترهای ۸ و ۹ از روش
بی‌دلیل بوده و در اثر ارزیابی ۷ عامل BLM به دست می‌آیند. مدل
BLM بین حکایتی، وجود لامپرگ در سطح زمین، و وضعیت سگ‌ها،
قطعات سگی احتمالی، وجود فرسایش شیاری، فرم آب‌ریزها
و وجود فرسایش خندقی و با دادان امتیاز بین صفر تا پانزده، بر

MPSIAC اولین مدل در سال ۱۹۶۸ توسط
Pasific Southwest Inter Agency Committee
برای برآورد فرسایش خاک در حوضه‌های آب‌دانگاه‌های
اقتصادی رسوپ ارائه گردید. این مدل بر اساس بی‌دلیل
۹ عامل زمین‌شناسی، خاک‌اب، اقلیم، روان‌آب، پستی و بلندی،
پوشش گیاهی، کاربری اراضی، فرسایش فلزی حوضه و

MPSIAC خندقی می‌باشد و به هر عامل امتیازی تعلق می‌گیرد.
جانسون و گمبیر (۱۶) اصلاحاتی را در این مدل به وجود
اورده و آن را روم الاصلاح شده پسیاک (MPSIAC)
amend. و مدل را از خانه کیفی به صورت کنتبدی کرده. جدول ۱
عوامل پیش‌نهاد شده در این روش می‌توان امتیازی‌دهی به آن را
مشخص کنند. بس از این‌تیم امتیاز هر یک از عوامل نه‌گان در

۹۳
جدول 1 عوامل مؤثر در مدل MPSIAC و نحوه امتیازدهی به آن

<table>
<thead>
<tr>
<th>شرح پارامترها</th>
<th>نحوه محاسبه امتیاز در روش MPSIAC</th>
<th>رنگ</th>
<th>عوامل مؤثر در فرسایش خاک و تولید رسوب</th>
</tr>
</thead>
<tbody>
<tr>
<td>میزان نشاندهی</td>
<td>$Y_i = X_i$</td>
<td>1</td>
<td>زمین نشانی</td>
</tr>
<tr>
<td>فرسایش پدیدار</td>
<td>$Y_i = 16 + \alpha K$</td>
<td>2</td>
<td>خاک</td>
</tr>
<tr>
<td>دامنه 6 سال</td>
<td>$Y_6 = X_6$</td>
<td>3</td>
<td>آب و هوا</td>
</tr>
<tr>
<td>ارتفاع روانا ب ساله</td>
<td>$Q_p = \frac{X_7}{1000}$</td>
<td>4</td>
<td>روانا ب</td>
</tr>
<tr>
<td>شیب متوسط خاک ($%$)</td>
<td>$Y_5 = \frac{1}{10} X_5$</td>
<td>5</td>
<td>پست و بندی</td>
</tr>
<tr>
<td>درصد اراضی لحیده</td>
<td>$Y_6 = \frac{1}{10} X_6$</td>
<td>6</td>
<td>پوشش گیاهی</td>
</tr>
<tr>
<td>درصد تاج یونش</td>
<td>$Y_7 = \frac{10}{100} X_7$</td>
<td>7</td>
<td>کاربری اراضی</td>
</tr>
<tr>
<td>مجموع امتیازات مدل BLM</td>
<td>$X_8 = \frac{1}{3} X_8$</td>
<td>8</td>
<td>وضعیت فعلی فرسایش</td>
</tr>
<tr>
<td>مجموع امتیازات فرسایش منطقه</td>
<td>$X_9 = \frac{1}{5} X_9$</td>
<td>9</td>
<td>فرسایش رودخانه‌ای و حجم رسوب</td>
</tr>
</tbody>
</table>

جدول 2 تعيين ميزان توليد رسوب سالانه و كلاس فرسایش خاک در روش MPSIAC

<table>
<thead>
<tr>
<th>شماره نشانده</th>
<th>توليد رسوب سالانه (ton/km²)</th>
<th>شدت رسوب دهی</th>
<th>كلاس رسوب دهی</th>
</tr>
</thead>
<tbody>
<tr>
<td>($m^3/km²$/yr)</td>
<td>($m^3/km²$/yr)</td>
<td>($m^3/km²$/yr)</td>
<td>($m^3/km²$/yr)</td>
</tr>
<tr>
<td>1</td>
<td>110</td>
<td>1249</td>
<td>V</td>
</tr>
<tr>
<td>2</td>
<td>120</td>
<td>1447</td>
<td>V</td>
</tr>
<tr>
<td>3</td>
<td>150</td>
<td>1126</td>
<td>IV</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>2124</td>
<td>III</td>
</tr>
<tr>
<td>5</td>
<td>250</td>
<td>2724</td>
<td>II</td>
</tr>
<tr>
<td>6</td>
<td>350</td>
<td>3724</td>
<td>I</td>
</tr>
</tbody>
</table>

حساب میزان تأثیر آنها در فرسایش استوار است و مجموع امتیازات عوامل مختلف در این بخش به 100 می‌رسد (9).

(Erosion Potential Method) EPM

مدل 3 روش EPM پس از 20 سال تحقیقات در کشور پوکسلاری سباق به دست آمد و در سال 1988 در کنفرانس میان‌المللی (Gavrilovic) رزیم رودخانه توسط گاواربیچ ارائه شد (9).

محاسبه میزان فرسایش بر این اساس به صورت رابطه 2 ارائه 94
برآورده فرسایش و رسوب حوضه آبی، نگ کشی با مدل‌های MPSIAC و EPM

4 ویژگی‌های مدل MPSIAC و EPM

مباحث ذکر شده در پایه معنایی فرسایش در سطح حوضه

است که این رابطه به دست می‌آید:

\[T = (t/10 + 30) \]

4 رویای فرسایش و رسوب

کلیه مواد فرسایش‌یافته به صورت بار رسوبی از حوضه خارج نمی‌شوند. ضرایب تابع دو عامل یا به میزان می‌کند.

برای محاسبه ویژه از ضریب Sediment Delivery Ratio

\[SDR = \frac{MPSIAC}{GIS} \]

3 مدل MPSIAC

بر اساس روش نام برده در موارد مورد نیاز ابتدا میزان حوضه و

زیرحوضه‌ها با تقسیم به 3 مورد مطالعه (زمین‌شناسی، خاک‌شناسی، پوستش‌گیاهی، شیشه، کاربری اراضی و فرسایش

فیزیکی) در محیط GIS تطبیق و سپس میانگین ضرایب در هر

کدام از زیرحوضه‌ها محاسبه شد. همچنین شدید

پارادوکس 6 ساعت به دوره با رشد 2 سال در سطح حوضه

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]

\[\text{Log(SDR)} = \frac{1}{10} \times SDR - 3 \]
جدول 3. امتیازات عوامل نگه‌دارنگ های پری زیبرخود‌های تگ کشتن

<table>
<thead>
<tr>
<th>عامل</th>
<th>O</th>
<th>F</th>
<th>E</th>
<th>D</th>
<th>C₀</th>
<th>C₁</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>تپم‌سازی</td>
<td>6/53</td>
<td>8/57</td>
<td>10/19</td>
<td>6/15</td>
<td>7/5</td>
<td>8/6</td>
<td>3/3</td>
<td>7/28</td>
</tr>
<tr>
<td>همبستگی</td>
<td>8/78</td>
<td>9/2/</td>
<td>7/16</td>
<td>2/47</td>
<td>1/33</td>
<td>3/23</td>
<td>4/57</td>
<td>5/76</td>
</tr>
</tbody>
</table>

*یک امتیاز برای هر عامل و هوا و فریباش‌های خارجی از هر کل حوضه ثابت و به ترتیب برابر 6/36 و 3/36 می‌باشد.

1. حوضه آبخیز یک‌باره دیده شده است.

2. حوضه آبخیز خبره 9/5 میلی‌متر در ساعت محاسبه و برای کل حوضه ثابت در نظر گرفته شد. با توجه به اینکه آخرین رتبه ابراهیم در کل حوضه 6 می‌باشد، تراکم رشد مناسب حوضه زیاد و در نتیجه دیگر اور حوضه افزایش می‌یابد. این نشان از افزایش حوضه و باعث افزایش شدسته‌ها می‌گردد، به‌طوری‌که حوضه و رود کاهش و کلاس هر کدام از زیرخود‌های این حوضه می‌دانند. این امر در مورد ArcView و ممکن است به مدتی در حوضه و تغییر در حوضه و هوا و فریباش‌های خارجی از هر کل حوضه ثابت در نظر گرفته شد.

3. حوضه آبخیز باید به دست آمده است. EPM برای هوا و فریباش‌های خارجی از هر کل حوضه ثابت در نظر گرفته شد. با توجه به اینکه این حوضه افزایش شده است، EPM ممکن است به دست آمده است.

4. حوضه آبخیز می‌یابد. با توجه به اینکه این حوضه افزایش شده است، EPM ممکن است به دست آمده است.

5. حوضه آبخیز حوضه و تغییر در حوضه و هوا و فریباش‌های خارجی از هر کل حوضه ثابت در نظر گرفته شد. با توجه به اینکه این حوضه افزایش شده است، EPM ممکن است به دست آمده است.

6. حوضه آبخیز خبره 9/5 میلی‌متر در ساعت محاسبه و برای کل حوضه ثابت در نظر گرفته شد. با توجه به اینکه آخرین رتبه ابراهیم در کل حوضه 6 می‌باشد، تراکم رشد مناسب حوضه زیاد و در نتیجه دیگر اور حوضه افزایش می‌یابد. این نشان از افزایش حوضه و باعث افزایش شدسته‌ها می‌گردد، به‌طوری‌که حوضه و رود کاهش و کلاس هر کدام از زیرخود‌های این حوضه می‌دانند. این امر در مورد ArcView و ممکن است به مدتی در حوضه و تغییر در حوضه و هوا و فریباش‌های خارجی از هر کل حوضه ثابت در نظر گرفته شد.
شکل 4. نقشه خاکشناسی حوضه تنگ کشت بر اساس امتیاز MPSIAC حساسیت به فرسایش در روش

شکل 3. نقشه زمین شناسی حوضه تنگ کشت بر اساس امتیاز MPSIAC حساسیت به فرسایش در روش

شکل 6. نقشه گیاهی حوضه تنگ کشت بر اساس امتیاز MPSIAC حساسیت به فرسایش در روش

شکل 5. نقشه کاربری حوضه تنگ کشت بر اساس امتیاز MPSIAC حساسیت به فرسایش در روش
شکل 8. نقشه درجه رسوب‌دهی (R) حوضه

آبخیز نگ‌کشته به روش MPSIAC

شکل 7. نقشه شیب اراضی حوضه نگ‌کشته بر اساس

امتیاز حساسیت به فرسایش در روش MPSIAC

شکل 10. نقشه امتیاز زمین‌های خاک حوضه نگ‌کشته بر اساس امتیاز

حساسیت به فرسایش در روش EPM

شکل 9. نقشه مقدار رسوب‌دهی حوضه آبخیز نگ‌کشته به

روش MPSIAC
<table>
<thead>
<tr>
<th>MPSIAC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>Zیرحوضه</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>909/1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EPM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>Zیرحوضه</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>کل</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>Xa</td>
</tr>
<tr>
<td>Z</td>
</tr>
</tbody>
</table>

۳. بررسی کارایی مدل‌های در پراورود فرسایش و رسوب

برای تهیه نقشه فرسایش، نقشه Z منطقه براساس جدول 5 کلاس‌بندی شد که در شکل 13 مشاهده می‌شود. براساس این نقشه می‌توان نقاط حساس به فرسایش را در حوضه مشخص نمود. هم‌چنین بعد از تعیین نقشه Z برای تعیین نقشه فرسایش حوضه، فرسایش T در هر حوضه‌ی فرسایش با استفاده از رابطه ۲ محاسبه شده که در جدول ۶ آمده است. سپس مطابق رابطه ۲ میزان فرسایش (WSP) حوضه به دست آمد (جدول ۷). شکل ۱۴ بیانگر نقشه فرسایش منطقه می‌باشد.
شکل 11. نقشه حساسیت سازندگی حوضه تغییر کشت به فرسایش به روش EPM

شکل 12. نقشه کاربری حوضه تغییر کشت بر اساس امتیاز

شکل 13. نقشه درجه رسوب‌دهی حوضه تغییر کشت (WSP - نقشه EPM در روش Z)
پرواز فرسایش و رسوخ هوا به‌صورت دیگر

جدول 7: مقدار فرسایش و رسوخ محاسبه شده برای زیرحوضه‌های تهیه شده در مدل EPM

<table>
<thead>
<tr>
<th>زیرحوضه</th>
<th>درصد سالانه (m³/yr)</th>
<th>فرسایش سالانه (m³/yr)</th>
<th>کلاس رسوب‌دهی</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2059/5</td>
<td>2063/7</td>
<td>شدید</td>
</tr>
<tr>
<td>B</td>
<td>2078/3</td>
<td>2079/5</td>
<td>شدید</td>
</tr>
</tbody>
</table>

روش

EPM درصد تأثیر هر کدام از عوامل مدل EPM را می‌توان توان حساب کرد، ولی با توجه به حجم محاسبه‌های MPSIAC ممکن است که این تأثیرات موجود در این روش بیرگ کدام از ضرایب و مقایسه آنها به حساب برگرفته شوند. MPSIAC، نرم‌افزاری است که فرآیندهای خاک‌سازی و همچنین حسابی سنج و خاک به‌صورت عدیدی به‌صورت جداول‌های کمپیوتری و انتقال سیال در عمق خاک و بین خاک کمک می‌کند. پس از انجام محاسبات، همان‌طور که نشان داده شد، روی داده‌های انجام‌شده و رسوب‌دهی این مدل، می‌توان این تأثیر را با حساب‌رسانی بررسی کرد. EPM روش Erosion Potential Method (نرم‌افزار Erosion Potential Method) پیشرفته‌ترین نسخه‌های MPSIAC است که توانایی محاسبه و پیش‌بینی پیش‌بینی حجمی از عوامل از حوزه را برعکس می‌کند. MPSIAC از مدل EPM به‌طور مشابه با توجه به اینکه پارامترهای بستری را تحت پوشش دارد. برای مطالعات نقش‌بندی استفاده شود.

نتیجه‌گیری

۲-۳ اولویت عوامل مؤثر بر فرسایش در حوضه تهیه کنندگان به

روش MPSIAC

درصد تأثیر هر کدام از عوامل در مدل MPSIACی است که این تأثیرات مختلفی را در حساب دارد. MPSIAC از مدل EPM توانایی محاسبه و پیش‌بینی پیش‌بینی حجمی از عوامل از حوزه را برعکس می‌کند. MPSIAC از مدل EPM به‌طور مشابه با توجه به اینکه پارامترهای بستری را تحت پوشش دارد. برای مطالعات نقش‌بندی استفاده شود.

۲-۳ اولویت عوامل مؤثر بر فرسایش حوضه آبخیز تهیه کنندگان در

روش MPSIAC

با توجه به امکانات و سیستم‌های مختلف کاربری اراضی با ۲۱/۱۲ درصد از دارای بستری تأثیر در ورود رسوب خاکی حوضه بیانگشته شده. برای هزینه‌های در بستر رودخانه‌ای اثرگذار رژیم آرام سیلاب در این

۱۰۱
جدول 8 اولویت 9 عامل مؤثر در فرسایش حوضه و زیر حوضه‌های نگ کننده به روش

مدل	فرسایش	روان‌بندی	آبگیری	زیرین	زمان	پوشش زمین													
EPM	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
MPSIAC	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
کل	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21

در ارتفاعات شرقی و حداکثر آن 1300 متر در خروجی حوضه

متا پاش. با توجه به خصوصیات منطقه، شیب و توپوگرافی از

عوامل مؤثر در ظهور سیلاب هستند. از سویی دیگر زمان تمرکز

کم (حدود 1/5 ساعت) و رنگ آبراهه می‌تواند افزایش

باید درک شن حوضه نشان می‌دهد که خود باید بیش از

دیگر سیلاب خواهد شد. نسبت اشتعال نیز در كل حوضه

برابر 0/6 می‌باشد که نشانه تیز بودن پهنه اوج سیلاب و در

نتیجه فرسایش فیزیکی حوضه است (5). در

کاربری اراضی و پوشش گیاهی، پیشین سهم را در

فرسایش حوضه نگ کننده دارد به طوری که 2/14 درصد از

منطقه می‌باشد. با این وجود در صورت عدم کنترل فرسایش

شیرازی و ادامه تخریب منطقه، أشاعری و ساز و سیستم

روندخانه باعث این نوع از فرسایش نیز خواهد شد.

خاک منطقه عمده‌یاً از گروه‌های هیدرولوژیکی

D، C و E می‌باشد. با ذلک فیزیک‌دانی کم تا بسیار کم، با نسبی توپوگرافی

تولید روان‌بندی و در نتیجه فرسایش‌های بسیار در آنها بالاست.

عمل شیب با اختصاص 19/47 درصد امتیازات حدم از

پنج رسوپ درده را به شکل اخصاص داده است. در این بین

زیر حوضه‌های F و E، Ci، C یا

رتبه اول و زیر حوضه‌های

B دوم را دارا می‌باشد. حداقل ارتفاع حوضه 3385 متر

D
منابع مورد استفاده

1. اسکوئی، س. ا. پروداکشن، ف. قدری و م. عرب خردی. 1380. ارزیابی کارایی مدل پیش‌بازی اصلاح‌شده در براورد رسوپ پنج جوزه آبی‌مرغ استان آذربایجان غربی. پژوهش و سازندگی 25:37-52.

2. بیات، ر. ح. رفاهی، ع. دوستین و ف. سردنیان. 1380. بررسی کارایی مدل‌های PLS و EPM در براورد رسوپ. جلد 2:200-217. علوم کشاورزی ایران 36.

3. بیات، ر. ح. 1382. انواع مطالعات رویش‌کاری‌های حوزه آبی‌مرغ استان کردستان. انتشارات گردشگری کرمانشاه. 70 صفحه.

4. بیات، ر. ح. 1382. انواع مطالعات رویش‌کاری‌های حوزه آبی‌مرغ استان کردستان. انتشارات گردشگری کرمانشاه. 70 صفحه.

5. رستگاری، س. 1382. براورد فرسایش و رسوپ حوزه آبی‌مرغ تکنکشت به وسیله مدل‌های EPM و PLS. 176 صفحه.

6. موزمک، ب. اردشیر مهندسی آب. دانشگاه کشاورزی، دانشگاه فردوسی مشهد. 30 صفحه.

7. رفاهی، ح. و. نعمتی. 1374. در مطالعه رویش‌کاری‌های بلوگردی و تولید رسوپ حوزه آبی‌مرغ رود. علوم EPM. 176 صفحه.

8. شکری، ش. و. پاناکور. 1374. مقایسه موردی در روش‌های فرسایش و رسوپ در حوزه آبی‌مرغ. MSG و PLS. 176 صفحه.

9. انتشارات گردشگری ایران کشاورزی. 1374. تولید RWD در پیش‌بازی ایران. 176 صفحه.

10. بررسی تکنکشت به وسیله مدل‌های کاربردهای ایران. 176 صفحه.
11. غفوری، م. و ن. حافظی. مقدسی. 1382. گزارش مطالعات زمین‌شناسی و زمین‌رسانی حوضه آبخیز تگک، کشت. انتشارات جهاد دانشگاهی کرمانشاه، ۳۰ صفحه.
12. غلامی، ش. 1379. مدل نسبه‌سازی رسواب روزانه با استفاده از مدل توزیعی SWAT در حوضه‌های کوهستانی دامغان هماش ملی، فرسایش و رسواب. دانشگاه فردوسی مشهد. صفحه ۱۸۵-۲۰۴.