پرسی شواهد میکرومیکروبیولوژیکی تغییر اقلیم کوانترن در خاک‌های قدیمی منطقه اصفهان

شمس‌الله ایبی،* مصلفی کربیمان اقبال و احمد جلالیان

چکیده

خاک‌های قدیمی خاک‌های هستند که تحت شرایط اقلیمی و اکولوژیکی مختلف از حال حاضر تشکیل شده‌اند. علن ریگم این که این خاک‌ها در ناحیه ایران مربوطی گسترش قابل توجهی دارند. پژوهش‌های کافی روي آنه‌ها صورت نگرفته است. یکی از تکنیک‌های مهم برای شناسایی و تفسیر این خاک‌ها در راستای مطالعات اقلیم شناسی گذشته، بررسی میکرومیکروبیولوژی خاک‌های قدیمی است. در این تحقیق شواهد میکرومیکروبیولوژی دو خاک قدیمی در منطقه اصفهان به منظور تفسیر شرایط اکولوژیکی و اقلیمی گذشته مورد بررسی قرار گرفته‌اند. نتایج مطالعه نشان می‌دهد که در خاک قدیمی سه‌شاه شهر پسندی‌ها ریس توی وجود دارد که نشان دهنده شرایط مرطوب‌تر گذشته منطقه است. انتقال گچ و به‌تدریج تغییر روی پوسته‌های رسی نشان دهنده خشکی شدن اقلیم در مراحل بعدی بوده و متغیر به تکیه یک خاک پی‌پذیرفته‌شده است. مشاهدات میکروسکوپی خاک منطقه مسگری نشان از فعالیت‌های بیولوژیکی شدید در افق نیمه مدفون شده‌ای دارد که در دوره سرد و تبیه پیچیده دراسات جوان توسیع یافته و شرایط مردانه را ایجاد کرده است. در مجموع نتایج این پژوهش مؤید این است که در طول دوره کوانترن‌ها پیام‌ها با دوره‌های بیچی‌جایی در اثر خشکی‌های جغرافیایی بالاتر فلات ایران رطوبی مانندی ایجاد کرده و در دوره‌های بی‌پیچی شرایط خشک‌تری حاکم بوده است. نوسانات اقلیمی مزبور آثار خسارت را به صورت شواهد پیدا شده در خاک‌های منطقه اصفهان به ارث گذارده است.

واژه‌های کلیدی: خاک‌های قدیمی، میکرومیکروبیولوژی، تغییر اقلیم، کوانترن

مقدمه

خاک‌های قدیمی (Paleosols)، خاک‌های قدیمی هستند که در شرایط مختلف از شرایط فعلی چون زمین نمی‌سازند. خاک‌های قدیمی به عنوان شاخصی مهم جهت برآورده شرایط اقلیمی گذشته‌ها و فرآیندهای هورودیگری در طی دوران گذشته است. 1 استادان خاک‌شناسی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان 2 به ترتیب دانشیار و استاد خاک‌شناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

137
وجودات زندگی مانند فضه‌های کروی شکل، دانه‌های محل عمور جانوران و ساختاران کاتالیز دریافت کردند که آنها را به شرایط مولکولی گذشته این منطقه مرتبط دانستند. (14). بی‌کی به این موضوع، ساختار مولکول‌ین پاتوژنیک در خاک‌های قدمی منطقه خشک و نیمه خشک وجود قسمت‌های مختلف آنها می‌باشد (18). بنابراین شرایط خاصی شکل‌نمایندگی ایفا می‌کند. (18 و 36). پدیده‌ای (Features): پدیده‌ای منطقه خشک و نیمه خشک وجود قسمت‌های مختلف آنها می‌باشد (18). بنابراین شرایط خاصی شکل‌نمایندگی ایفا می‌کند. (18 و 36). یکی از شرایط محیطی دانه‌های پاتوژنیک در خاک‌های قدمی موجود در خاک‌های قدمی منطقه خشک و نیمه خشک، پوشش‌های رسی روی خاک‌های کشاورزی و نیز دیگر وسایل میان‌بهات که به عنوان ابزار مهم جهت تفسیر شرایط اکولوژیکی گذشته‌ای قابل استفاده است (18 و 36). کابل و گردوسم معمول می‌باشد که وجود این‌ها آری‌پیش رفت که خاک‌های منطقه خشک با پوشش‌های رسی روی وجود دوره مروطب‌تری را در گذشته تداعی می‌کند. (15). آثاری از پوشش‌های گیاهی و جانوری در منطقه نازک به خوبی نشان داده شرایط محیطی گذشته‌ای خاک می‌باشد (18). هر چند به طور معمول در منطقه خشک و نیمه خشک این آثار حفظ نمی‌شود ولی بعضی‌ها به علت دفن سریع و قرار گرفتن در شرایط توده و ابروزه از تجهیز میکروبی، برخی از این آثار به صورت زغال‌های چوب، سرول‌های گیاه و فضولات جانوری داخل خشکی در خاک و جنگل می‌باشد (18). در اغلب خاک‌های قدمی که بیان آثار مورد تخریب قرار می‌گیرند، شکل و توزیع خشک در فضایی و توده‌ای نشانگر نوع و فراوانی موجودات زندگی در گذشته‌ای بوده و است. میکروب‌های زنده در این اراضی واکنش داشته‌اند که باعث شده به خاک‌های قدمی منطقه خشک و نیمه خشک حفظ باشند. (7). گیاهی و میکروب‌های زنده و سایر موجودات زنده در این اراضی واکنش داشته‌اند که باعث شده به خاک‌های قدمی منطقه خشک و نیمه خشک حفظ باشند. (7). گیاهی و میکروب‌های زنده و سایر موجودات زنده در این اراضی واکنش داشته‌اند که باعث شده به خاک‌های قدمی منطقه خشک و نیمه خشک حفظ باشند. (7). گیاهی و میکروب‌های زنده و سایر موجودات زنده در این اراضی واکنش داشته‌اند که باعث شده به خاک‌های قدمی منطقه خشک و نیمه خشک حفظ باشند. (7). گیاهی و میکروب‌های زنده و سایر موجودات زنده در این اراضی واکنش داشته‌اند که باعث شده به خاک‌های قدمی منطقه خشک و نیمه خشک حفظ باشند. (7). گیاهی و میکروب‌های زنده و سایر موجودات زنده در این اراضی واکنش داشته‌اند که باعث شده به خاک‌های قدمی منطقه خشک و نیمه خشک حفظ باشند. (7). گیاهی و میکروب‌های زنده و سایر موجودات زنده در این اراضی واکنش داشته‌اند که باعث شده به خاک‌های قدمی منطقه خشک و نیمه خشک حفظ باشند. (7). گیاهی و میکروب‌های زنده و سایر موجودات زنده در این اراضی واکنش داشته‌اند که باعث شده به خاک‌های قدمی منطقه خشک و نیمه خشک حفظ باشند. (7). گیاهی و میکروب‌های زنده و سایر موجودات زنده در این اراضی واکنش داشته‌اند که باعث شده به خاک‌های قدمی منطقه خشک و نیمه خشک حفظ باشند.
شکل 1. موقعیت جغرافیایی خاک‌های مورد بررسی

شند. این زینت مربوط از جزر زینت [100 گرم] جزء اسیدیتریک (عامل استریک) [4 طوره] جزء کالنت (کالانترو) [3 طوره]. استن (عامل زیست) [50] میلیویتر برای یافتن سنجی می‌باشد. نسبت فاصله زینت بار آزمون و خطا روانی نمونه‌های خاک و با حصول اشباع کامل و زمان مناسب برای خشک شدن به دست آمده. سخت شدن نمونه‌ها با نسبت این فاصله 3-2 هنگام طول کشیده. بعد از برش نمونه‌ها و میله سنج کادانا بالام جامد روزه لام می‌رسدند. در نمونه‌های حاوی گچ برای پربر زیست تغییر ماهی گچ نمی‌توان از چسب کادانا بالام جامد استفاده کرد. یافته‌ها برای زینت سنجی با نسبت کشت اسید (10 طوره) استفاده شد. نمونه‌ها سپس تا رسیدن به ضایعات 100 میکرون بر روی پودر کاداناوم در دشت تا ریز سالید شدن دادند. بعد از پوشش دان نمونه‌ها به وسیله کادانا بالام مایه و لامه‌های مخصوص مشاهده آنها تتوسط میکرو‌سکوب بالی‌یونس مدل لیزر (Leitz (Ortholux II pol-Bk)) و عکس‌برداری از مقاطع نازک (Leitz (Orthomat E)) به وسیله دوربین اتوماتیک مدل لینتز (Leitz (Orthomat E)) راهنمای راهنما

110 پست قرار دارنده (شکل 1). منطقه اصفهان دارای دمای متوسط سالانه 16 درجه سانتی‌گراد و مایع‌گیری باران‌گذار سالانه معادل می‌باشد. توزیع باران‌گذار در منطقه به نحوی است که به 10 ماه از سال جزء ماه‌های خشک محسوب می‌شوند. خاک قبیل منطقه سباهان شهر که رفی رسوب مخروطی افتکه‌های واقع شده‌اند، دارای شیب عمومی 5-8 درصد بوده و عمدتاً از سته‌های آهکی اوریولین دار کرنا ها، کنگلومرا و ماسه‌سنگ کرنا ها و شیل‌های زوراسیک مشتاً گرفته است. رسوبات اراضی پست سگی به‌خیال از رسوبات رودخانه‌ای است که از دور حوزه مرغاب از زیر هژه‌های جنوبی آبخیز را به رود می‌شناخته است و مناظر از تپه‌های متغیر شریعتی رسوی، آذرین و میلکونی ارزی و معنوی از دوران‌های مختلف زمین شناسی می‌باشد.

در مطالعات صحرایی بعد از تشییع نمای رها، نمونه‌های دست نخورده به صورت کلوخ‌های افقی مختلف برداشت و به آزمایشگاه منتقل گردید. برای به‌هم مقاطع نازک از کلوخ‌های برداشت شده نمونه‌ها در مرحله اول به وسیله ریز سه‌جفتی و تحت خلاء، تحقیق و در شرایط هموار آزاد سخت و خشک
تابیه و بحث

خاک قبیلی منطقه سیاهان شهر

dر جدول 1 برخی خصوصیات مترالوژیکی و فیزیکوشیمیایی خاک قبیلی مورد مطالعه در منطقه سیاهان شهر ارائه شده است. همانطور که اطلاعات جدول می‌برد نشان می‌دهد، خاک‌های قبیلی این منطقه در عمق غیب از رس، آهک و گچ نانوی به طور مشابه به رس‌های جووانه‌تر مدل شده است و در دوره رزمایی پلیستوسن (Pleistocene) تکامل یافته‌اند. خلاصه تشریح مترالوژی‌های مقاطع ناراز مورد مطالعه در برخی از خاک‌های انتحال وکات شده این نیبرخ شاهد این منطقه در جدول 2 ارائه شده است. از مهم‌ترین پیداه‌های خاک‌سازی در این منطقه مکانیک و وضعیت رسه‌های رسه‌ای با برخورادی ویژه‌ای در اطراف دراتولو، نواحی با برخورادی ویژه‌ای به‌صورت یک‌تا یک دریا می‌باشد. نمونه‌هایی از این پوشش‌ها در اطراف دراتولو و در مکان‌های مختلف از رشته‌های ایلویالیک تشریح و مدل شده‌است. این پوشش‌های رسی توسط مشاهده‌های مترالوژی‌کی‌های مواد کیتیونی و بیتیونی ترخیب شداده‌اند (3). در نتیجه مورد مطالعه حضور پوشش‌های رسی ترخیب شده که در داخل زمین خاک با شاخصی از سن زیاد پوسته‌های رسی می‌دانیم که بعداً توسط فرآیندهای منطقه مترالوژی‌کی‌های مواد کیتیونی و بیتیونی ترخیب شده‌اند (4). در نتیجه این روش مطالعه حضور پوشش‌های رسی ترخیب شده که در داخل زمین خاک با شاخصی از سن زیاد پوسته‌های رسی می‌دانیم که بعداً توسط فرآیندهای منطقه مترالوژی‌کی‌های مواد کیتیونی و بیتیونی ترخیب شده‌اند (1). در نتیجه این روش مطالعه حضور پوشش‌های رسی ترخیب شده که در داخل زمین خاک با شاخصی از سن زیاد پوسته‌های رسی می‌دانیم که بعداً توسط فرآیندهای منطقه مترالوژی‌کی‌های مواد کیتیونی و بیتیونی ترخیب شده‌اند (5).
جدول 1. برخی خصوصیات مرفولوژیکی فیزیکی و شیمیایی خاک قدمی مورد مطالعه در منطقه سباهان شهر

<table>
<thead>
<tr>
<th>SAR</th>
<th>ECe</th>
<th>pH</th>
<th>CEC (Cmol(+)/kg)</th>
<th>آهک گچ مولالی (gr/kg)</th>
<th>دشد</th>
<th>روست</th>
<th>اسکام</th>
<th>سطح</th>
<th>پوشش آهک</th>
<th>وضعیت آهک</th>
<th>سایپ</th>
<th>ردیف</th>
<th>رنگ</th>
<th>عمق مرطوبی (cm)</th>
<th>ناپمکر</th>
<th>عمق</th>
<th>افق</th>
<th>رنگ ناپمکر</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/5</td>
<td>7/7</td>
<td>7/5</td>
<td>10/4</td>
<td>9/5</td>
<td>47/0</td>
<td>1/5</td>
<td>28/3</td>
<td>28/9</td>
<td>–</td>
<td>10YR 5/4</td>
<td>100-150</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/4</td>
<td>5/9</td>
<td>7/6</td>
<td>13/9</td>
<td>9/6</td>
<td>50/0</td>
<td>3/3</td>
<td>37/5</td>
<td>37/0</td>
<td>1npf</td>
<td>C2RSM-c</td>
<td>7.5YR 4/4</td>
<td>150-210</td>
<td>2Btk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14/0</td>
<td>3/4</td>
<td>8/3</td>
<td>15/0</td>
<td>9/5</td>
<td>50/6</td>
<td>3/0</td>
<td>50/5</td>
<td>50/2</td>
<td>1npf</td>
<td>M3RSM</td>
<td>7.5YR 4/4</td>
<td>100-150</td>
<td>2Btk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/5</td>
<td>7/2</td>
<td>8/3</td>
<td>15/0</td>
<td>8/9</td>
<td>33/0</td>
<td>3/7</td>
<td>37/5</td>
<td>37/0</td>
<td>2mkpF</td>
<td>M3RSM</td>
<td>10YR 5/4</td>
<td>150-210</td>
<td>2Btk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/0</td>
<td>7/1</td>
<td>8/3</td>
<td>15/3</td>
<td>9/9</td>
<td>15/0</td>
<td>3/0</td>
<td>37/5</td>
<td>37/0</td>
<td>2mkpF</td>
<td>M3RSM</td>
<td>10YR 5/4</td>
<td>150-210</td>
<td>2Btk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14/5</td>
<td>4/3</td>
<td>8/3</td>
<td>15/0</td>
<td>8/9</td>
<td>44/0</td>
<td>3/0</td>
<td>37/5</td>
<td>37/0</td>
<td>2mkpF</td>
<td>M3RSM</td>
<td>10YR 5/4</td>
<td>150-210</td>
<td>2Btk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13/1</td>
<td>7/2</td>
<td>10/3</td>
<td>17/0</td>
<td>5/9</td>
<td>33/0</td>
<td>3/0</td>
<td>37/5</td>
<td>37/0</td>
<td>3npf</td>
<td>C2RSM</td>
<td>10YR 4/6</td>
<td>150-210</td>
<td>3Btk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/1</td>
<td>7/2</td>
<td>10/3</td>
<td>17/0</td>
<td>4/9</td>
<td>33/0</td>
<td>3/0</td>
<td>37/5</td>
<td>37/0</td>
<td>1npf</td>
<td>C2RSM</td>
<td>10YR 4/6</td>
<td>150-210</td>
<td>3Btk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14/2</td>
<td>5/9</td>
<td>10/3</td>
<td>19/0</td>
<td>7/9</td>
<td>36/0</td>
<td>3/0</td>
<td>37/5</td>
<td>37/0</td>
<td>1npf</td>
<td>C2RSM</td>
<td>10YR 5/4</td>
<td>150-210</td>
<td>3Btk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14/1</td>
<td>7/1</td>
<td>10/3</td>
<td>17/0</td>
<td>4/9</td>
<td>33/0</td>
<td>3/0</td>
<td>37/5</td>
<td>37/0</td>
<td>–</td>
<td>EVD</td>
<td>10YR 4/5</td>
<td>150-210</td>
<td>3By</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/8</td>
<td>7/6</td>
<td>10/3</td>
<td>17/0</td>
<td>3/9</td>
<td>33/0</td>
<td>3/0</td>
<td>37/5</td>
<td>37/0</td>
<td>3mkpF</td>
<td>M3RSM</td>
<td>7.5YR 3/4</td>
<td>150-210</td>
<td>4Btk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/1</td>
<td>7/4</td>
<td>10/3</td>
<td>17/0</td>
<td>7/9</td>
<td>33/0</td>
<td>3/0</td>
<td>37/5</td>
<td>37/0</td>
<td>3mkpF</td>
<td>M3RSM</td>
<td>7.5YR 3/4</td>
<td>150-210</td>
<td>4Btk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
جدول ۲. تشريح میکروفلوئوری برخی افتخای متخب نیبرم سیاهان شهر بر اساس راهنمای توصیف بولاک و همکاران (۹)

نواحی تحلیل شده از آهک (بدوفیچر تحلیل شده)	$\frac{\text{پوشش رشته با فرآیند} \times \text{ضخامت} \times \text{کیلوگرم}}{\text{میکرو}}$	$\frac{\text{فلزیک}}{\text{فاویک}}$	$\frac{\text{تخلخل}}{\text{تخلخل}}$	$\frac{\text{زایه مورد}}{\text{زایه مورد}}$	$\frac{\text{ساختار}}{\text{ساختار}}$	$\frac{\text{معیار افتق}}{\text{معیار افتق}}$
گروه توزیع نسبی	0-15 cm	Bk1	$\frac{\text{پوشش رشته با فرآیند}}{\text{پوشش رشته با فرآیند}}$	$\frac{\text{فلزیک}}{\text{فلزیک}}$	$\frac{\text{تخلخل}}{\text{تخلخل}}$	$\frac{\text{زایه مورد}}{\text{زایه مورد}}$
پوشش رشته با فرآیند ۱۰ درصد و ضخامت ۱۰-۵ میکرو و بدوخیچر کریستالین شامل ذرات میکروپروفاتیک ۱۵ آهک به صورت پوشش روی ذرات و پخشده در متن	۱۶ درصد جفلوریک و ۱۰ درصد پفورفیریک	$\frac{\text{فلزیک}}{\text{فلزیک}}$	$\frac{\text{تخلخل}}{\text{تخلخل}}$	$\frac{\text{زایه مورد}}{\text{زایه مورد}}$	$\frac{\text{ساختار}}{\text{ساختار}}$	$\frac{\text{معیار افتق}}{\text{معیار افتق}}$
پوشش رشته با فرآیند ۲۵ درصد و ضخامت ۵-۱۰ میکرو و بدوخیچر کریستالین شامل باره‌های صفحه‌ای میکروپروفاتیک ۴۰ آهک به صورت پوشش روی ذرات و پخشده در متن	$\frac{\text{فلزیک}}{\text{فلزیک}}$	$\frac{\text{تخلخل}}{\text{تخلخل}}$	$\frac{\text{زایه مورد}}{\text{زایه مورد}}$	$\frac{\text{ساختار}}{\text{ساختار}}$	$\frac{\text{معیار افتق}}{\text{معیار افتق}}$	
پوشش رشته با فرآیند ۳۵ درصد و ضخامت ۱۰-۵ میکرو و بدوخیچر کریستالین شامل باره‌های صفحه‌ای میکروپروفاتیک ۴۰ آهک به صورت پوشش روی ذرات و پخشده در متن	$\frac{\text{فلزیک}}{\text{فلزیک}}$	$\frac{\text{تخلخل}}{\text{تخلخل}}$	$\frac{\text{زایه مورد}}{\text{زایه مورد}}$	$\frac{\text{ساختار}}{\text{ساختار}}$	$\frac{\text{معیار افتق}}{\text{معیار افتق}}$	

پریش شواهد میکرومیکولوژیکی تغییر اقلیم کوارتر در...
آخک قدمی منطقه سگ‌ی

بخش خصوصیات مورفولوژیکی و فیزیک شیمیایی آخک قدمی

منطقه سگ‌ی در جدول ۳ خلاصه شده است. این آخک قدمی شامل رسوبات متعلق به ایاله‌های مختلف در عمق بوده و در عمق ۶۰-۷۵ سانتی‌متری‌داری‌های تیره‌ترین رنگ‌های سبز و یا سبز-زرد رنگ دارد. سن‌های مواد (۵۷/۳) و غنی از مولیبدن، آلوسیم، نیکل، کوبالت و آهن است. این آخک قدمی در جدول ۳ اشاره شده است. شایع‌ترین رسوبات متعلق به ایاله‌های مختلف در عمق بوده و در عمق ۶۰-۷۵ سانتی‌متری‌داری‌های تیره‌ترین رنگ‌های سبز و یا سبز-زرد رنگ دارد. سن‌های مواد (۵۷/۳) و غنی از مولیبدن، آلوسیم، نیکل، کوبالت و آهن است. این آخک قدمی در جدول ۳ اشاره شده است. شایع‌ترین رسوبات متعلق به ایاله‌های مختلف در عمق بوده و در عمق ۶۰-۷۵ سانتی‌متری‌داری‌های تیره‌ترین رنگ‌های سبز و یا سبز-زرد رنگ دارد. سن‌های مواد (۵۷/۳) و غنی از مولیبدن، آلوسیم، نیکل، کوبالت و آهن است. این آخک قدمی در جدول ۳ اشاره شده است. شایع‌ترین رسوبات متعلق به ایاله‌های مختلف در عمق بوده و در عمق ۶۰-۷۵ سانتی‌متری‌داری‌های تیره‌ترین رنگ‌های سبز و یا سبز-زرد رنگ دارد. سن‌های مواد (۵۷/۳) و غنی از مولیبدن، آلوسیم، نیکل، کوبالت و آهن است. این آخک قدمی در جدول ۳ اشاره شده است. شایع‌ترین رسوبات متعلق به ایاله‌های مختلف در عمق بوده و در عمق ۶۰-۷۵ سانتی‌متری‌داری‌های تیره‌ترین رنگ‌های سبز و یا سبز-زرد رنگ دارد. سن‌های مواد (۵۷/۳) و غنی از مولیبدن، آلوسیم، نیکل، کوبالت و آهن است. این آخک قدمی در جدول ۳ اشاره شده است. شایع‌ترین رسوبات متعلق به ایاله‌های مختلف در عمق بوده و در عمق ۶۰-۷۵ سانتی‌متری‌داری‌های تیره‌ترین رنگ‌های سبز و یا سبز-زرد رنگ دارد. سن‌های مواد (۵۷/۳) و غنی از مولیبدن، آلوسیم، نیکل، کوبالت و آهن است. این آخک قدمی در جدول ۳ اشاره شده است. شایع‌ترین رسوبات متعلق به ایاله‌های مختلف در عمق بوده و در عمق ۶۰-۷۵ سانتی‌متری‌داری‌های تیره‌ترین رنگ‌های سبز و یا سبز-زرد رنگ دارد. سن‌های مواد (۵۷/۳) و غنی از مولیبدن، آلوسیم، نیکل، کوبالت و آهن است. این آخک قدمی در جدول ۳ اشاره شده است. شایع‌ترین رسوبات متعلق به ایاله‌های مختلف در عمق بوده و در عمق ۶۰-۷۵ سانتی‌متری‌داری‌های تیره‌ترین رنگ‌های سبز و یا سبز-زرد رنگ دارد. سن‌های مواد (۵۷/۳) و غنی از مولیبدن، آلوسیم، نیکل، کوبالت و آهن است. این آخک قدمی در جدول ۳ اشاره شده است. شایع‌ترین رسوبات متعلق به ایاله‌های مختلف در عمق بوده و در عمق ۶۰-۷۵ سانتی‌متری‌داری‌های تیره‌ترین رنگ‌های سبز و یا سبز-زرد رنگ دارد. سن‌های مواد (۵۷/۳) و غنی از مولیبدن، آلوسیم، نیکل، کوبالت و آهن است. این آخک قدمی در جدول ۳ اشاره شده است. شایع‌ترین رسوبات متعلق به ایاله‌های مختلف در عمق بوده و در عمق ۶۰-۷۵ سانتی‌متری‌داری‌های تیره‌ترین رنگ‌های سبز و یا سبز-زرد رنگ دارد. سن‌های مواد (۵۷/۳) و غنی از مولیبدن، آلوسیم، نیکل، کوبالت و آهن است. این آخک قدمی در جدول ۳ اشاره شده است. شایع‌ترین رسوبات متعلق به ایاله‌های مختلف در عمق بوده و در عمق ۶۰-۷۵ سانتی‌متری‌داری‌های تیره‌ترین رنگ‌های سبز و یا سبز-زرد رنگ دارد. سن‌های مواد (۵۷/۳) و غنی از مولیبدن، آلوسیم، نیکل، کوبالت و آهن است. این آخک قدمی در جدول ۳ اشاره شده است. شایع‌ترین رسوبات متعلق به ایاله‌های مختلف در عمق بوده و در عمق ۶۰-۷۵ سانتی‌متری‌داری‌های تیره‌ترین رنگ‌های سبز و یا سبز-زرد رنگ دارد. سن‌های مواد (۵۷/۳) و غنی از مولیبدن، آلوسیم، نیکل، کوبالت و آهن است. این آخک قدمی در جدول ۳ اشاره شده است. شایع‌ترین رسوبات متعلق به ایاله‌های مختلف در عمق بوده و در عمق ۶۰-۷۵ سانتی‌متری‌داری‌های تیره‌ترین رنگ‌های سبز و یا سبز-زرد رنگ دارد. سن‌های مواد (۵۷/۳) و غنی از مولیبدن، آلوسیم، نیکل، کوبالت و آهن است. این آخک قدمی در جدول ۳ اشاره شده است. شایع‌ترین رسوبات متعلق به ایاله‌های مختلف در عمق بوده و در عمق ۶۰-۷۵ سانتی‌متری‌داری‌های تیره‌ترین رنگ‌های سبز و یا سبز-زرد رنگ دارد. سن‌های مواد (۵۷/۳) و غنی از مولیبدن، آلوسیم، نیکل، کوبالت و آهن است. این آخک قدمی در جدول ۳ اشاره شده است. شایع‌ترین رسوبات متعلق به ایاله‌های مختلف در عمق بوده و در عمق ۶۰-۷۵ سانتی‌متری‌داری‌های تیره‌ترین رنگ‌های سبز و یا سبز-زرد رنگ دارد. سن‌های مواد (۵۷/۳) و غنی از مولیبدن، آلوسیم، نیکل، کوبالت و آهن است. این آخک قدمی در جدول ۳ اشاره شده است. شایع‌ترین رسوبات متعلق به ایاله‌های مختلف در عمق بوده و در عمق ۶۰-۷۵ سانتی‌متری‌داری‌های تیره‌ترین رنگ‌های سبز و یا سبز-زرد رنگ دارد. سن‌های مواد (۵۷/۳) و غنی از مولیبدن، آلوسیم، نیکل، کوبالت و آهن است. این آخک قدمی در جدول ۳ اشاره شده است. شایع‌ترین رسوبات متعلق به ایاله‌های مختلف در عمق بوده و در عمق ۶۰-۷۵ سانتی‌متری‌داری‌های تیره‌ترین رنگ‌های سبز و یا سبز-زرد رنگ دارد. سن‌های مواد (۵۷/۳) و غنی از مولیبدن، آلوسیم، نیکل، کوبالت و آهن است. این آخک قدمی در جدول ۳ اشاره شده است. شایع‌ترین رسوبات متعلق به ایاله‌های مختلف در عمق بورسی
جدول ۳ برخی خصوصیات مرفولوژیکی، فیزیکی و شیمیایی خاک فرمی مورد مطالعه در منطقه سگژی

<table>
<thead>
<tr>
<th>SAR</th>
<th>ECه</th>
<th>pH</th>
<th>CEC (Cmol(+)/kg)</th>
<th>آهک گچ مولالی (gr/kg)</th>
<th>درصد آهک</th>
<th>درصد مرطوب</th>
<th>سبک</th>
<th>سپت</th>
<th>رنگ ساختمان</th>
<th>عمق</th>
<th>افق (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۱</td>
<td>۱۵/۹</td>
<td>۸/۹</td>
<td>۱۴/۸</td>
<td>۲/۴</td>
<td>۵۷۱</td>
<td>۱۳۰</td>
<td>۱۰/۱</td>
<td>۴۹/۲</td>
<td>بدون جوشش</td>
<td>۱۰YR 6.5/4</td>
<td>۷۰–۲۵</td>
</tr>
<tr>
<td>۲۴</td>
<td>۱۹/۶</td>
<td>۷/۷</td>
<td>۱۳/۶</td>
<td>۴/۵</td>
<td>۷۱۰</td>
<td>۱۰/۵</td>
<td>۲۲/۱</td>
<td>۶۱/۹</td>
<td>بدون جوشش</td>
<td>۱۰YR 5/4</td>
<td>۶۰–۲۵</td>
</tr>
<tr>
<td>۵۱</td>
<td>۲۰/۰</td>
<td>۷/۹</td>
<td>۲/۲</td>
<td>۳۳</td>
<td>۲۹۵</td>
<td>۱۴/۸</td>
<td>۵۴/۳</td>
<td>۳۰/۴</td>
<td>esd</td>
<td>sbk,f</td>
<td>۱۰YR 5/6</td>
</tr>
<tr>
<td>۵۱</td>
<td>۲۵/۱</td>
<td>۸/۹</td>
<td>۱۲/۳</td>
<td>۳</td>
<td>۳۲۰</td>
<td>۱۲/۱</td>
<td>۲۳۵</td>
<td>۳</td>
<td>esd</td>
<td>sbk,m</td>
<td>۵Y 3/1</td>
</tr>
<tr>
<td>۵۱</td>
<td>۴۸/۸</td>
<td>۹/۵</td>
<td>۱۳/۴</td>
<td>۳</td>
<td>۳۱۰</td>
<td>۸۳/۱</td>
<td>۸۳</td>
<td>۳</td>
<td>m_rsm</td>
<td>abk_m</td>
<td>۱۰YR 3/1</td>
</tr>
<tr>
<td>۴۱</td>
<td>۳۸/۸</td>
<td>۷/۸</td>
<td>۸</td>
<td>۵۰۰</td>
<td>۸۰/۰</td>
<td>۸</td>
<td>۱۷۰/۲</td>
<td>۲۶</td>
<td>esd</td>
<td>abk,m</td>
<td>۵Y 3/1</td>
</tr>
<tr>
<td>۴۱</td>
<td>۸۰/۲</td>
<td>۷/۸</td>
<td>۷</td>
<td>۵۵۰</td>
<td>۵۷/۱</td>
<td>۵۸</td>
<td>۱۷۰/۴</td>
<td>۲۶۳</td>
<td>esd</td>
<td>abk,f</td>
<td>۵Y 6/1</td>
</tr>
<tr>
<td>۴۶</td>
<td>۲۹/۸</td>
<td>۸/۸</td>
<td>۶۵</td>
<td>۶۰۵</td>
<td>۸۲/۴</td>
<td>۶۰۳</td>
<td>۱۶۹</td>
<td>۶۰/۳</td>
<td>esd</td>
<td>abk,f</td>
<td>۵Y 3/1</td>
</tr>
<tr>
<td>۴۵</td>
<td>۵۰/۸</td>
<td>۸/۸</td>
<td>۷۸</td>
<td>۳۹۰</td>
<td>۳۹/۳</td>
<td>۷۳/۰</td>
<td>۱۶۷</td>
<td>۳۹/۳</td>
<td>f_isce, m_rsm</td>
<td>abk_m</td>
<td>۵G 5/1</td>
</tr>
<tr>
<td>۴۵</td>
<td>۳۲/۸</td>
<td>۸/۸</td>
<td>۶۵</td>
<td>۳۵۰</td>
<td>۱۰/۴</td>
<td>۵۰/۲</td>
<td>۳۳/۴</td>
<td>۱۰/۴</td>
<td>f_isce, m_rsm</td>
<td>abk_m</td>
<td>۵G 5/1</td>
</tr>
<tr>
<td>۴۵</td>
<td>۵۳/۵</td>
<td>۸/۸</td>
<td>۶۵</td>
<td>۳۵۰</td>
<td>۱۰/۴</td>
<td>۵۰/۲</td>
<td>۳۳/۴</td>
<td>۱۰/۴</td>
<td>f_isce, m_rsm</td>
<td>abk_m</td>
<td>۵G 5/1</td>
</tr>
<tr>
<td>۴۵</td>
<td>۱۶/۹</td>
<td>۸/۸</td>
<td>۶۰۵</td>
<td>۱۰۴</td>
<td>۴۱/۵</td>
<td>۲۴۵</td>
<td>۲۲۵</td>
<td>۴۱/۵</td>
<td>f_isce, m_rsm</td>
<td>abk_m</td>
<td>۵G 5/1</td>
</tr>
<tr>
<td>۴۸</td>
<td>۱۸/۹</td>
<td>۸/۸</td>
<td>۱۰۸۹</td>
<td>۲۲۰</td>
<td>۱۸۴/۸</td>
<td>۲۷/۸</td>
<td>۲۷/۸</td>
<td>۱۰۸۹</td>
<td>esd</td>
<td>بدون ساختمان</td>
<td>۵G 5/1</td>
</tr>
<tr>
<td>۴۵</td>
<td>۱۸/۹</td>
<td>۸/۸</td>
<td>۱۳۶۸</td>
<td>۴۸</td>
<td>۳۱</td>
<td>۱۸۷</td>
<td>۴۸/۸</td>
<td>۱۳۶۸</td>
<td>esd</td>
<td>بدون ساختمان</td>
<td>۱۰G 5/1</td>
</tr>
<tr>
<td>۴۵</td>
<td>۱۳/۵</td>
<td>۸/۸</td>
<td>۳۹</td>
<td>۸۳/۸</td>
<td>۹۶/۸</td>
<td>۶۳/۸</td>
<td>۸۳/۸</td>
<td>۹۶/۸</td>
<td>esd</td>
<td>بدون ساختمان</td>
<td>۵G 1/3</td>
</tr>
</tbody>
</table>
شکل ۳ (الف) توزیعی از بلورهای عدسی شکل گچ در افق سطحی A (ب) پرشدگی سست و غیر پوسته از مواد آلی در حفرات کاتانی افق ۳Ab (د) غلافی از گاستروپود که توسط آبک اشباع شده است در افق ۳Ab ریشه ای آبکی شده (زدومرف) در

حفرات کاتانی افق ۳Ab نیبرخ سگزی

شکل ۴ (الف) سلول‌های کیفی که به طور نسبی نیم‌سیاهی شده‌اند در افق ۳B (ب) پوشش کریستال‌های اسپاتیک آبک روی پیش‌های آلی در حفرات افق ۳Ab (ج) پوشش آبکی در داخل خلیل و قرچ صفحاتی در افق ۳Bkg2b (د) پدیده تخلیه و تجمع اکسیدهای آهن و مگنز به صورت ندول در افق ۳Bkg2b نیبرخ سگزی
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bzy</td>
<td>(0-25 cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bkg2b</td>
<td>(225-270 cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bwg2b</td>
<td>(335-360 cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
از دیگر فرآیندهای مهم که در این افکت دیده می‌شود فرآیند
آهکی شدن سلول‌های گیاهی باید مقادیر زیادی از تغییرات سلولی و
فیزیولوژیکی سلول‌های آهکی شده و فضاهای سلولی را بر
کرده است. هر چند نشان دهنده این فرآیند را می‌توان به زمان
زنده بودن گیاه تعیین می‌شود که این فرآیند در مراحل صورت
گرفته است. نمونه‌های از سلول‌های آهکی شده در این افکت در
شکل 3 دانشجوی دانشگاه شهید چراغ خواهد بود. نمونه‌هایی
از این بافت‌های سلولی و فیزیولوژیکی شکل 3 و ۴ از دیگر
ذخیره‌های دیده می‌شوند. به همراه دیده می‌شود که طور
نسبی سیلیسی کم‌تر یا بدون بافت سلولی (Depletion) تخلیه
روشن‌تر را به همراه دیده می‌شود (نقاط شناختی به رنگ
قرمز) که به عنوان دیده می‌شود بافت سلولی (Silification) اف
گیاهی و تنش‌گذاری نیستند. دگرگونیتی در خاک‌های مختلف به
درجه ای شناخته شده است. در این افکت به عنوان دیده می‌شود
که طرفین، نسبت به سلول‌های آهکی صورت گرفته است.

شکل ۳ اب: در این افکت دیده می‌شود که در زمان صورت
گرفتن شکل ۳، شیشه‌های شفاف پلاستیکی در داخل لایه‌های
بین‌شاخه‌ای شکل داده شده است. این افکت طراحی متنوعی
در دانشجوی دانشگاه شهید چراغ خواهد بود. نمونه‌هایی
از این بافت‌های سلولی و فیزیولوژیکی شکل 3 و 4 از دیگر
ذخیره‌های دیده می‌شوند. به همراه دیده می‌شود که طور
نسبی سیلیسی کم‌تر یا بدون بافت سلولی (Depletion) تخلیه
روشن‌تر را به همراه دیده می‌شود (نقاط شناختی به رنگ
قرمز) که به عنوان دیده می‌شود (Silification) اف
گیاهی و تنش‌گذاری نیستند. دگرگونیتی در خاک‌های مختلف به
درجه ای شناخته شده است. در این افکت به عنوان دیده می‌شود
که طرفین، نسبت به سلول‌های آهکی صورت گرفته است.

شکل ۴ اب: در این افکت دیده می‌شود که در زمان صورت
گرفتن شکل ۴، شیشه‌های شفاف پلاستیکی در داخل لایه‌های
بین‌شاخه‌ای شکل داده شده است. این افکت طراحی متنوعی
در دانشجوی دانشگاه شهید چراغ خواهد بود. نمونه‌هایی
از این بافت‌های سلولی و فیزیولوژیکی شکل 3 و 4 از دیگر
ذخیره‌های دیده می‌شوند. به همراه دیده می‌شود که طور
نسبی سیلیسی کم‌تر یا بدون بافت سلولی (Depletion) تخلیه
روشن‌تر را به همراه دیده می‌شود (نقاط شناختی به رنگ
قرمز) که به عنوان دیده می‌شود (Silification) اف
گیاهی و تنش‌گذاری نیستند. دگرگونیتی در خاک‌های مختلف به
درجه ای شناخته شده است. در این افکت به عنوان دیده می‌شود
که طرفین، نسبت به سلول‌های آهکی صورت گرفته است.

