اثر تنش خشکی بر تجمع پروپلین و تغییرات عناصر در میوه‌های یزدی (Medicago sativa L.) نیکشهری و رنجر (Medicago sativa L.) نیکشهری و رنجر (Medicago sativa L.)

مهدی آخوندی، عباس صفرزاد و مهرداد لاهوتوی

چکیده
خشکی از جمله تنش‌های محیطی مهم است که بر رشد و نحوه گیاهان اثر می‌گذارد. برای شناسایی مکانیزمهای مقاومت به تنش خشکی در پویش ازمایشی در محیط هیدرپونیک با ۲ طرح مختلف پتانسیل‌های ارمزی حاصل از PEG ۸-۰ و ۲۴-۸ با اندازه شد. از زنوتیپ‌های پویش بیدی، نیکشهری و رنجر، که بر اساس شاخص‌های مولفولوژیکی به ترتیب به عنوان مقاوم، متوسط مقاوم و حساس دسته‌بندی شده‌اند. در این مطالعه استفاده شدند. پس از چهار هفته از گیاهان کشت شد در محیط هیدرپونیک نمونه برداری و پرولین و عناصر کلسیم، پتاسیم و سدیم آنها اندازه‌گیری شد. نتایج نشان داد که با افزایش نتش خشکی بر بیزان تجمع پرولین در اندام‌های مختلف افزوده می‌شود، ولی میزان آن در زنوتیپ‌ها و اندام‌های مختلف پویش مشابه بود. نتیجه‌ها موجب افزایش بیزان تجمع پرولین در بیزان نشان می‌دهد که سایر اندازه‌های گیاهی و افزایش معنی‌دار غلظت عناصر پتاسیم، سدیم و کلسیم در اندام‌های گیاهی کم. در حالت نش خشکی نسبت پتاسیم به سدیم در اندام‌های هواپیم و ریشه با افزایش نتش خشکی کاهش یافته. بر اساس نتایج مولفولوژیکی و بوشیمیایی از عامل ازمایش پویش بیدی به عنوان زنوتیپ مقاوم به نتش ارمزی در مقایسه با سایر زنوتیپ‌ها مشخص شد.

واژه‌های کلیدی: خشکی، پرولین، عناصر غذایی، Medicago sativa L., بویجه، PEG

مقدمه
خشکی یکی از تنش‌های محیطی است که روزی‌را موثر مراحل رشد گیاه، ساختار اندازه و تغییرات آنها آثار محرب و زیان آوری وارد می‌سازد (۲۰، ۲۴، ۲۶، ۱۳، ۲۱ و ۳۲). پاسخ گیاهان به تنش‌های محیطی در سطوح مولفولوژی، آنتانومی، سلولی و مولکولی متغیر است (۲۴، ۳۲، ۲۳ و ۳۲). توانایی گیاهان به

1. به ترتیب کارشناس ارشد و عضو هیئت علمی مرکز تحقیقات کشاورزی و منابع طبیعی خراسان مشهد
2. استادیار فیزیولوژی گیاهی، دانشگاه علوم دانشگاه فردوسی مشهد، مشهد، ایران

165
مرتبه به کانال‌های پایین (antiport) در سیدیم/پتاسیم می‌باشد. مربوط به سیلیم/پتاسیم می‌باشد (8). در این اثر، عنصر غلیظ، پتاسیم یکی از مهم‌ترین کانال‌های مورد نظر گیاه می‌باشد که در مورد تجهیز آن در هگمات گیاه اساسی تبدیل زیادی گروهر شده است. این ناحیه بر جداخود بیونه‌های معدنی در سلول‌ها کاهش می‌دهد و فشار توزانس سلول خود را منظم می‌کند. پاسخ کل آب گیاه در هگمات دوره خشکی ممکن نیز تنظیم امری خلاف می‌شود (15). در این روش گیاه از طریق جذب بیونه‌های معدنی از محیط خارجی مانند افزایش میزان تجمع پتاسیم در اندام‌های هموئی و یا از طریق سنتز زیاد مواد حل شونده سازگار که به عنوان اسولولیت عمل می‌کند، صورت می‌گیرد (15 و 26). نوع ماده حل شونده در گونه‌ها و زنیتهای مختلف، متفاوت است. این مواد حل شونده شامل آمونیومیوئید می‌تواند (بروئیل، نفوذی مثل ساکارز و فرورکان)، پلی‌وله‌های (لیزوتول و پپتید)، آمین‌های جهانی (گلیکنین‌های نباتی)، پوئنا (پتاسیم) و اسیدهای آتی (مالات و سیترات) هستند (37). تغییر از جریان پوئنا سرسره‌ای می‌شود (حکام قدیمی)، در حالی که سرسره‌ای اسولولیت‌ها در طی جنگ ساخت و یا جنگ روز پس از تنش صورت می‌گیرد (24).

تجمع پرولین در تمام اندام‌های گیاه در طی تنش وجود دارد. با این وجود میزان تجمع آن در بیرون سرسره تر در بین سیلیم/پتاسیم می‌باشد. پرولین اسیدامینه ذخیره شده در سیتوپلاسم می‌باشد و احتمالاً در حفاظت از ساختار مکمل‌های هیدروکسی پرولین نیز در سنتز دیپارسول نظر دارد (32). اینی و همگن‌یکان (26 و 32) با پروفسن را کاهش گذار می‌نماید. پروفسن‌هایشان اغلب گیاه کاهش یافته و همچنین بسب کاهش غلظت می‌زایم و کلایم در بیرون بود و در زیر گل‌نیافته آلیه در رشته تنفس آنها در رشته‌های تدریج (18).

پوئنا به کشت و بسیار پوشاندن یکی از اهمیت ویژه شناخت مکانیسم‌های مقاومت به خشکی از ویژه پرچم‌دار است. هدف از این پروکسی‌شناسی زنیتهای مقاوم به خشکی و مطالعه تغییرات اسید آمیه پرولین و سه عصاره پتاسیم، سیدیم و کلایم در شرایط تنفس و تنش آنها در مقاومت به خشکی می‌باشد.

مواد و روش‌ها
در این آزمایش سه زنیتهای پوئنا به‌ردی (مقاوم)، نیکهدی (مقاوم)، رنگ‌کننده (جاسوس) که برای شناسایی مورفولوژی شناسایی شده و بودند، در محیط هیدرولوژیکی دارای سطح خشکی (0.4 و 0.5 و 0.6-1 بار) کشت شدند. این آزمایش به صورت فاکتوریال در قالب طرح کامل جامعه‌ای تصادفی در این کشت انجام شد. به نظر می‌رسد که این مورد نظر، یک مورد پیک از زنیتهای بسیار ناگهانه بارا در داخل لیوان‌هایی

اعدمی در سلول‌ها خود کاهش می‌دهد و فشار توزانس سلول خود را منظم می‌کند. پاسخ کل آب گیاه در هگمات دوره خشکی ممکن نیز تنظیم امری خلاف می‌شود (15). در این روش گیاه از طریق جذب بیونه‌های معدنی از محیط خارجی مانند افزایش میزان تجمع پتاسیم در اندام‌های هموئی و یا از طریق سنتز زیاد مواد حل شونده سازگار که به عنوان اسولولیت عمل می‌کند، صورت می‌گیرد (15 و 26). نوع ماده حل شونده در گونه‌ها و زنیتهای مختلف، متفاوت است. این مواد حل شونده شامل آمونیومیوئید می‌تواند (بروئیل، نفوذی مثل ساکارز و فرورکان)، پلی‌وله‌های (لیزوتول و پپتید)، آمین‌های جهانی (گلیکنین‌های نباتی)، پوئنا (پتاسیم) و اسیدهای آتی (مالات و سیترات) هستند (37). تغییر از جریان پوئنا سرسره‌ای می‌شود (حکام قدیمی)، در حالی که سرسره‌ای اسولولیت‌ها در طی جنگ ساخت و یا جنگ روز پس از تنش صورت می‌گیرد (24).
اخن تشکیکی بر تجربه پرولین و تغییرات عناصر پرولین یزدی ...
جدول 1. مقایسه میانگین میزان پرولین-ژنوتیپ‌های پونجه در مرحله گیاهچهای (هیدروپوتنیک) (میکرومول بر گرم وزن ترشافت)

<table>
<thead>
<tr>
<th>نسبت پرولین-ژنوتیپ‌های به زمین</th>
<th>پرولین رشد</th>
<th>پرولین برگ</th>
<th>ژنوتیپ</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.33<sup>a</sup></td>
<td>0.41<sup>b</sup></td>
<td>0.05<sup>b</sup></td>
<td>0.25<sup>b</sup></td>
</tr>
<tr>
<td>9.1<sup>b</sup></td>
<td>0.3<sup>b</sup></td>
<td>0.04<sup>b</sup></td>
<td>0.2<sup>b</sup></td>
</tr>
<tr>
<td>6.29<sup>b</sup></td>
<td>0.25<sup>b</sup></td>
<td>0.03<sup>b</sup></td>
<td>0.19<sup>b</sup></td>
</tr>
</tbody>
</table>

در هر ستون میانگین هایی که دارای یک حرف مشترک می‌باشند، با یکدیگر تفاوت معنی‌داری ندارند (آزمون دانکن)\(\alpha = 0.1\).\(^*\)

جدول 2. مقایسه میانگین میزان پرولین-ژنوتیپ‌های پونجه در برای خشکی (میکرومول بر گرم وزن ترشافت)\(^*\)

<table>
<thead>
<tr>
<th>پناسیل (بار)</th>
<th>پرولین بخش‌هایی به ریشه</th>
<th>پرولین بخش‌هایی به پناسیل</th>
<th>پرولین برگ</th>
<th>پرولین رشد</th>
</tr>
</thead>
<tbody>
<tr>
<td>صفر</td>
<td>0.15<sup>c</sup></td>
<td>0.1<sup>c</sup></td>
<td>0.04<sup>c</sup></td>
<td>0.03<sup>c</sup></td>
</tr>
<tr>
<td>4/7.78<sup>b</sup></td>
<td>0.15<sup>c</sup></td>
<td>0.05<sup>c</sup></td>
<td>0.01<sup>c</sup></td>
<td>0.08<sup>c</sup></td>
</tr>
<tr>
<td>11/3.77<sup>b</sup></td>
<td>0.15<sup>c</sup></td>
<td>0.04<sup>c</sup></td>
<td>0.01<sup>c</sup></td>
<td>0.08<sup>c</sup></td>
</tr>
<tr>
<td>9/2.09<sup>b</sup></td>
<td>0.15<sup>c</sup></td>
<td>0.03<sup>c</sup></td>
<td>0.01<sup>c</sup></td>
<td>0.08<sup>c</sup></td>
</tr>
<tr>
<td>7/1.03<sup>b</sup></td>
<td>0.15<sup>c</sup></td>
<td>0.02<sup>c</sup></td>
<td>0.01<sup>c</sup></td>
<td>0.08<sup>c</sup></td>
</tr>
</tbody>
</table>

در هر ستون میانگین هایی که دارای یک حرف مشترک می‌باشند، با یکدیگر تفاوت معنی‌داری ندارند (آزمون دانکن)\(\alpha = 0.1\).\(^*\)

\(^*\): در هر ستون میانگین هایی که دارای یک حرف مشترک می‌باشند، با یکدیگر تفاوت معنی‌داری ندارند (آزمون دانکن)\(\alpha = 0.1\).\(^*\)
اشکال 1. اثر نش اسمری بر میزان پتاسیم ریشه در زعتره‌های بونجه

تغییرات نسبت پتاسیم اندام هواپیم به ریشه تحت تأثیر نمونه، تیمار خشک و اثر مشابه این دو معنی‌دار بود. در شکل 2، نسبت پتاسیم اندام هواپیم به ریشه در هر سه زعتره با افزایش نش اسمری آزاد و این اختلاف از تحقیقات نشان داد است که تغییرات بهượng تغییر در خصوصیات دوپره سلولی گیاه می‌شود که این امر سبب تغییر در عوامل زیستی مربوط به انتقال سیگنال در غشاء‌های پلاسمایی همچون گیرنده‌های هورمونی. کنان‌های کلسیمی و غیره می‌شود (23). اردي و همکاران (11) گزارش نمودند که در اثر نش اسمری بر میزان تجمع سدیم و پتاسیم در شاخه و (Zea mays) و ذرت (Sorghum bicolor) افزوده می‌شود که جانبه در این شرایط از استفاده ABA، افزایش آنها قابل توجه نیست. امی‌پری و همکاران (24) با مطالعه اثر نش اسمری بر بونجه نتیجه گرفتند که نش اسمری با کاهش میزان عناصر ضروری در گیاه، سبب کاهش افزایش میزان پرولین در گیاه می‌شود (12، 15، 17 و 22). میزان پتاسیم ریشه در زعتره‌های نیکوهی و یزدی دارای بیشترین مقدار و در زعتره رنگر کمترین مقدار را داشت که از نظر آماری دارای اختلاف معنی‌داری بودند. همچنین، طوری که در شکل 1 نشان داده شده با کاهش پتاسیم آب از میزان پتاسیم ریشه کاسته می‌شود، که این امر را می‌توان به انتقال بیولیت پتاسیم به برگ و افزایش پتانسیل اسمری سلول‌های آن برای حفظ تورازنس مربوط دانست. نتایج نشان داد، پتاسیم ریشه در 12-بار نسبت به شاهد، 238/3% کاهش نشان داد (شکل 1). آینوس (21) ظریف کتابی (2) و ملی‌نی (18) از کاهش میزان پتاسیم ریشه در عدسب، بونجه و پنیه در اثر نش اسمری گزارش داده‌اند. ناپیچي همچنین نشان داد که با افزایش نش اسمری بر میزان پتاسیم اندام هواپیم افزوده می‌شود و دلیل این افزایش را نقص این کاتیون در تنظیم فشار اسمری و کنترل روزنه‌ها عناوان می‌نمایند (33).
نگاهی به نتایج تجزیه و تحلیل داده‌های نسبت پاناسیم به سدیم نشان داد که بیشترین میزان‌های تنش خشنگی از سدیم این نسبت کاسته می‌شود. همان‌طور که در شکل ۴ مشاهده می‌شود، در زنوتیپ‌های مختلف میزان کاهش این نسبت تحت پاساژ‌های مختلف خشنگی با یکدیگر متفاوت می‌باشد.

% بیشتر (۹) معتقد است که در هنگام نشان دادن میزان سدیم افزایش می‌یابد و برای جلوگیری از سرطان، گیاه‌های سبزی در خروج و یا به واسطه فیبرزانان آن ممکن است. سایر و همکاران (۲۴) با بررسی اثر نشان دادند که در شکل ۴ مشاهده می‌شود که با کاهش پناسیم ریشه زنوتیپ درصد جذب پناسیم می‌شود که این امر را به دلیل تنظیم فشار اسپراژه‌پیمان‌های میزان، در صورتی که میزان نشان داده‌های جشنی سدیم به جای پناسیم می‌باشد.
اثر تنش شکلی بر تجمع پروتئین و تغییرات عناصر پروتئین‌های یزدی...

شکل ۳. اثر تنش اسمزی بر میزان سدیم ریشه در زنوتیپ‌های پونجه

شکل ۴. اثر تنش اسمزی بر نسبت پتاسیم به سدیم ریشه زنوتیپ‌های پونجه
تجمع درصد سدیم در برگ‌های گیاه معنی‌داری نیز به دارایی افزایش نشان می‌داد.

تشخیص میلای مسابقه افزایش در میزان کلسیم اندازه‌های هوایی شد. ولی تشخیص شدید سبب کاهش مقدار کلسیم اندازه‌های می‌شود. کلسیم نسبت بسیار مهمی در تنظیم ورود گاز سدیم و ایجاد بیماری و نشان دهنده دوره نسبت به آنتی‌سرامیک دارد. گیاه‌ها از کلسیم برای رهایی از تشخیص شدید استفاده می‌کنند.

در هنگام شوری میزان کلسیم سلولی افزایش می‌یابد که این افزایش آثار مanjeاتی و مسئولیت دست داشته که معنی‌داری نیز به دارایی افزایش نشان می‌داد.

در این حالت کلسیم به عنوان یک قانون تانه‌ای می‌شود که بر پلیمر‌های مربوط به اندازه‌های سدیم می‌تواند سبب اثرات سریع کلسیم در طول و رود آن و واکنش‌های سیستم سدیم به میزان سلولی روزانه مشاهده نمی‌شود. از این رو، و لیست سلولی به روش می‌توانند ضامن و علت عادات کاهشی و سلولی که به دست داشته که معنی‌داری نیز به دارایی افزایش نشان می‌داد.

با توجه به نتایج به دست آمده به طور کلی می‌توان چنین نتیجه گرفت که گیاهان در هنگام تشخیص شدید سبب کاهش مقدار کلسیم اندازه‌های می‌شود. کلسیم نسبت بسیار مهمی در تنظیم ورود گاز سدیم و ایجاد بیماری و نشان دهنده دوره نسبت به آنتی‌سرامیک دارد. گیاه‌ها از کلسیم برای رهایی از تشخیص شدید استفاده می‌کنند.

در هنگام شوری میزان کلسیم سلولی افزایش می‌یابد که این افزایش آثار مanjeاتی و مسئولیت دست داشته که معنی‌داری نیز به دارایی افزایش نشان می‌داد.

در این حالت کلسیم به عنوان یک قانون تانه‌ای می‌شود که بر پلیمر‌های مربوط به اندازه‌های سدیم می‌تواند سبب اثرات سریع کلسیم در طول و رود آن و واکنش‌های سیستم سدیم به میزان سلولی روزانه مشاهده نمی‌شود. از این رو، و لیست سلولی به روش می‌توانند ضامن و علت عادات کاهشی و سلولی که به دست داشته که معنی‌داری نیز به دارایی افزایش نشان می‌داد.
مباحث مورد استفاده
1. آئوئس، م. 1380. بررسی فیزیولوژیکی اثرات نش خشکی ناشی از بلی اتیلن گلیکول ۱۰۰۰ بر مرحله جوانه زنی و گیاهچه‌ای ارکام (Lens culinaris M.) پایان نامه کارشناسی ارشد فیزیولوژی گیاهی، دانشگاه علوم، دانشگاه فردوسی مشهد. ۱۲۶ صفحه.

2. آخوندی، م. ۱۳۸۲. بررسی عکس عمل بیشنگ (Medicago sativa L.) به نش خشکی در مراحل جوانه زنی و گیاهچه‌ای. پایان نامه کارشناسی ارشد فیزیولوژی گیاهی، دانشگاه علوم، دانشگاه فردوسی مشهد. ۲۰۱ صفحه.

3. احمدی، ح. و ع. صفرزاد. ۱۳۸۲. بررسی ویژگی‌های مورفولوژی و بیوشیمیایی کالوس‌های بیشنگ (L.) و (Medicago sativa L.) بازایی آنها در رابطه نش خشکی. پژوهش و سازندگی ۵۸-۸۹.

4. طرفی، ک. ح. ۱۳۷۶. ارزیابی شاخص‌های مقاومت به نش خشکی در جنگل بیشنگ یکساله. پایان نامه کارشناسی ارشد زراعت، دانشکده کشاورزی، دانشگاه فردوسی مشهد. ۱۲۰ صفحه.

5. فریانی، م. و ح. هری، م. نوجوان و ط. فریدونیا. ۱۳۷۷. اثر نش خشکی بر تغییرات بروتئین‌های محلول و استخدای آمینه دو رقم نخود ایرانی. مجله علوم کشاورزی ایران۱۹(۱): ۷۶-۷۷.

6. گوچه‌ی، ع. ۱۳۲۲. اصل عملیات دیمکاری (ترجمه). انتشارات جهاد دانشگاهی مشهد. ۱۲۰ صفحه.

