بررسی ارتباط زمان و ثابت سرعت خشکشدن (K) با پارامترهای خشکشند و ضایعات (دیدرده شکستگی) برنج در مرحله تبدیل

مجد سلیمانی و محمد شاهدی

چکیده

یکی از معایب مهم تأثیر گذار بر کیفیت نیز بر کیفیت تبدیل باعث عیانی ضایعات ناشی از خرد شدن برنج در مرحله تبدیل به برنج سفید و در نتیجه ارزش اقتصادی آن، نحوه عملیات خشکشند و کنترل پارامترها در خشکشند کمی باشد. به منظور بررسی عوامل مؤثر بر کیفیت تبدیل محصول و ارتباط آنها با یک کایدگر، روش پیمان که یکی از ارگونی مدل‌برن استان گیلان با کیفیت تبدیل و مقاومت بالا متوسط است، با رطوبت اولیه 0/20٪ مورد استفاده قرار گرفت. فراوانی خشکشند محصول در قالب طرح کاملاً تصادفی با 20 تیمار توزیع 3 فاکتور: درجه حرارت، هواي خشکشند (در سطح 0/20، 0/30 و 0/50 درجه سانتی گراد)، سرعت جریان هواي خشکشند (در سطح 0/20 و 0/30 متر ثانیه)، و رطوبت شنلوز در اندازه فراوانی (در سطح 0/20 و 0/30 درصد بر پایه تر، به ترتیب معادل 10/3 و 10/6 درصد بر پایه خشکشند) در 3 تکرار انجام شد. نتایج به دست آمده از آزمایش نشان داد که افزایش حرارت و سرعت جریان هوا در خشکشند باعث کاهش زمان و برخور ریکش افزایش ثابت سرعت خشکشند (K) در محصول می شود. همچنین مشخص شد که در هر سرعت و تأثیر آماده کردن نیز بر کیفیت محصولی برغم این که باعث افزایش معنی دار زمان فراوانی می شود ولی بر ثابت K اثر معنی دار ندازد. از طرفی افزایش زمان داده که در دامنه رطوبت مشخص (K) در محصول می شود. همچنین مشخص شد که در هر سرعت و ثابت K بهترین نتایج دارند. از طرفی افزایش زمان داده که در دامنه رطوبت مشخص (K) در محصول می شود و بر ثابت K بهترین نتایج دارند. از طرفی افزایش زمان داده که در دامنه رطوبت مشخص (K) در محصول می شود و بر ثابت K بهترین نتایج دارند.

واژه های کلیدی: فراوانی خشکشند، شنلوز، تبدیل، سیستم خشکشند، کیفیت

مقدمه

بودن رطوبت نسبی هوا، روشهای طبیعی دارای کارایی پایین است. بهتر است کاربرد دارد. استفاده از خشکشند مکانیکی ایست، در این خشکشند ها با استفاده از جایگاهی مبتنی بر خصوصیات کیفی مذکور به دست آورده.

عضو هیئت علمی مرکز تحقیقات کشاورزی، دبیر

1. استاد علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
2. استاد علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

211
ابراهیم هوایی گرم، سرعت افت رطوبت در محصول افزایش
پیدا می‌کند و در زمان خشک‌شدن صرف‌جویی قابل ملاحظه‌ای
صورت می‌گیرد. ولی چنان‌گراینده انرژی به صورت کنترل شده
انجام شود منجر به افزایش ضایعات در مرحله تبدیل شلوک
به پربرد سفید و در نتیجه کاهش ارزش اقتصادی محصول
می‌شود زیرا در مرحله پوسکنتریس و سفید کردن، نیروهای
خمیش و سایشی به محصول وارد می‌شوند و برای سلام ماندن
و ممکن از خرد شدن شلوک‌ها، لازم است که از مقاومت
خمیش و کششی لازم برخوردار باشند تا ضایعات به حداقل
برسد (۵) و (۲۰).

آگرچه افزایش ضریب خشک‌شاک کمتر از طریق افزایش
سرعت خشک‌شدن و افزایش پارامترهای مثل درجه حرارت
و سرعت جریان هوا امکان‌پذیر است ولی جانجه‌ای این
افزایش به صورت کنترل شده و فقط به منظور صرف‌جویی
در زمان انجام شود، می‌تواند منجر به افت کیفیت تبدیل
محصول و در نتیجه کاهش بکار بردن سالمند و ضرر اقتصادی
گردد.

از جمله عواملی که بر کیفیت تبدیل یا به عبارتی خرد شدن
برنگ مؤثر است، تشکیل‌های اسنیک که در نتیجه دفع رطوبت در
آن ایجاد می‌گردد. کانی و چندگانی به وقتی را در ارتباط با تأثیر
دع رطوبت بر تنش‌ها و مقاومت‌ها این محصول انجام
داده. طی این بررسی به این ترتیب نتایج رصدی که در مرحله
خشک‌شدن، سلول‌های داخلی دانه با استفاده از داده‌ها
کاهش حجم داخل و جریان‌های می‌شوند. در حالت
قسمت‌های داخلی و مرکزی دارای محتوای رطوبت بالای
نسبت به قسمت‌های سطحی سخت هستند. این نتیجه منجر به ایجاد
تشکیل کششی در سطح و تشکیل شاخک در مرکز دانه می‌شود که
خود می‌تواند ایجاد ترک در محصول مقاوم آن را در مقدار
نیروهای درد و کاهش حجم به تنها این حالت
معمول در شرایط انقاذ می‌تواند به توانایی این می‌شود که
یعنی دفع رطوبت در ایجاد انجام گیرد. به عبارتی چنان‌گراینده
پیدا می‌گردد.

۲۱۲
بررسی ارتباط زمان و ثابت سرعت خشکشدن (K) با پرامترهای خشکشدن و...

گیلاد است. استفاده شد (9 و 10). محصول در کیسه ی پلی اتیلن به نگهداری در ۵۰° C گرم داده شد. آزمایشگاه انقالی یافته و در ساعت رطوبت نسبی آزمایشگاه در حالت زیر ۵ درصد دستگاه R value یا (Intron) را به دسته‌سگاه اینستراژکنه ۳ شکل رنگ بی‌هmov و شلوک، بی‌هmov و شلوک سیطخوی به دو رقم مورد مطالعه قرار دادند. آهنگ همپستگی کمپوننت (K) با شکنندگی رابطه عکس دارد (6) به دو روش مذکور بررسی کردند و نتایج داد که نیروی فشاری (Compression test) شکستن نمونه در هیچ یک از این محدوده حسی نتایج که به جهت ضایعات شکستن نمونه برای کمک‌های فشاری و شلوک همپستگی خوبی با کمپوننت (K) کمپوننت در (15).

در سال ۱۹۹۸ چن و همکاران تحقیق در مورد تأثیر پرامترهای خشکشکن بر مقدار K (ثابت سرعت خشکشدن) و ثابت ضایعات بندی انجام دادند. آنان گزارش کردند که فشار نتایج بی‌هmov و شلوک، به نظر نیروی شکستن نمونه باعث افزایش فشاری ثابت K و در نتایج منجر به افزایش ضایعات محسول در مرحله بندی می‌شود (6).

اهداف این تحقیق عبارتند از: ارتباط زمان و ثابت سرعت خشکشکن (K) با پرامترهای خشکشکن (ب) همپستگی زمان کاهش رطوبت و ثابت K با مقاومت خمیش و ضایعات (میزان شکستگی) در مرحله بندی، ج) ارائه مدل برای برآورد ضایعات و مقاومت خمیش با استفاده از زمان و یا K ضریب.

مواد و روش‌ها

در این پژوهش می‌توان از روشی استفاده شود که از نظر مقاومت باقی و وضعیت منسوخ داشته باشد بعنوان نه انقدر ساخت باشد که این باشد و نه انقدر مقاومت باشد تا این که به‌ساده تحت تأثیر عوامل محیطی قرار گیرد. به همین علت از رمز بینامه که از ارقام بیگانه بله استان...
نتایج
الف) تغییرات زمان و ثابت سرعت خشکشدن در اثرت با
باراترهای خشکشگی
منحنی‌های رطوبیت حاصل از اتیومرهای آزمایشی شده در
شکل‌های 1 تا 4 ارائه شده است. آنچه در این نمودارها به
وضعیت دیدگان می‌باشد، این است که در هر نمودار,
افزار درجه حرارت هوای خشکشگی منجر به افزایش طبیعی
کاهش طول منحنی و در نتیجه کاهش زمان لازم برای از دست
دادن رطوبیت می‌شود. نکته دیگر این که در دمای ثابت و
رطوبیت ثابت یکسان، افزایش سرعت جریان هوا در خشکشگی
از 0/5 به 2 متر ثانیه باعث مقداری افزایش در شیب منحنی
و در نتیجه کاهش طول منحنی و کاهش زمان می‌شود. در ارتباط
با کاهش رطوبیت ثابت 1/2/14 به 1/10/14 در وضعیت که
باراترهای سرعت جریان هوا و درجه حرارت ثابت هستند،
مشاهده می‌کنیم که افزایش ثابت تابی می‌اندازد و طولانیتر شدن
منحنی مربوط به افزایش زمان لازم برای کاهش پیشرفت
راتیویت تا 0/10/1/14 می‌باشد.
پس از انجام تجزیه و ارائه مشخصات حاشیه اتیومرهای
آزمایشی (20 ثابت) بر زمان و ثابت سرعت خشکشگی
در سطح 1 میثاق در است. میانگین مقدار مربوط به زمان
خشکش مربوط به افزایش سرعت جریان و 2 میثاق و مقایسه
حاصل از آنها با استفاده از آزمون دانکن در جدول 1 ارائه شده
است (17).
این جدول نشان دهنده این است که کاهش رطوبیت
محصول تابعی از 0/3 عامل رطوبیت ثابت محسوس، سرعت
جریان و ورطوبیت حاصل تابعی خشکشگی می‌باشد. به طوری که
در این جدول دیده می‌شود در منطقه یکسان سرعت جریان
هوا و ورطوبیت ثابت، افزایش دمای در دامنه 30 تا 30 درجه
سانتی‌گراد در تمام سرعت‌های باعث کاهش منجر به زمان
خشکشگی شده است. همچنین در اتیومرهای که رطوبیت نهایی
و درجه حرارت یکسان اتیومرهای ثابت سرعت جریان‌ها باعث
ضراوی ثابت هستند، کاربرد رطوبیت تعادلی برای تعیین
کسر رطوبیت یعنی (MR = (M–M0)/(M–M0)) می‌باشد که
Mr و مو رطوبیت نهایی و لازم و M0 رطوبیت نهایی و لازم.
در این رابطه MR محاسبه شده که MR از رابطه
لاینر افت رطوبیت محصول و ثابت K در واقع ضریب
زاویه منحنی تغییرات لگاریتمی کسر رطوبیت (MR) بر حسب
زمان است.
پس از این مرحله، آزمایش‌های مربوط به تعیین مقاومت
خمیس و تعیین ضایعات در مرحله تبدیل به برخی سفید صورت
گرفت. برای تعیین مقاومت خمیس از دستگاه انیشتپان مدل
1140 ساخت انگلیس استفاده شد. بدری معیار که در سر دانه
شیارک بین روی دو تکه‌گزار می‌گرفت و تغییر (Probe)
مشمول بسته دستگاه که به انته‌که می‌باشد
بود با سرعت 300 میلی‌متر در دقیقه به سمت پایین حرکت داده
می‌شد تا در وسط دانه میان دو تکه‌گزار، بیشتر را وارد کند
(15 و 16). ذخیره وارده به بر روی کاغذ
خخصوص ثبت می‌شد و در نغله شیارک دانه به پیک خود
می‌رسید که معدلی از مقاومت خمیس شکست که در
به منظور تعیین میزان ضایعات (درصد شکستگی) در مرحله
تبدیل، از هر نمونه اندازه 150 گرم شیارک به دستگاه پوست‌کن
غلظت لاکتستیک (ساخت کمپانی ساناتا زاین با متوسط
پوست‌گیری 0/5 به در طول 0/48 و 0/49 در رطوبیت
8/10 و 0/0 می‌باشد.
برای هفه‌های به دست آمده به دستگاه سفیدکن سایلی
(ساخت کمپانی ساناتا زاین) انتقال باید عمل پیلولوژی هر
نمود که در دستگاه سفیدکن به مدیر سه دقیقه انجام گرفت و پس
از این مرحله نسبت 400/0 دانه‌های با طول کتری از سه چهارم
طول دانه کامل به شیارک ناپایین مشخص شد و برای بیان
ضایعات (میزان شکستگی) به صورت درصد محاسبه گردید
(5 و 20).
محاسبات آماری و ترکیبی عمده و ترمودردها با استفاده از
نرم‌افزارهای Excel و SAS و
بررسی ارتباط زمان و ثابت سرعت خشک‌شدن (K) با پارامترهای خشک‌کن و...

شکل 1. منحنی‌های رطوبتی در دمای‌های مختلف و سرعت جریان 0/5 سانتی‌متر بر ثانیه (اریک شتاب 14/1) 

شکل 2. منحنی‌های رطوبتی در دمای‌های مختلف و سرعت جریان 2 سانتی‌متر بر ثانیه (اریک شتاب 14/1) 

شکل 3. منحنی‌های رطوبتی در دمای‌های مختلف و سرعت جریان 0/5 سانتی‌متر بر ثانیه (اریک شتاب 10/5) 

شکل 4. منحنی‌های رطوبتی در دمای‌های مختلف و سرعت جریان 2 سانتی‌متر بر ثانیه (اریک شتاب 10/5)
جدول 1. مقایسه میانگین زمان خشکشندن، ثابت K، مقاومت خمی و ضایعات (درصد شکستگی) در تیمارهای خشکشندن

<table>
<thead>
<tr>
<th>تیمار</th>
<th>زمان (hr)</th>
<th>کسر رطوبت (MR)</th>
<th>ثابت K (1/hr)</th>
<th>مقاومت خمی (N)</th>
<th>ضایعات (شکستگی) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1b1c1</td>
<td>7/83</td>
<td>0.328</td>
<td>0.1136</td>
<td>0.1184</td>
<td>0.602</td>
</tr>
<tr>
<td>a1b1c2</td>
<td>7/83</td>
<td>0.242</td>
<td>0.1626</td>
<td>0.1054</td>
<td>0.692</td>
</tr>
<tr>
<td>a1b1c3</td>
<td>7/83</td>
<td>0.517</td>
<td>0.0999</td>
<td>0.299</td>
<td>0.923</td>
</tr>
<tr>
<td>a1b1c4</td>
<td>7/83</td>
<td>0.557</td>
<td>0.339</td>
<td>0.933</td>
<td></td>
</tr>
<tr>
<td>a1b1c5</td>
<td>7/83</td>
<td>0.579</td>
<td>0.0579</td>
<td>0.695</td>
<td></td>
</tr>
<tr>
<td>a1b2c1</td>
<td>7/83</td>
<td>0.328</td>
<td>0.1136</td>
<td>0.1184</td>
<td>0.602</td>
</tr>
<tr>
<td>a1b2c2</td>
<td>7/83</td>
<td>0.242</td>
<td>0.1626</td>
<td>0.1054</td>
<td>0.692</td>
</tr>
<tr>
<td>a1b2c3</td>
<td>7/83</td>
<td>0.517</td>
<td>0.0999</td>
<td>0.299</td>
<td>0.923</td>
</tr>
<tr>
<td>a1b2c4</td>
<td>7/83</td>
<td>0.557</td>
<td>0.339</td>
<td>0.933</td>
<td></td>
</tr>
<tr>
<td>a1b2c5</td>
<td>7/83</td>
<td>0.579</td>
<td>0.0579</td>
<td>0.695</td>
<td></td>
</tr>
<tr>
<td>a2b1c1</td>
<td>7/83</td>
<td>0.328</td>
<td>0.1136</td>
<td>0.1184</td>
<td>0.602</td>
</tr>
<tr>
<td>a2b1c2</td>
<td>7/83</td>
<td>0.242</td>
<td>0.1626</td>
<td>0.1054</td>
<td>0.692</td>
</tr>
<tr>
<td>a2b1c3</td>
<td>7/83</td>
<td>0.517</td>
<td>0.0999</td>
<td>0.299</td>
<td>0.923</td>
</tr>
<tr>
<td>a2b1c4</td>
<td>7/83</td>
<td>0.557</td>
<td>0.339</td>
<td>0.933</td>
<td></td>
</tr>
<tr>
<td>a2b1c5</td>
<td>7/83</td>
<td>0.579</td>
<td>0.0579</td>
<td>0.695</td>
<td></td>
</tr>
<tr>
<td>a2b2c1</td>
<td>7/83</td>
<td>0.328</td>
<td>0.1136</td>
<td>0.1184</td>
<td>0.602</td>
</tr>
<tr>
<td>a2b2c2</td>
<td>7/83</td>
<td>0.242</td>
<td>0.1626</td>
<td>0.1054</td>
<td>0.692</td>
</tr>
<tr>
<td>a2b2c3</td>
<td>7/83</td>
<td>0.517</td>
<td>0.0999</td>
<td>0.299</td>
<td>0.923</td>
</tr>
<tr>
<td>a2b2c4</td>
<td>7/83</td>
<td>0.557</td>
<td>0.339</td>
<td>0.933</td>
<td></td>
</tr>
<tr>
<td>a2b2c5</td>
<td>7/83</td>
<td>0.579</td>
<td>0.0579</td>
<td>0.695</td>
<td></td>
</tr>
</tbody>
</table>

مؤثر هستند. به این صورت که افزایش دما (در حالت که سایر
فاکتورها ثابت باشند) سبب کاهش رطوبت نسبی محیط و در
تیجها کاهش رطوبت معدودی (MR) محصول به کم شد و با کاهش
رطوبت معدودی کسر رطوبت افزایش می‌یابد.

پس از تجزیه و ارتباط مشخص شد که اثر تیمارها بر ثابت
شاخص مهم سیستمی کاهش رطوبت در محصول. در سطح
K (شاخص مهم سیستمی کاهش رطوبت در محصول) در مقدار
0.1 درصد افزایش دما و اعمال شده در تیمارها قرار می‌گیرد. به طوری که افزایش دما و

کاهش میزان ثابت خشکشندن محصول در همه موارد شده
است. در ارتباط با تأثیر رطوبت نسبی ذیل مثلا نشان
می‌دهد که در وضعیتی که سایر شرایط ثابت باشد کاهش آن
سطح 14٪ به 10/5٪ باعث افزایش میزان دمای محصول

شاخص دیگر کسر رطوبت (MR) است که در سطح
MCD مربوط به آن در شرایط اعمال تیمارهای مختلف موجود
است. مشاهده می‌شود که از میان 3 عامل مورد استفاده در
تیمارها، افزایش دما درجه حرارت هوا و رطوبت نسبی برا

216
بررسی ارتباط زمان و ثابت سرعت خشکشدن (K) با پارامترهای خشکش کن و...

از کاهش زیاده از حد رطوبت جل‌گیری کرد تا ناشی از مطلوبی کمتر بر کیفیت تبدیل محصول داشته باشد (6 و 7). در صورتی که رطوبت محصول از (20/5) به 14/2 کاهش پیدا کرد، درصد رطوبت نهایی می‌شود. همچنین ارتباط زمان خشکش و رطوبت و ثابت K با شاخص‌های کیفی محصول در دامنه 2/205 تا 14/2 به کاهش رطوبت نهایی به شدت ثابت می‌باشد. 0/205 تا 14/2 به کاهش رطوبت نهایی به شدت ثابت می‌باشد. به عبارتی ثابت می‌باشد.

در وضعیتی که رطوبت محصول از 20/5 به 14/2 کاهش پیدا کرد، درصد رطوبت نهایی می‌شود. همچنین ارتباط زمان خشکش و رطوبت و ثابت K با شاخص‌های کیفی محصول در دامنه 2/205 تا 14/2 به کاهش رطوبت نهایی به شدت ثابت می‌باشد. 0/205 تا 14/2 به کاهش رطوبت نهایی به شدت ثابت می‌باشد. به عبارتی ثابت می‌باشد.

یافته هم‌بستگی خشکش کن و ثابت سرعت خشکش که با مشخص شاخص‌های کیفی محصول، دارای اثر معنی‌دار می‌باشد. مقایسه میانگین‌های به دست آمده از آزمایش دو افزایش سرعت جریان دار. در تابلو با شاخص مقدار عمده ۲۰۵ به بهترین مقدار داده شد. به دلیل اینکه در زمان خشکش شدن، می‌توان به جای افزایش دما از سرعت بیشتر جریان‌ها استفاده کرد و به این که

ب) هم‌بستگی زمان و ثابت سرعت خشکش با شاخص‌های کیفی محصول

پس از تجزیه و ارائه نتایج به دست آمده از آزمایش‌ها، مشخص شد تیمارهایی که کار رنگ بر ضایعات (درصد شکستگی) و مقاومت خشکش محصول دارای اثر معنی‌دار می‌باشند. مقایسه میانگین‌های به دست آمده از آزمایش دما افزایش سرعت جریان‌ها و کاهش رطوبت نهایی محصول به کاهش مقدار عمده این دو ضایعات شده و. به ویژه به منظور صرفه‌جویی در زمان خشکش شدن، می‌توان به جای افزایش دما از سرعت بیشتر جریان‌ها استفاده کرد و به این که

217
1) ارتباط مقاومت خمشی با زمان کاهش رطوبت در دامنه رطوبتی 0/10 تا 0/70

2) ارتباط ضایعات تبدیل با زمان کاهش رطوبت در دامنه رطوبتی 0/10 تا 0/70

3) ارتباط ضایعات خمشی با ثابت K در دامنه رطوبتی 0/10 تا 0/70

4) ارتباط ضایعات تبدیل با ثابت K در دامنه رطوبتی 0/10 تا 0/70

5) ارتباط مقاومت خمشی با زمان کاهش در دامنه رطوبتی 0/10 تا 0/70

6) ارتباط ضایعات تبدیل با زمان کاهش رطوبت در دامنه رطوبتی 0/10 تا 0/70

7) ارتباط مقاومت خمشی با زمان کاهش در دامنه رطوبتی 0/10 تا 0/70

8) ارتباط ضایعات تبدیل با زمان کاهش رطوبت در دامنه رطوبتی 0/10 تا 0/70

9) ارتباط ضایعات خمشی با ثابت K در دامنه رطوبتی 0/10 تا 0/70

10) ارتباط ضایعات تبدیل با ثابت K در دامنه رطوبتی 0/10 تا 0/70
بحث

نتایج مربوط به منحنی‌های رطوبتی نشان داد که با گذشت زمان و نزدیک شدن فاصله این منحنی به انتها، از شیب هر منحنی و در نتیجه سرعت افت رطوبتی کاسته می‌شود که علت این مسائل کاهش فشار بخار در محصول و نزدیک شدن آن به فشار بخار در محیط می‌باشد (18 و 22). در ارتباط با عامل درجه حرارت، همان گونه که منحنی‌ها و نتایج نشان دادند افزایش آن سبب کاهش K و K به موجب افزایش نسبی زمان افت رطوبتی می‌شود. این مطلب را قرار داده توجه کرد که افزایش درجه حرارت هوا در فاصله که باعث کاهش رطوبت نسبی و بالا رفتن پایین فشار بخار در محصول می‌گردد. در نتیجه افزایش اختلاف فشار بخار میان محصول و محیط اطراف، سرعت انتقال جرم (رطوبتی) از دانه به محیط افزایش پیدا می‌کند (5 و 22). سرعت جریان هوا با عواملی است که به کمک آن می‌توان ضریب انتقال جرم و ضریب انتقال حرارت را توسط آن تعیین داد. بدین ترتیب که به افزایش ایون فعالی ضریب فوق افزایش می‌یابد و در نتیجه انتقال جرم از محصول به هواي اطراف آن در واحد زمان شدت می‌یابد که خود منجر به کاهش زمان خشک شدن و افزایش ثابت K می‌شود (4 و 21).}

آزمون همبستگی نشان داد که در دامنه رطوبتی مشخص

طقس فاصله این منحنی‌ها نشان داد که همبستگی مقاومت

ضریب انتقال فشار بخار در محصول و ضریب انتقال حرارت را توسط آن تعیین

بخار و کاهش مقاومت بافت آن در مقابل نیروهای خارجی

می‌شود (12). مطالعه پی و همکاران در سال 1992 تأییدی بر رابطه

معکوس میان تغییرات زمان و ضایعات ناشی از خرده‌شدند

y=12.08+384.55 K^2*lnK

r^2=0.74

y=6.96-0.40*(lnK)/K

r^2=0.61

شکل 12. ارتباط مقاومت خشک به ناپا K

در دامنه رطوبتی 20/5 تا 10/5

شکل 11. ارتباط ضایعات تبدیل با ناپا K

در دامنه رطوبتی 20/5 تا 10/5

طی فاصله خشک شدن، ضایعات ناشی از خرده‌شدند محصول به

ترتبه با ناپا K رابطه مستقیم و با زمان افت رطوبتی رابطه

معکوس دارد. به عبارتی افزایش سرعت خشک شدن و با

کاهش زمان طی دامنه رطوبتی مشخص، منجر به افزایش درصد

شکستگی می‌گردد. این کن تحقیقات مشابهی در سال 1996

انجام دادند و به نتایج مشابه رسیدند (14).

همچنین نتایج آزمایش‌ها نشان دادند که همبستگی مقاومت

خشک محصول با زمان و ثابت K به ترتیب مستقیم و منفی

می‌باشد. به عبارتی افزایش زمان و یا کاهش سرعت افت

رطوبت منجر به افزایش مقاومت خشک محصول می‌شود. در

نتیجه جهت تغییرات این دو ویژگی‌ها افزیایی خلاص کننده است

و با یکدیگر رابطه معکوس دارد.

مطالعاتی که کاظمی و جاده‌ری در سال 1977 انجام دادند

نتایج هدایت این نتایج است. آن‌ها مطالعه‌ای خود به این ترتیب

رسیدند که تجربه گذشته دفع رطوبت از دانه با سرعت انتقال

گیرند تراکم تنش و همکاران در سال 1992 تأییدی بر رابطه

 merchandise

کاهش مقاومت بافت آن در مقابل نیروهای خارجی

می‌شود (12). مطالعات پی و همکاران در سال 1992 تأییدی بر رابطه

معکوس میان تغییرات زمان و ضایعات ناشی از خرده‌شدند

K (پارامترهای خشک کن و ...) بررسی ارتباط زمان و ثابت سرعت خشک شدن

219
منابع مورد استفاده

1. آرماتین، ق. و. مرکز. 370. آمار جنگ‌های تاریخی. تأَفیش کارتر سری‌بستارها. جوان، آن. آستان قدس رضوی، مشهد.
2. پیام. 1376. بررسی و نسبت آمار جنگ‌های انتشارات اداره کل آمار و اطلاعات وزارت کشاورزی، بندرعباس، تهران.