ارزیابی زیستی رودخانه چافرود (استان گیلان) با استفاده از ساختار جمعیت مارکوبنتوز

احمد قانع، محمدرضحا احمدی، عباس اسامعی و علیرضا میرزاجانی

چکیده
پژوهش حاضر، اجتماعات کفیزیان و ساختار جمعیت آنها را در پیش‌تری از رودخانه چافرود مورد بررسی قرار داده و با توجه به عوامل

اشکال‌گذاری محیطی به طبقه‌بندی و ارزیابی ایستگاه‌های مورد بررسی پرداخته است. در مجموع 8 ایستگاه مطالعاتی در سه‌رده 9

کیلومتری رودخانه انتخاب و فون کفیزیان برگ آن بصورت ماهانه توسط دستگاه سوربر و با 3 نکر در هر ایستگاه نمونه‌برداری شد.

نمونه‌های جمع آوری شده توسط فرمول ۴% تیب و در آزمایشگاه جدای سازی، شناسایی و شمارش گردید. ۲۷ گروه از یی‌همرگان کفیزی

در این مدت شناسایی شد که در میان آنها ۳۰ حشره آبی بیشترین ت نوع و فراوانی را داشتند. افراد متعلق به در راسته و

Diptera در همه ایستگاه‌ها گزارش گردیدند. اینکه در ایستگاه دوم مدت ۲۳۳۵ ساعت از ایستگاه ۴ و حداقل Ephemeroptera از ۱۳۷۹ زمان در متوسط برای ایستگاه ۴ و ۷/۱۵ ساعت است. داده‌های مربوط به فراوانی کفیزیان برگ به صورت سنجه‌های ساختار جمعیتی

خلال شد. در ضمن Chironomidae (Community structure metrics) ساختار نوع شناس-وینر (Shannon-Winner diversity index) و شناس ایستگاه در محدودیت خانوانده-هیلزئنف (Hilsenhoff family level biotic index) کهی آب براساس شاخص زیستی هیلزئنف، با هم پیامدهای داشته و ایستگاه‌های تحت تأثیر عوامل آلاینده در یک گروه طبقی‌بندی شدند.

واژه‌های کلیدی: ارزیابی زیستی، کفیزیان برگ، رودخانه چافرود

مقدمه

محیط زیست، شیلات، کشاورزی و غیره است. در شرایط عادی

آکوسیستم‌های آبی تحت تأثیر عوامل طبیعی مانند آب، باد و

نورهای زمین‌های و با آثار مختلف جانداران (زیست جانداران،

بررسی و یگانه‌های کمی و کیفی منابع آب از ارکان اساسی

توسعه پایدار و اعمال مدیریت صحت در زمین‌های مختلف

۱. دانشجوی سابق کارشناسی ارشد شیلات، دانشگاه مهندسی شیلات و زیست‌شناسی، دانشگاه تهران

۲. دانشیار بهداشت و بهبودی‌های آبزیان، دانشگاه مهندسی شیلات و زیست‌شناسی، دانشگاه تهران

۳. دانشیار محیط زیست، دانشگاه مهندسی شیلات و زیست‌شناسی، دانشگاه تهران

۴. عضو هیئت علمی مرکز تحقیقات ماهیان استخوانی دریای خزر، بندرازیلی

۲۴۷
این متن به فارسی نوشته شده است و ممکن است در اینجا به‌طور خاص در اطلاعات علمی و جامعه‌شناسی و بخصوص در زمینه‌های گیاه‌شناسی و جانداران کاربرد داشته باشد. در ادامه مواردی از متن تهیه شده‌اند:

1. گیاهان و جانداران
2. نوع و فنون کشاورزی و منابع طبیعی
3. سال دهم و شماره اول/بهار 1385

متن شامل این موارد است:

- گیاهان و جانداران
- نوع و فنون کشاورزی و منابع طبیعی
- سال دهم و شماره اول/بهار 1385

در متن نیز به‌طور خاص اشاراتی به جنبه‌های مختلفی از این موارد ایجاد شده است.
مواد و روش‌ها

روخانه چکانی از روستای پامانه و در جوار شهر رضوانشهر، از ناحیه کوهستانی است که ارتفاع ۳۶۰۰ متری کوه‌های نانش سرچشمه گرفته و از مسیر کوه‌ستانی و پوشیده از جنگل به طول بالغ بر ۳۰ کیلومتر در قسمت جنگلی گیلان وارد قسمت غربی این می‌شود. منطقه مورد بررسی قسمتی از رودخانه در نزدیکی روستای اورمان می‌باشد که تحت تأثیر فعالیت‌های انسانی مانند آب‌پروری و نیز تخلیه پساب‌های منطقه مسکونی قرار دارد. در این بررسی فون کازیان رودخانه مورد بررسی قرار گرفته و با استفاده از آنها مناطق مختلف منبج مورد بررسی از نظر شدت آب‌گهی طبقه‌بندی و ارزیابی شده‌اند.

با نظر گرفتن شرایط منطقه و عوامل محیطی تأثیر گذار بر کیفیت آب رودخانه، یوستگاه‌های محال احتراف آب برای راه‌اندازی مراکز پرورش فول آمادگی کیلان، تا نزدیکی یوستگاه هیدرومتری رودبارسرا، انتخاب و به‌طور

شکل ۱ کروکی و محل تقریبی یوستگاه‌های مطالعاتی رودخانه چکانی

ماهانه نمونه‌برداری (۱۲ ماه از تیر ۸۱ تا لغایت خرداد ماه ۸۲) شد
(شکل ۱). نمونه‌برداری از کازیان با استفاده از دستگاه نمونه‌بردار سوربین به ابعاد ۲۰۰۰ سانتی‌متر مربع مفید ۱۶۰۰ سانتی‌متر مربع و تور ۵۵ میکرون و با ۳ تکرار در هر یوستگاه انجام شد (۱۱). نمونه‌های یوستگاه یکی از ارودی شده در ظرفی که مشخصات یوستگاه، محل و تاریخ نمونه‌برداری بر روی آنها ثبت شده بود، تخلیه و توسط فرمالین ۴% ثابت شدند.

یوستگاه‌های آزمایشگاه شامل جداسازی، شناسایی، شمارش و تعبیه فراوانی برحسب تعداد در متور هر انجام شد. برای شناسایی نمونه‌های یوستگاهی جدا شده از منابع مختلف، ۲، ۱۰، ۱۶، ۱۸، ۲۱، ۲۲ و ۳۱ استفاده شد. اطلاعاتی به دست آمده به صورت سنجش‌های جمعیت شامل غنای کل (تعداد گونه‌های شناسایی شده در هر یوستگاه)، غنای EPT (تعداد جنس‌های متعلق به سه راسته) نسبت فراوانی Trichoptera و Plecoptera و Ephemeroptera Chironomidae به فراوانی اعضای افراد متعلق به خانواده EPT

۲۴۹
شناختن نوع شنا ویژخلایه شد (8).

\[H = \sum_{i=1}^{8} (\pi_i \ln \pi_i) \]

شناختن شنا، \(s \) تعداد گونه‌ها، \(p_i \) نسبت فراوانی هر گونه به فراوانی کل همچنین شناخت زیستی سطح خانواده هیلسهوف برای استگاهای مختلف در ماه‌های متعدد محاسبه شد (13).

\[HBI = \sum_{i=1}^{n} \left(T_i \ln T_i \right) N \]

شناخت زیستی هیلسهوف، \(T \) ارزش مقاومت هر خانواده، \(N \) فراوانی کل براساس مقادیر نسبی که جمعیت به‌دست آمده و با استفاده از آزمون خوارش استگاهای مطالعاتی دست‌بندی و بر اساس شناخت زیستی به‌دست آمده نیز استگاه‌ها طبقه‌بندی گفی و ارزیابی شدند.

تاریخ
به‌طور کلی در مدت یک سال بررسی و نمودن برداری از فون کفوریان رودخانه جنوبی در منطقه مورود بررسی، 73 گونه (جنس و خانواده) شناسایی شدند که بخش عمده آنها را از حشرات آبی تشکیل می‌دادند (جدول 1). به‌طور متوسط حداکثر حداقل فراوانی کفوریان به‌ترتیب 2335 عدد در متر مربع در ایستگاه 2 و 1639 عدد در متر مربع در ایستگاه 4 بوده است (شکل 2).

از راسته دوبالان (Diptera) که یکی از منحوت‌ترین و برگیرنده‌های حشرات آبی می‌باشد، 11 خانواده Simuliidae نسبت به سایر خانواده‌های این راسته داشتند. این این خانواده‌های معنی‌دار ان 95 درصد از کل اعضاشان راسته را در استگاهای مطالعاتی تشکیل می‌دادند (شکل 3 و جدول 1).

پس از راسته دوبالان، راسته یک‌روزهوش‌ها با ژودریان...
<table>
<thead>
<tr>
<th>Order</th>
<th>Family</th>
<th>Genus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diptera</td>
<td>Chironomidae</td>
<td>Simulium</td>
</tr>
<tr>
<td></td>
<td>Simuliidae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tipulidae</td>
<td>Tipula</td>
</tr>
<tr>
<td></td>
<td>Blepharoceridae</td>
<td>Liponeura</td>
</tr>
<tr>
<td></td>
<td>Ceratopogonidae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rhagionidae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Empididae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dolichopodidae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stratiomyidae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tabanidae</td>
<td>Tabanus</td>
</tr>
<tr>
<td></td>
<td>Culicidae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ephemeropera</td>
<td>Baetis</td>
</tr>
<tr>
<td></td>
<td>Baetidae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heptageniidae</td>
<td>Ecdyonorus</td>
</tr>
<tr>
<td></td>
<td>Rhithrogena</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heptagenia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Epeorus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ephemerellidae</td>
<td>Ephemerella</td>
</tr>
<tr>
<td></td>
<td>Leptolebiasidae</td>
<td>Paraleptoides</td>
</tr>
<tr>
<td></td>
<td>Caenidae</td>
<td>Caenis</td>
</tr>
<tr>
<td></td>
<td>Brachy cercus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oligoneuridae</td>
<td>Oligonurella</td>
</tr>
<tr>
<td></td>
<td>Plecoptera</td>
<td>Perla</td>
</tr>
<tr>
<td></td>
<td>Perlidae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nemouridae</td>
<td>Nemoura</td>
</tr>
<tr>
<td></td>
<td>Leuctridae</td>
<td>Leuctra</td>
</tr>
<tr>
<td></td>
<td>Capnidae</td>
<td>Capnia</td>
</tr>
<tr>
<td></td>
<td>Taeniopterygidae</td>
<td>Taeniopetryx</td>
</tr>
<tr>
<td></td>
<td>Trichoptera</td>
<td>Hydropsyche</td>
</tr>
<tr>
<td></td>
<td>Hydropsychidae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rhyacophilidae</td>
<td>Rhyacophila</td>
</tr>
<tr>
<td></td>
<td>Brachycentridae</td>
<td>Brachycentrus</td>
</tr>
<tr>
<td></td>
<td>Pilopotamidae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leptoceridae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ecnomidae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Polycentropodida</td>
<td>Polycentropus</td>
</tr>
<tr>
<td></td>
<td>Hydroptilidae</td>
<td>Hydroptila</td>
</tr>
<tr>
<td></td>
<td>Glossosomatidae</td>
<td>Glossosoma</td>
</tr>
<tr>
<td></td>
<td>Coleoptera</td>
<td>Elmis</td>
</tr>
<tr>
<td></td>
<td>Elmidae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dytiscidae</td>
<td>Dytiscus</td>
</tr>
<tr>
<td></td>
<td>Psephenidae</td>
<td>Psephenus</td>
</tr>
<tr>
<td></td>
<td>Gyri nidae</td>
<td>Gy rinas</td>
</tr>
<tr>
<td></td>
<td>Odonata</td>
<td>Libellulidae</td>
</tr>
<tr>
<td></td>
<td>Aeshnidae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oligochaeta</td>
<td>Tubificidae</td>
</tr>
<tr>
<td></td>
<td>Lumbriculidae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hirudinea</td>
<td>Pisciculidae</td>
</tr>
<tr>
<td></td>
<td>Decapoda</td>
<td>Potamontidae</td>
</tr>
<tr>
<td></td>
<td>Nematoda</td>
<td>Potamon</td>
</tr>
<tr>
<td></td>
<td>Collembula</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arach nida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amphipoda</td>
<td>Gammaridae</td>
</tr>
<tr>
<td></td>
<td>Hemiptera</td>
<td>Gammarus</td>
</tr>
<tr>
<td></td>
<td>Neuroptera</td>
<td></td>
</tr>
</tbody>
</table>
شکل ۲. میانگین فراوانی گروه‌های مختلف کمیابان (تعداد در متراژ) در استحکام‌های مطالعاتی چاقویی در مدت پروپاس

شکل ۳. درصد فراوانی خانواده‌های متعلق به راسته دوبالان (Diptera)

شکل ۴. درصد فراوانی ۳ خانواده غالب متعلق به راسته بکروزه‌ها (Ephemeroptera)
حاصل با استفاده از ۴ تکشکی با خوش‌های قصیحی در دو تا ۰.۵ می‌دانند. در قسمت دیگری از دندروگرام طبق انتخاب ۴ و ۶ از مشابهت بیشتری برخوردار بوده و تکشکی با خوش‌های قصیحی در می‌دهند. ایستگاه‌های ۲ و ۷ نیز به همین ترتیب خوش‌های درک‌ریزی را تشکیل می‌دهند که حاوی خوشه‌های قصیحی در می‌دهند (شکل ۷).

اِطلاعات به دست‌آمده از مخابص مقدار شاخ‌یازی و کف‌های دندروگرام ایستگاه‌های مطالعاتی نشان داد که ایستگاه‌های ۳ و ۳.۵ و ۴.۸ هم‌ارداکار (سیکل فیتی نسبی بهتر) و ایستگاه ۵ (بعنی پایین‌تر از محل خروجی بسیار کاهش پرورش ماهی قزلآ)، پیشترین مقدار (گیاهی کمیت نسبی نامناسب) شاخ‌یازی می‌شود. بنابراین اطلاعات به دست‌آمده از پرسی جمعیت کف‌های دندروگرام طبق انتخاب ۴ و ۶ از مشابهت بیشتری برخوردار بوده و تکشکی با خوش‌های قصیحی در می‌دهند. ایستگاه‌های ۲ و ۷ نیز به همین ترتیب خوش‌های درک‌ریزی را تشکیل می‌دهند که حاوی خوشه‌های قصیحی در می‌دهند (شکل ۷).

با توجه به دندروگرام حاصله از این آزمون، ایستگاه‌های ۱، ۴ و ۵ و ۷ در یک خوش‌های و ایستگاه‌های ۲، ۳ و ۶ در خوش‌های جدا قرار گرفتند. این آزمون که بر پایه میزان تشکیل ایستگاه‌های مطالعاتی از نظر سنجش جمعیتی مورد بحث است، نشان می‌دهد که ابتدا استگاه ۱ و ۸ یک خوش‌های و این خوش‌های با استگاه ۵ خوش‌های بعدی را تشکیل داده و در نهایت
شکل 7. دندوگرای حاصل از تاثیر آزمون خونهای ایستگاه ها بر اساس سنجش‌های ساختار جمعیتی کفیزیان

جدول 2. سنجش‌های ساختار جمعیتی در ایستگاه‌های مورد بررسی (mean±std)

<table>
<thead>
<tr>
<th>شاخص نام</th>
<th>EPT/CHIR</th>
<th>EPT</th>
<th>غنای کل</th>
<th>ایستگاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/2/1/6</td>
<td>12/1±2/9</td>
<td>9±3</td>
<td>10/4±2/1</td>
<td>4</td>
</tr>
<tr>
<td>0/1/2/8</td>
<td>11/1±2/9</td>
<td>8±3</td>
<td>11/4±2/1</td>
<td>3</td>
</tr>
<tr>
<td>0/2/4/6</td>
<td>10/1±2/9</td>
<td>7±3</td>
<td>11/4±2/1</td>
<td>6</td>
</tr>
<tr>
<td>0/1/4/6</td>
<td>10/1±2/9</td>
<td>3±3</td>
<td>11/4±2/1</td>
<td>7</td>
</tr>
<tr>
<td>0/2/1/6</td>
<td>7/1±2/9</td>
<td>5±3</td>
<td>11/4±2/1</td>
<td>8</td>
</tr>
</tbody>
</table>

سال 1374، چنین تجربه‌های با شناسی و عدالتی در رودخانه کرگان‌ور و حمایت‌ها و افزایش در رودخانه شارود، واقع در جوار رودخانه جافورد تند به دست آورده‌اند (3 و 4). دانشمندان بسیاری که به بررسی بیولوژی‌ای به‌خاطر جابجایی متنوع‌الاند در مطالعات خود به غلیب‌خیز در ترکیب جمعیت کفیزیان اشاره نموده‌اند (8، 14 و 1375).

در بررسی‌های انجام شده، تنویعی از پی‌مرکزی که یک نظریه پر اهمیت مناسب و سلامت‌کننده تواند باشد. غلیب‌خیز راسته DIptera و مطالعات Simulidae و Chironomidae

بحث

ناپای حاصل نشان می‌دهد که حشرات آبی‌ای جمعیت غلابی جانداران کفیزی رودخانه جافورد را تشکیل داده‌اند. در مطالعات
ارزیابی زیستی رودخانه چارفرود (استان گیلان) با استفاده از ساختار جمعیت

شکل 8 میزان مقادیر شاخص نوع (H) و شاخص زیستی هیلستهوف (HBI) در استقلا های مطالاتی چارفرود

اجتماعات کفیزیان می شود (25). در این بررسی از استقلا های جمعیتی کفیزیان شامل گل و غنای وری های گروهی EPT/CHIR، EPT شدت تپیدی و بالغ ترین ایستگاه گرده و خاکی میزان تنشاب آنها از نظر ساختار جمعیت کفیزیان استفاده شد. در حال حاضر مانند سیاسی و وجود دارد که در ارزیابی زیستی آب های جاری از این سنجش ایستگاه نموده و برکارایی می دقت آنها تأکید می نماید (23، 30).

همانطور که گفته شده یکی از سنجش ها، غنای کل یعنی تعداد کل گروه های بی مرگان مقدار معیاری این سنجش است. هر سوی کفیزیون آب و زیستگاه در محل مورد بررسی بهتر باشد مقدار این سنجش افزایش می یابد. غنای کل به طور متوسط در ایستگاه 4 حداکثر و در ایستگاه 6 حداقل بوده است (جدول 2). اگرچه غنای کل یکی از شاخص های فشارهای زیست محیطی است ولی هرگاه میزان مواد آلی وارد به رودخانه شدید تبادل غنای کل در ایستگاه های منفعل نیست به ایستگاه های سر مشاه بیشتر می شود (20). این دقیقا حاصل است که ما در منطقه مورد بررسی در رودخانه چارفرود مشاهده می کنیم زیرا غنای کل در ایستگاه 1 به عنوان ایستگاه غیر منفعل است به دلیل اینکه مواد غذایی قابل دسترس و در نتیجه شکل گیری و تجمع گروه های جدید برای استقلا های متغیر تغییر می یابند. این نتایج که در این استقلا های، عامل اصلی ایجاد آشفتگی، منطقه مسکونی و تخلیه زد کن های پایه خانگی به بیکاری رودخانه است. مناطق مسکونی و پایه های حاصله یکی از عوامل مهم استرس‌زا در رودخانه‌های است، که موجب تغییر در

255
مصروف آن است.

سطحی دیگر است که بر خلاف غنای، غنای EPT نشان می‌دهد که همه گروه‌ها می‌توانند در صورت انتخاب یک گروه‌ای حساس به آنتی‌بیوتیک را در می‌گیرند. برآساس تجربه به دست آمده این‌گونه‌ها، ۵، ۶ و ۷ به ترتیب تحت تأثیر محیطی استرس‌زایی می‌شوند. میزان غنای EPT کمتری نسبت به سایر این‌گونه‌ها داشته‌اند (جدول ۲). در این سیریکه که در آن منحصر بفرد این‌گونه EPT برای بررسی تأثیر مؤثر بر پرورش ماهی قزل آل، که کیفیت بهره‌وری در این سیریکه در این سیریکه مانند کارولیسِنی را، انجام داده می‌شود. نتایج مثبت به دست آمده این‌گونه‌ها از صنعت Ephemeroptera (Ephemeroptera Trichoptera) معناور تعداد شریک‌شده نسبت به گروه‌های حساس (EPT) معنا ندارد. شرکت‌های منابع و محیط غیر آشفته‌دار، شرکت‌های فراوانی مؤثر و مناسبی از چهار Ephemeroptera (Ephemeroptera Trichoptera) معناور تعداد شریک‌شده نسبت به گروه‌های حساس (EPT) معنا ندارد. شرکت‌های منابع و محیط غیر آشفته‌دار، شرکت‌های فراوانی مؤثر و مناسبی از چهار Ephemeroptera (Ephemeroptera Trichoptera) معناور تعداد شریک‌شده نسبت به گروه‌های حساس (EPT) معنا ندارد. شرکت‌های منابع و محیط غیر آشفته‌دار، شرکت‌های فراوانی مؤثر و مناسبی از چهار Ephemeroptera (Ephemeroptera Trichoptera) معناور تعداد شریک‌شده نسبت به گروه‌های حساس (EPT) معنا ندارد. شرکت‌های منابع و محیط غیر آشفته‌دار، شرکت‌های فراوانی مؤثر و مناسبی از چهار Ephemeroptera (Ephemeroptera Trichoptera) معناور تعداد شریک‌شده نسبت به گروه‌های حساس (EPT) معنا ندارد. شرکت‌های منابع و محیط غیر آشفته‌دار، شرکت‌های فراوانی مؤثر و مناسبی از چهار Ephemeroptera (Ephemeroptera Trichoptera) معناور تعداد شریک‌شده نسبت به گروه‌های حساس (EPT) معنا ندارد. شرکت‌های منابع و محیط غیر آشفته‌دار، شرکت‌های فراوانی مؤثر و مناسبی از چهار Ephemeroptera (Ephemeroptera Trichoptera) معناور تعداد شریک‌شده نسبت به گروه‌های حساس (EPT) معنا ندارد. شرکت‌های منابع و محیط غیر آشفته‌دار، شرکت‌های فراوانی مؤثر و مناسبی از چهار Ephemeroptera (Ephemeroptera Trichoptera) معناور تعداد شریک‌شده نسبت به گروه‌های حساس (EPT) معنا ندارد. شرکت‌های منابع و محیط غیر آشفته‌دار، شرکت‌های فراوانی مؤثر و مناسبی از چهار Ephemeroptera (Ephemeroptera Trichoptera) معناور تعداد شریک‌شده نسبت به گروه‌های حساس (EPT) معنا ندارد. شرکت‌های منابع و محیط غیر آشفته‌دار، شرکت‌های فراوانی مؤثر و مناسبی از چهار Ephemeroptera (Ephemeroptera Trichoptera)
ارزیابی زیستی رودخانه چافورود (استان گیلان) با استفاده از ساختار جمعیت...

جدول ۳. مقدار ساختمان زیستی هیلتون در استگاههای مورد بررسی رودخانه چافورود و طبقه کیفیت آنها (۱۲)

<table>
<thead>
<tr>
<th>طبقه کیفیت</th>
<th>خوب غم</th>
<th>خوب غم</th>
<th>خوب غم</th>
<th>خوب غم</th>
<th>خوب غم</th>
<th>خوب غم</th>
</tr>
</thead>
<tbody>
<tr>
<td>ایسکاغ</td>
<td>0/25</td>
<td>0/56</td>
<td>0/56</td>
<td>0/22</td>
<td>0/20</td>
<td>0/15</td>
</tr>
<tr>
<td>مقدار HBI</td>
<td>4/08</td>
<td>4/15</td>
<td>4/24</td>
<td>2/00</td>
<td>2/70</td>
<td>2/54</td>
</tr>
</tbody>
</table>

سیاست‌گزاري
بدین‌وسیله از مندبریت و پرسنل مرکز تحقیقات ماهیان استخوانی دریایی خزر به‌واسطه تحقیقات و اقدامات و همکاری‌های فراوانی که در انجام این تحقیق داشته‌اند، نهایت سیاست را دارد. از تمامی همکاران بخش آکواریوم منابع آبی، آقایان صنایع و زمینه‌ای و دوست‌ها کمال تشکر را از آن‌ها می‌نماید.

منابع مورد استفاده

1. احمدی، م. م. کرمی و. ر. کاظمی. ۱۳۷۹. تعیین زیستهای آب‌زی و بی‌خوای. مجله مطالعات طبیعی ایران ۵۲ (۱): ۱۲۰-۳۷.
2. احمدی، م. م. نیمی. ۱۳۷۹. شناسایی اکثریت شناخت برای آب‌زیهای خاصی. انتشارات خیربرد، نظر.
3. جمال‌زاده، ف. ع. افراز. ۱۳۷۲. گزارش بررسی‌های زیستی و غیرزیستی رودخانه شافارود. مرکز تحقیقات شیلات گیلان.
4. شمیتی، م. و. ع. عبدالملکی. ۱۳۷۵. گزارش بررسی‌های زیستی و غیرزیستی رودخانه کرگان‌رود. مرکز تحقیقات شیلات گیلان.
5. نوان مقصودی، م. م. احمدی و. ا. کیوین. ۱۳۸۲. بررسی نوان تولید براساس تنش فراوانی در رودخانه شمیدان رود خلیج فارس.
16. Jessup, B. K. 1999. Family Level Key to the Stream Benthic invertebrates of Maryland and Surrounding Areas. Maryland Department of Natural Resources, Resources Assessment service, USA.