ارزیابی بازده تله اندوزی رسوب در سدهای خاکی کوچک
منطقه چهار محال و بختیاری

سید فرهاد موسوی، احمد محمد زاده، احمد جلالیان و حسن صمیمی برگنج

چکیده
پیک از مشکلات اساسی ذخیره و بهرهبرداری از آباهای سطحی برای مصارف شرب، کنترل سیل، پردازش و کشاورزی، مسئله رسویگانیار در مخازن سدها و سرآمدن عمر میقدرت آنهاست. عمر بسیار کم سد معاونت مرمت زمانی است که حدود 8 درصد حجم اولیه مخزن آن را رسوب پر کرده. عمر میقدرت نسبتی، تأثیری از مقدار رسوبات را درد و وزن مخصوص موارد رسوبی و آب از آن در اخلاق مخزن و سبک مخزنی داشته و با روش بهره‌برداری از آب مخزن، روش بهره‌برداری از مخزن، روش بهره‌برداری از رسوب و بهره‌برداری از سدها مفهومی مساوی به‌نام سدها دارد. هدف از این تحقیق، محاسبه بازده تله‌اندوزی رسوب در تعادل از سدهای خاکی کوچک و تعیین روابط حاکم با نواصع مولف در آن در منطقه استان چهارمحال و بختیاری برآورد است. بنابر انتظار، تعداد 14 سد خاکی کوچک در اطراف شهرکرد و بروجن، با ارتفاع کمتر از 15 متر و تعلق کمتر از یک میلیون متر مکعب انتخاب شده و مورد مطالعه قرار گرفته‌اند. این هیچگونه اندوزی‌کننده سدهای رسوب وارد به این مخازن وجود نداشت، برای برآورد مقدار رسوب وارد به سدها از مدل تجزیه‌استخراج اجتناب‌آمیز سه‌گانه مرمت‌پذیر، پیش‌پردازش‌زنجی، فرآیند سطحی و فرآیند رودخانه‌ای را در نظر گرفته‌اند. عوامل نگاته در حوزه‌های مولف در سده و مقیاس مخزن نسبی حجم-ارتفاع اولیه و ناتونه، مقدار رسوب تشکیل شده در طول کل دوران بهره‌برداری از سدها به‌دست آمد. بازده تله‌اندوزی رسوب در مخزن محسوب می‌شود. نتایج حاصل نشان می‌دهد بازده تله‌اندوزی رسوب در سدهای مورد مطالعه از 0.1 تا 0.8 درصد متفاوت است. محتوی‌های جدیدی برای پیش‌بینی تله‌اندوزی رسوب در سدهای کوچک رسم شده است.

واژه‌های کلیدی - رسویگانیار در مخازن، بازده (ترازمان) تله اندوزی، فرسایش، زمان مدل رسوب، سد پیام، محاسبه برآورد.

مقدمه

پیش از مطالعه نهایی تهیه مخازن آبی که برای ذخیره و بهره‌برداری از آب‌های سطحی به منظور تأمین مصارف شرب، پردازش از رسوبات است. اگر میزان رسوبات وارد به مخزن سد به ترتیب دانشگاه گروه آب‌و‌زایی و خاکنگاسی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان

کارشناس ارشد سازمان آب و برق خوزستان

مریم گروه آب‌و‌زایی، دانشکده کشاورزی، دانشگاه شهید بهشتی

13
در مقایسه با حجم آن زیاد باشد، عمر متغیری آن بسیار کوتاه خواهد بود. سدها و ایپی زیادی در ایران و جهان از رسوبات ابتدایی شده و عمر متغیر آنها از دست رفته است (۱۵ و ۲۷). این می‌تواند با دقت و جدی‌التصویر باشد. این می‌تواند با دقت و جدی‌التصویر باشد.

با تبدیل مراحل و جریان‌های ارگی کشاورزی، چرایی مفرط و بیش از ظرفیت مرحله، و استفاده غیر اصولی از زمین‌های فعالی‌های زراعی، پوشش گیاهی که پژوهشی مانع در مقابل فرسایش و روان‌بندی می‌باشد از پیش‌برنگی و سالانه‌های مقدار قابل توجهی رسوب از حوزه‌های آبریز، از طریق مسیلها و رودخانه‌ها اور دانی عالی می‌شود. کاهش سطح زیر کشت زمین‌های کشاورزی و انفراشات شهری سبب کاهش تولید رسوب می‌شود (۲۴ و ۳۲). عمر متغیر یک سد مدت زمانی است که حداکثر ۸۰ درصد حجم اولیه مخزن آن را از رسوب شد و یا زمانی که رسوب‌گذاری در ان ماده سختی به اهداف اولیه سد گردید (۲۷). این مدت زمان تبدیل از حجم رسوبات وارد و وزن مخصوص مواد رسوبی و پازه (رئال‌دان) تا محدود قرار گرفته است. به سبب برخی از رسوبات حساسیت به فرسایش حوزه‌ها، چنین مدل تجربی وجود دارد ماتن‌های مدل‌های ماسکریو، فل، هم‌اکنون تأثیر آن‌ها با توجه به سطح حوزه‌های آبریز (C) (1) و بازده تحقیقات در مخزن (C/W) را به دست آورده.

\[C_t = 100 \times [1 - (1 - \frac{C}{W})^{t/10}] \]

که در آن:
- \(C_t \) = پازه تله‌نندی مخزن (بر حسب درصد)
- \(C \) = نسبت طرفیت اولیه مخزن (ایلکتروت) به سطح حوزه
- \(W \) = نسبت طرفیت اولیه مخزن (آیگروت) به سطح حوزه

1- Musgrave
2- FAO
3- MUSLE
4- PSIAC
5- Dendy-Bolton
6- Fluaxman
7- Renard
ارزیابی بازده تله اندازی رسوب در سدهای خاکی کوچک منطقه ... مور و همکاران (25) اطلاعات حاصل از تحقیق گوتیکو و
برون را یک نمونه گرهادر و بی‌بست نمی‌تحصیل باعث یافت که آن
پترشگن دادن. بولند (13) نشان داد که مخلوط‌ها و چهارمالم
بازده را برای تهیه نمونه تهیه می‌کنند. در این مطالعه به
دریاچه صورت گرفته است. چهارمالم و بی‌بست بازده را براساس روش
سنگ‌نگاری که عوارض است از نسبت زمان گرهادر به سرعت متوسط
جیران در مخلوط، تعیین نموده یک مخلوط
ارائه کرد.

برون (۲۶) اطلاعات ثبت شده ۳۴ مخلوط مختلف در ایالات
متحده تجربه و تحلیل نموده و دریافت که نسبت طرفیت
مخلوط به حجم ایران و رژیم همبستگی بین نوع بازده
TELTHANADZARI وسيبی و بسیار پرداختنی است (۲۶).

تئورتری و سنگی در منطقه چهارمالم و بی‌بست می‌باشد.

۳. ذخیره آب و کنترل سیال در منطقه چهارمالم و بی‌بست
نظر سایر مناطق خشک و نیمه‌خشک ایران مهم است.

۴. هیچ‌گونه ابسته‌های هیدرولیکی و رسوب سنجی در ورودی به
سدهای بازده از سه منطقه وجوه ندارد و تخمین منطقه
روابط و رسوب از این لحاظ بسیار هیجانی است.

۵. سه مطالعاتی که می‌تواند باشد برای سایر سدهای کوچک
با مخلوط کم حجم در مناطق مختلف ایران باشد.

مواد و روش‌ها

به منظور ارزیابی بازده (راندمان) تله اندازی رسوب در
مجاون سدهای کوچک، تعداد ۱۷ سد خاکی کاره (با ارتفاع
کمتر از ۱۵ متر و حجم کمتر از حدود یک میلیون مترمکعب) به
نامهای تومانیک، چهارمالم، دروتو، دانشجو، دانشجوی، سرچشمه،
سپاسی، قطعه‌الی و کوه‌رخ، مدرک دیرینه است. چهارمالم و
بی‌بست در شمال و شمال‌شرق استان چهارمالم و
بخشی از دو بخش جیران و رودخانه کارون. در نیل جیران
بهشت‌آباد و انتخاب شد (شکل ۱). این سد استفاده برای موارد
سیال و تهیه مصنوعی آب‌های زیرزمینی احداث شده و فاقد
اسکستاگ‌های هیدرولیکی و سرویس‌سنجی می‌باشد. اقلیم عمومی
منطقه به مرطوب محصولات با زمستانهای سرد است

1- Retention time
آبخیز مورد مطالعه را به واحدهای مترولوژیک مناسب و یا
همراه از ارتفاع دیگر (به نظر و قضاوت کارشناسی) تنقیم نمود و سپس عوامل نانگان را در هریک از واحدهای
منطقه نمود. در ریزکارکاری، حاصل جمع نمرات ۹ عامل (که به
آن درجه رسوبی گفته می‌شود) پایانگیر شدت گردهای خاک و
تولید رسوب آن واحدها می‌باشد. میزان تولید رسوب سالانه از
جدول ۲ و یا فرمول (۲) قابل محاسبه است.

\[Q_s = \frac{38}{V/VC^2} \cdot \frac{2}{234 R} \]

که در آن:

- \(Q_s \) میزان تولید رسوب سالانه
- \(R \) درجه رسوب‌هایی

از آنجاکه مخزن سدهای مورد مطالعه در فصل تابستان اکثرا
خشک است، در تابستان سال ۱۳۷۳ اندام به تقشبرداری از
مخزنهای گرده و تغییرات توده‌گرایی تنوسیه (بدین حال که از
شروح بهره‌برداری از سدها) هدف می‌شود. در نتیجه، در نقاط مختلف برای افزایش سطح بیش از مخزنهای جدا
جویانه ۷۰ متر از یکدیگر توسط آگر و عملیات آن‌هاگیری شده و با توجه به قانون تنوسیه، رقیب
تشه اولیه به دست آمده. رقیب سایر نقاط مخزن با میان‌بایی
تغییر گردن و در نتیجه تقسیم اولیه تمام مخزنهای رسم‌شده. پس از
تهیه اولیه نمونه‌های شیشه‌ای مخزن و مساحتی که هر خط تراز
در برگرفته است توسط پالت‌های انجام‌گیری کرده و در نهایت
حجم اولیه و تنوسیه مخزن با استفاده از رابطه (۳) محاسبه شد:

\[V = \sum_{i=1}^{n-1} \left(\frac{A_i - A_{i+1}}{\Delta H_i} \right) \]

که در آن:

- \(V \) حجم مخزن (مترومکعب)
- \(A \) سطح مریب به خط تراز (مترومربع)

۱- Auger
جدول ۱- عوامل موثر در فرسایش خاک و تولید رسوت و نمرات مربوطه در روش MPSIAC

<table>
<thead>
<tr>
<th>شماره‌بندی</th>
<th>عوامل موثر</th>
<th>حدود نمرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>زمین‌شناسی سطحی</td>
<td>۰-۱۰</td>
</tr>
<tr>
<td>۲</td>
<td>خاک</td>
<td>۰-۱۰</td>
</tr>
<tr>
<td>۳</td>
<td>آب و هوا</td>
<td>۰-۱۰</td>
</tr>
<tr>
<td>۴</td>
<td>روتاب</td>
<td>۰-۱۰</td>
</tr>
<tr>
<td>۵</td>
<td>پستی و بلندی</td>
<td>۰-۲۰</td>
</tr>
<tr>
<td>۶</td>
<td>پوشش زمین</td>
<td>۰-۲۰</td>
</tr>
<tr>
<td>۷</td>
<td>کاربری زمین</td>
<td>۰-۲۰</td>
</tr>
<tr>
<td>۸</td>
<td>فرسایش سطحی</td>
<td>۰-۲۰</td>
</tr>
<tr>
<td>۹</td>
<td>فرسایش رودخانه‌ای</td>
<td>۰-۲۰</td>
</tr>
</tbody>
</table>

علی‌الکاظمی، شیخ هیبرولوگی
جدول 2. تیمین میزان تولید رسوب سالانه و کلاس فرسایش خاک در مدل اصلاح شده پسیاک (2.1)

<table>
<thead>
<tr>
<th>کلاس فرسایش</th>
<th>تولید رسوب سالانه (m³/km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>برخی قمی</td>
<td>1229</td>
</tr>
<tr>
<td>زیاد</td>
<td>763-1329</td>
</tr>
<tr>
<td>متوسط</td>
<td>376-376</td>
</tr>
<tr>
<td>کم</td>
<td>238-238</td>
</tr>
<tr>
<td>برخی قمی</td>
<td>95</td>
</tr>
</tbody>
</table>

تعداد سالانه پهپادی در نظر گرفته شد.

جدول 3 مشخصات کلی سدهای مورد مطالعه را نشان می‌دهد. لازم به ذکر است که سد درختی به دلیل واقع شدن در فاصله کمی از دست درازت، پس از مطالعات اولیه حذف شد.

نتایج و بیان

با استفاده از مدل پیش‌بینی مقدار رسوب و وزن سالانه و کلاس فرسایش از رابطه (2.1) و جدول 2 برای هر یک از مخازن محاسبه شد (جدول 4). چنانچه این اعداد در مساحت حوزه آبیز مربوط به ضرب شد حجم هضمی رسوبات ورودی سالانه به مخازن و به دست می‌دهد. مثال برای حوزه هرچگان:

\[
Q_s = 39/90 \text{ m}^3/\text{km}^2/y
\]

نتایج انداسه‌گیری (از طریق نقشه‌برداری) حجم رسوبات تبخیر شده در مخازن مورد مطالعه در جدول 5 ارائه شده است. با توجه به جدول 5، آگر حجم رسوبات برخی مانند قبل از رسوب (رش عمق متوسط رسوب) در دوره پهپادی بر تعداد سالانه به مخازن در حوزه از دست می‌آید (جدول 4). از تقسیم حجم رسوبات برخی مانند سالانه بر حجم رسوبات ورودی سالانه (رسوب ویژه) به دزم تئوری‌دانی روابط برای هر مخازن از رابطه (2.1) محاسبه می‌شود (جدول 4).
جدول 3 - مشخصات کلی سدهای مورد مطالعه (6 و 11)

<table>
<thead>
<tr>
<th>دکان</th>
<th>نام سد</th>
<th>بهره برداری</th>
<th>طول سریز (m)</th>
<th>ارتفاع تاج (m)</th>
<th>عمق سریز (m)</th>
<th>طول سریز دریاچه (ha)</th>
<th>حداکثر ظرفیت (m³)</th>
<th>حداکثر ظرفیت اولیه (m³)</th>
<th>تاریخ دریافت</th>
<th>مصطفی آباد</th>
<th>سبزوار</th>
<th>مشهد</th>
<th>چهارباغ</th>
<th>تبریز</th>
<th>شیراز</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1356</td>
<td>1/39</td>
<td>1/38</td>
<td>1/38</td>
<td>1/39</td>
<td>1/39</td>
<td>3156</td>
<td>22387</td>
<td>38108</td>
<td>148013</td>
<td>326076</td>
<td>110695</td>
<td>940110</td>
<td>904610</td>
<td>620076</td>
</tr>
</tbody>
</table>

* کلیه سد‌ها در مراحل سروری اضطراری و لوله‌ای آبگیر هستند.

1. ظرفیت محکم نیاز تا نرخ تراز سد.
2. ظرفیت محکم نیاز تا نرخ کف سروری.

\[
T_e = 100 \times \frac{Q_{sm}}{Q_s}
\]

که در آن:

- \(T_e \) بازده تحلیل‌های رسوپ (درصد)
- \(Q_{sm} \) حجم رسوپ‌های سالانه تعیین شده در مخزن سد (متر مکعب در کیلومتر مربع در سال)
- \(Q_s \) رسوپ ورودی محاسبه شده (متر مکعب در کیلومتر مربع در سال)
جدول ۵ - پرآورده رسویات پرچای مانده در مخازن مورد مطالعه بر اساس عملیات نشیب برداری

<table>
<thead>
<tr>
<th>حجم رسوبات در مخزن* (متر مکعب)</th>
<th>حجم رسوبات در مخزن** (متر مکعب)</th>
<th>عمق رسوب + (متر)</th>
<th>دوره بهره برداری + (سال)</th>
<th>بهره برداری مخزن</th>
<th>نام نشیب</th>
<th>سال شروع</th>
<th>نام</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۳۴۴۶</td>
<td>۲۳۴۴۶</td>
<td>۷/۹۵۵</td>
<td>۵</td>
<td>۱۳۶۶</td>
<td>هرچگان</td>
<td>۱۹۸۶</td>
<td></td>
</tr>
<tr>
<td>۱۲۴۸۳</td>
<td>۱۲۴۸۳</td>
<td>۱/۹۳</td>
<td>۵</td>
<td>۱۳۶۸</td>
<td>چهار بزار</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۵۷۶</td>
<td>۱۰۵۷۶</td>
<td>۱/۱۵</td>
<td>۵</td>
<td>۱۳۶۸</td>
<td>تومانک</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۸۹۰۹</td>
<td>۸۹۰۹</td>
<td>۱/۱۳</td>
<td>۵</td>
<td>۱۳۶۸</td>
<td>سرنگین</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۹۳۰۲</td>
<td>۹۳۰۲</td>
<td>۱/۵۱</td>
<td>۸</td>
<td>۱۳۶۵</td>
<td>مصطفی آباد</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲۵۴۸</td>
<td>۲۵۴۸</td>
<td>۲/۱۰</td>
<td>۷</td>
<td>۱۳۶۶</td>
<td>سیاسرد</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۵۰۲</td>
<td>۱۵۰۲</td>
<td>۱/۲۸</td>
<td>۶</td>
<td>۱۳۶۷</td>
<td>مرغملک</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴۴۲۲</td>
<td>۴۴۲۲</td>
<td>۱/۸۴</td>
<td>۵</td>
<td>۱۳۶۷</td>
<td>هاروئی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۹۰۳</td>
<td>۱۹۰۳</td>
<td>۱/۲۹</td>
<td>۶</td>
<td>۱۳۶۷</td>
<td>درازنو</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲۸۶۲</td>
<td>۲۸۶۲</td>
<td>۱/۱۰</td>
<td>۷</td>
<td>۱۳۶۷</td>
<td>زالیبیه</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴۸۰۲</td>
<td>۴۸۰۲</td>
<td>۱/۴۳</td>
<td>۵</td>
<td>۱۳۶۷</td>
<td>وانان</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۰۷۵</td>
<td>۱۰۰۷۵</td>
<td>۱/۶۰</td>
<td>۶</td>
<td>۱۳۶۷</td>
<td>گوربیاران</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲۸۸۸</td>
<td>۲۸۸۸</td>
<td>۱/۱۶</td>
<td>۷</td>
<td>۱۳۶۶</td>
<td>قطرقاش</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

از سال شروع بهره برداری تا ناپایان ۱۳۷۲

+ تناویت رسمی ارتقاء مخزن در کیفیت سه پرداخته اول و دوم (به دست آمده از پوشش‌های اول و دوم)

+ حجم رسوبات در دوره بهره‌برداری با توجه به روی حجم ارتقاء

* حجم رسوبات در دوره بهره‌برداری با توجه به روی عمق متوسط رسوب.
جدول ۶ - محاسبه راندمان لشاندزی مخازن براساس تابع مدل پساب و پنهان بردار مخازن

<table>
<thead>
<tr>
<th>پایده</th>
<th>طول اندازه (درصد)</th>
<th>حجم رسوبات سالانه (m³/Km² هفanoi)</th>
<th>حجم رسوبات سالانه (m³/Km² هفanoi)</th>
<th>مساحت حوضه (Km²)</th>
<th>تام مخزن</th>
<th>مخزن هرچگان</th>
<th>چهارپارا</th>
<th>نومنهک</th>
<th>سراشیز</th>
<th>مصطفی آباد</th>
<th>سیاسرود</th>
<th>داراب</th>
<th>هارونی</th>
<th>مرغملک</th>
<th>هرود</th>
<th>درازو</th>
<th>زالیونی</th>
<th>وانان</th>
<th>گهباران</th>
<th>قطارفاش</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۱/۸</td>
<td>۸۸/۹۰</td>
<td>۸۵/۵۶</td>
<td>۳۸/۹۸</td>
<td>۹/۳۲</td>
<td>۶/۰۵۲</td>
<td>۶/۰۵۲</td>
<td>۳/۱۶۵</td>
<td>۲/۷۶</td>
<td>۲/۴۴</td>
<td>۲/۱۰۲</td>
<td>۲/۸۵۰</td>
<td>۲/۸۵۰</td>
<td>۲/۸۵۰</td>
<td>۲/۸۵۰</td>
<td>۲/۸۵۰</td>
<td>۲/۸۵۰</td>
<td>۲/۸۵۰</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴۶/۲</td>
<td>۳۰۴/۶۰</td>
<td>۱۴۱/۳۳</td>
<td>۱۹/۰۸</td>
<td></td>
</tr>
<tr>
<td>۲۵/۲</td>
<td>۴۸۲/۱۰۱</td>
<td>۱۲۱/۴۲</td>
<td>۱۷/۲۲</td>
<td></td>
</tr>
<tr>
<td>۳۴/۵</td>
<td>۴۸۷/۲۰۴</td>
<td>۱۶۷/۹۷</td>
<td>۱۰/۶۰</td>
<td></td>
</tr>
<tr>
<td>۱۲/۵</td>
<td>۱۰۰/۵۳</td>
<td>۱۲۴/۸۴</td>
<td>۹/۳۲</td>
<td></td>
</tr>
<tr>
<td>۱۰/۴</td>
<td>۵۸۸/۷۷</td>
<td>۶/۰۱۵</td>
<td>۶/۰۵۲</td>
<td></td>
</tr>
<tr>
<td>۲۶/۱</td>
<td>۲۴۹/۶۳</td>
<td>۶۵/۰۷</td>
<td>۳/۸۵۲</td>
<td></td>
</tr>
<tr>
<td>۴۰/۳</td>
<td>۴۱۲/۶۸</td>
<td>۲۷۱/۰۹</td>
<td>۲/۱۶۵</td>
<td></td>
</tr>
<tr>
<td>۵۰/۹</td>
<td>۲۴۵/۷۰</td>
<td>۲۷۰/۷۰</td>
<td>۲/۷۶</td>
<td></td>
</tr>
<tr>
<td>۴۱</td>
<td>۶۹۷/۴۴</td>
<td>۲۸۵/۸۹</td>
<td>۲/۴۴</td>
<td></td>
</tr>
<tr>
<td>۶۳/۳</td>
<td>۴۴۳/۲۸</td>
<td>۲۸۰/۶۵</td>
<td>۲/۱۰۲</td>
<td></td>
</tr>
<tr>
<td>۸۸/۹</td>
<td>۱۱۳۲/۲۹</td>
<td>۷۰۵/۲۴</td>
<td>۲/۱۰۲</td>
<td></td>
</tr>
<tr>
<td>۴۰/۳</td>
<td>۴۸۵/۶۰</td>
<td>۲۰۰/۵۳</td>
<td>۲/۱۰۲</td>
<td></td>
</tr>
</tbody>
</table>

* ۱۰۰ × (رسوب ویژه) / (حجم رسوبات سالانه) × پایده طول اندازه
دریچه‌های عمقی و تخلیه رسوپ تیودو و نیز سیلاب خروجی از آنها توسعه‌یافته اضطراری غیرقابل تنظیم است و بندهای کنترلی خارج می‌شود. در نتیجه، عناصر مربوط به مخزن که بر پایه تعلیق‌ریزی رسوپ مخازن مورد مطالعه از گذشته حجم و شکل مخزن است. برای یک اثر عوامل مربوط به حوزه و مخزن بر پایه تعلیق‌ریزی رسوپ در مخزن، می‌توان مخازن کلی بزرگ را پست داد:

$$T_e = f\left(\frac{C}{I}, \frac{L}{B}\right)$$

[5]

که در آن:

- T_e: پایه تعلیق‌ریزی
- C: طرفیت مخزن
- l: روان‌های ورودی سالانه
- L: طول مخزن
- B: متوسط عرض مخزن

مراحل محسوبه نسبت پرای L/B مرکزی از مخازن مورد مطالعه در چندان‌اندازه‌ی شده است. برای تجزیه و تحلیل مخازن [5] از نمادن آماری استراتژی استفاده شد و مکانیزم‌های زیر به دست آمد:

$$T_e = 100 \sqrt{\frac{C}{I}/\frac{L}{B}/112}$$

[6]

$$T_e = 100 \left\{ 1 - \frac{1}{1 + 100(C/I)(L/B)} \right\}^{0.8487}$$

[7]

$$T_e = 100 \left\{ 1 - \frac{1}{1 + 1000(C/I)} \right\}^{0.8487}$$

[8]

1- Statgraphics
2- Adjusted coefficient of determination
جدول 7 - محاسبه ضریب شبکه مخازن سد و مورد مطالعه

<table>
<thead>
<tr>
<th>رواناب ورودی</th>
<th>جریان S_l (م³/ثانیه)</th>
<th>عمق متوسط C/LH (م)</th>
<th>طول H (م)</th>
<th>نام L (م)</th>
<th>ضریب C (م³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>سالانه 1</td>
<td>9/1028</td>
<td>59/26</td>
<td>10/35</td>
<td>668</td>
<td>هرچگان</td>
</tr>
<tr>
<td>3/3324</td>
<td>1/43</td>
<td>143/61</td>
<td>3/76</td>
<td>205</td>
<td>چهار بانار</td>
</tr>
<tr>
<td>3/7776</td>
<td>2/60</td>
<td>141/70</td>
<td>13/32</td>
<td>420</td>
<td>تومانک</td>
</tr>
<tr>
<td>1/5028</td>
<td>3/15</td>
<td>107/89</td>
<td>7/19</td>
<td>240</td>
<td>سرچشمه</td>
</tr>
<tr>
<td>3/5014</td>
<td>2/18</td>
<td>98/20</td>
<td>5/46</td>
<td>214</td>
<td>مصطفی آباد</td>
</tr>
<tr>
<td>1/4411</td>
<td>1/24</td>
<td>12/48</td>
<td>5/24</td>
<td>320</td>
<td>سیاسد</td>
</tr>
<tr>
<td>0/800</td>
<td>2/67</td>
<td>50/72</td>
<td>5/17</td>
<td>240</td>
<td>مرغ بم</td>
</tr>
<tr>
<td>0/6557</td>
<td>5/47</td>
<td>63/97</td>
<td>6/57</td>
<td>350</td>
<td>هارونی</td>
</tr>
<tr>
<td>0/5685</td>
<td>1/95</td>
<td>143/60</td>
<td>4/92</td>
<td>243</td>
<td>دراژن</td>
</tr>
<tr>
<td>0/4696</td>
<td>4/03</td>
<td>63/02</td>
<td>5/96</td>
<td>250</td>
<td>زاندی</td>
</tr>
<tr>
<td>0/2402</td>
<td>1/40</td>
<td>114/20</td>
<td>6/76</td>
<td>160</td>
<td>وانان</td>
</tr>
<tr>
<td>0/3812</td>
<td>1/70</td>
<td>143/98</td>
<td>7/67</td>
<td>230</td>
<td>گهریاران</td>
</tr>
<tr>
<td>0/3533</td>
<td>3/18</td>
<td>62/41</td>
<td>2/99</td>
<td>28108</td>
<td>قطر قاضی</td>
</tr>
</tbody>
</table>

1- ضریب اولیه مخزن یا رقم کف سر زیر
2- عمق H که نصف حجم مخزن در زیر آن واقع است (از طریق محاسبه حجم - ارتفاع)، عمق از مخزن که نصف حجم مخزن در زیر آن واقع می‌شود، به دست آمده است. عمق مخزن متوسط می‌شود.
3- سطح مقطع متوسط جریان در مخزن.
4- عرض متوسط جریان در مخزن.
5- حجم رواناب ورودی سالانه که براساس مقدار یازدهنگی در دوره بهبودیب‌دریا از سد و ضریب رواناب محاسبه شده است.
شکل ۲ - مقایسه منحنی‌های به دست آمده از معادله (۷) و منحنی پرون

شکل ۳ - مقایسه منحنی‌های به دست آمده از معادله (۸) و منحنی پرون

25
پیشنهاد می‌گردد

توجهی می‌شود که تحقیقات مشابهی در سایر سده‌ها

که در مناطقی با آب و هوای خاک و پوشش گیاهی

متفاوت در ایران انجام گیرد تا معاونه جامع تری

به دست آید.

منابع مورد استفاده

۱- اردشیری، م. ۱۳۶۸. برآورد تولید و سروب حوزه آبی از طریق ارزیابی عوامل موثر در فرسایش خاک و رسوب‌زایی،

مجموعه مقالات اولین کنفرانس هیدرولوژی ایران، ۲۷ خرداد، دانشگاه فنی، دانشگاه تهران، ص ۶۹۱ تا ۶۷۰.

۲- باقرزاده دری، م. ۱۳۴۳. بررسی مدل‌ها برآورد فرسایش و رسوب و کارد رصد‌ها و اکثریت‌ها،

در مطالعات فرسایش خاک، پایان نامه کارشناسی ارشد، دانشگاه مهندسی تهران، دانشگاه تهران،

۳- جلالی‌ناز، ل. ۱۳۶۸. مطالعات کیفی و کمی فرسایش خاک در حوزه آبی از شمالی رودخانه کارون، مجله منابع طبیعی ایران، شماره

۴۳، ص ۲۸ تا ۲۷.

۴- جلالی‌ناز، ل. ۱۳۶۸. مطالعات کیفی و کمی فرسایش خاک در حوزه آبی از شمالی رودخانه کارون، مجله منابع طبیعی ایران، شماره

۴۳، ص ۲۸ تا ۲۷.

۵- حسینی، م. ۱۳۷۸. برآورد تولید و سروب حوزه آبی از طریق فرسایش و رسوب و کارد رصد‌ها و اکثریت‌ها،

در مطالعات فرسایش خاک، پایان نامه کارشناسی ارشد، دانشگاه مهندسی تهران، دانشگاه تهران،

۶- محمدی، ج. ۱۳۷۸. ارزیابی رسوب‌زایی در مخازن سده‌ای کهارماحل و بختیاری، پایان نامه کارشناسی

ارشد، دانشگاه دانشگاه تهران، تیر ۱۳۷۸، ص۱۹۱.

۷- حسینی، م. ۱۳۶۸. مجموعه مقالات کنفرانس مهندسی و مهندسی، ۱۳۶۸، کارد و ارزیابی مدل جدید پیشین برای تهیه نقشه حوزه آبیار

لیاک (G), استفاده از نتایج محقق از دو و GIS، مجموعه مقالات کنفرانس منطقه‌ای مدیریت منابع آب، دانشگاه

ص ۱۵۱ تا ۴۲۳.

۸- فصلی، محمد. ۱۳۷۸. بررسی رسوب‌زایی در مخازن سده از دید پایان نامه کارشناسی ارشد، دانشگاه دانشگاه کشاورزی، دانشگاه شهید چمران

ارشد.

۹- دری، پ. ۱۳۷۸. طراحی سازه‌های آبی، انتشارات نوین‌زبان، تبریز، ۵۳۲ صفحه.

۱۰- حسینی، م. ۱۳۷۸. بررسی رصد‌ها و اکثریت‌ها در مخازن سده‌ای کهارماحل، پایان نامه کارشناسی ارشد، دانشگاه دانشگاه

کشاورزی، دانشگاه، ص ۱۱۸.

۱۱- موسوی، س. و. ۱۳۶۸. ارزیابی توزیع رسوب در مخازن سده‌ای کهارماحل و بختیاری،

مجله آب و فاضلاب، شماره ۳، ص ۱۳۲.

30. Roehl, J.W. 1962. Sediment source areas, delivery ratios and influencing morphological factors. IAHS,