تنوع زننده درون و بین گونه‌ای علف‌های چمن‌چند ساله با استفاده از نشانگر AFLP مولکولی

چکیده
شناسایی گونه‌های چمن‌چند ساله با اساس خصوصیات مورفولوژیک به لحاظ شیائتی‌های آنها مشکل است. از طرفی گزینش زننده‌های ویلندر بر اساس فاصله‌ی زننده مناسب برای اجرای توانایی و یک‌تاریک‌کننده کمیابی اهمیت است. بی‌دین ترتیب استفاده از روش‌های مولکولی بر عهون از از بین برده و روش‌های زننده‌ی بین و درون گونه‌ای مختلف کمی و به‌روز رواج روابط زننده‌ی ای‌اف‌ال‌پی (AFLP) است. تعداد بینج گونه چمن‌چند ساله هر روزه پنج رنگ از هر گونه انتخاب شد و با استفاده از نشانگر مولکولی AFLP مورد مطالعه قرار گرفت. با استفاده از 10 ترتیب آغازگری (AFLP)، تعداد 117 نوار حاصل شد که تمام آنها در بین ارقام صندلی‌کننده ناشان داده شد. از بين با بهترین خاصیت مورد استفاده، ترتیب آغازگری P-AAG و P-AAG گروه همان با تعداد 89 نوار، کمترین تعداد نوار و ترتیب آغازگری M-CGC و P-ACT از روش تجزیه‌ی خوشه‌ای بر اساس ضریب چاکاره، 5 گونه مورد نظر و یک‌تربیت جدا کرد. ضمن این که رقم‌های متعلق به هر گونه نیز از یک‌تربیتی همه‌ی مربوطه در هر بی‌دین گروه ای‌اف‌ال‌پی (AFLP) است. انتخاب و ترتیب نوار زیاد و میزان چندکنشی بالا در گونه‌ها و رشته‌های مختلف چمن‌چندساله این است که این روش می‌تواند به طور کارا و مؤثر در تعیین روابط زننده‌ی مهم خصوصیات بین و درون گونه‌ای چمن مورد استفاده قرار گیرد.

واژه‌های کلیدی: علف‌های چمن‌چندساله، نشانگر AFLP، ترتیب زننده، فاصله زننده

مقدمه
گیاهان چمن‌چند ساله و جنس‌های مختلف چمن‌چندساله جزو اصلی و ضروری در اغلب باه‌ها و پارک‌ها به شمار می‌روند. 1. به ترتیب دانشجویی دکتری و دانشیار بیوتکنولوژی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان 2. استادیار زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان 3. استادیار علوم زراعی، دانشکده کشاورزی، دانشگاه شهرکرد
هم چنین توانایی تشخیص ارتباط زننگی میان گیاهان چمن را در
AFLP (۲۲) و همکاران از نشانگر
بررسی تنوبل زننگی چمن دیالوگین استفاده نمودند (۲۴).
علاقه چمنی خارجی از نشانگر AFLP در بررسی تنوبل زننگی
ارقام داخلی ایران احساس می‌شود.
از آن حاکم شناسانه‌گر مکمل‌کنی و استیل هر DNA
فونتیک خشک بوده و تحت تأثیر شرایط محیطی قرار نمی‌گیرد.
تعداد زیادی از این نشانگرها را هم می‌توان برای تجربه و تحلیل
مور خود استفاده قرار داد. از طرفی ممکن است نشانگر مکمل‌کن
پیشنهاد شکلی باشد. اکنون استفاده از انتخاب به
مکم نشانگر را فراهم می‌آورد و تولید ارقام جدیدی را سرعت
می‌بخشد. تکنیک‌های بررسی با استفاده از AFLP
قابلیت اعتماد بالا برای بررسی جند شکل‌ها در شبستر
گیاه چمنی و همچنین مطالعات زننگی مورد استفاده
قرار گرفته است (۲۸) بر خلاف این تحقیق‌ها باعث شد.

۲۰

۲۰

۲۰

۲۰

۲۰

۲۰

۲۰

۲۰

۲۰

۲۰

۲۰

۲۰

۲۰

۲۰

۲۰

۲۰

۲۰

۲۰

۲۰

۲۰

۲۰

۲۰

۲۰

۲۰

۲۰

۲۰

۲۰

۲۰

۲۰

۲۰

۲۰

۲۰

۲۰

۲۰

۲۰

۲۰
جدول 1. اسامی گونه‌ها و رقم‌های مورد بررسی در این تحقیق

<table>
<thead>
<tr>
<th>گونه مورد بررسی</th>
<th>رقم‌های گونه مورد نظر</th>
</tr>
</thead>
<tbody>
<tr>
<td>Festuca rubra var. commutate Gaud.</td>
<td>CH11(Frida), CH14(James town), CH18(Lirouge), CH21(Luster), CH24(Rasengold)</td>
</tr>
<tr>
<td>Festuca arundinacea Scherb.</td>
<td>TF48(Super-short), TF49(Gazelle), TFF2, TFF70, TFSI(Salt)</td>
</tr>
<tr>
<td>Lolium prenne L.</td>
<td>PR66(Super-star), PR70(Edge), PR74(APM), PR77(Wos), PR81(Top-Hat)</td>
</tr>
<tr>
<td>Poa pratensis L.</td>
<td>KB3(Barblue), KB6(Bluebanner), KB13(Challenger), KB18(Huntsvill), KB22(Nugget)</td>
</tr>
<tr>
<td>Cynodon dactylon L.</td>
<td>CD11, CD16, CD22, CD29, CD35</td>
</tr>
</tbody>
</table>

ابدا به منظور بررسی DNA از دو آنزیم بریش Roche تهیه شده از شرکت Roche انجام شد. سپس تکنیک آدابورها به انتهای فلز الکتریک نیمه پر بارلی-پس-آکس با استفاده از آنزیم T4 لیگاز انجام شد.

تولی آدابورها به شرح زیر است:
1) Msel-1: 5'-GAC GAT GAG TCC TGA GTA A-3'
2) PstI-1: 5'-GAC TGC GTA GGT GCA-3'
3) Msel-2: 5'-TAC TCA GGA CTC AT-3'
4) PstI-2: 5'-CTT ACG CAG TCT ACG AG-3'

در مرحله تکنیک انتخابی از آگزاغراهای بدون نوکلئوتید گریز در همان PCR مورد بررسی شد.

Msel و PstI به صورت 5'-GAC TGC GTA GGT GCA-3' و 5'-CTT ACG CAG TCT ACG AG-3' به صورت M000 و Schnaferfesteg M000 به صورت M000 و Schnaferfesteg M000 به صورت مورد بررسی شد.

در مرحله بارلی-پس-آکس به بیش از 50 رنگ آمیزی زل به روش تینرال تقسیم 40 انجام گرفت و از الگوی نواری به استفاده عکس برداری شد. الکترورفتور با S2 مدل Biometra (Sequencing gel) استفاده گردید.

عملکرد، توجه و عدم وجود نوار با اعداد بیک و صفر برای رقم‌های مورد بررسی، کدگذاری شد. سپس ماتریس تشکیل شده و تجزیه و تحلیل داده‌ها با استفاده از نرم‌افزار NT SYS-pc Ver 20.02 انجام گرفت.

نتایج و بحث

در این پژوهش با استفاده از 10 تکنیک آگزاغرهای در مجموع تعداد 1170 تئور (محدوده 0 تا 1000 جفت) حاصل شد که تمام آنها در بین این گونه‌ها چندشکلی نشان دادند.
جدول ۲ اسامی آغازگرهای انتخابی مورد استفاده و تعداد نوارهای حاصل شده از این آغازگرهای به تفکیک گونه‌ها

<table>
<thead>
<tr>
<th>اسم گونه‌ها</th>
<th>تعداد کل نوار</th>
<th>تعداد نوار یک شکل در هر گونه</th>
<th>تعداد نوار چند شکل در هر گونه</th>
<th>تعداد کل نوار چند شکل در هر گونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poa pratensis L.</td>
<td>۸۰/۹۵</td>
<td>۸</td>
<td>۴۴</td>
<td>۴۷</td>
</tr>
<tr>
<td>Lolium prenne L.</td>
<td>۸۲/۷۵</td>
<td>۵</td>
<td>۲۴</td>
<td>۲۹</td>
</tr>
<tr>
<td>Festuca rubra</td>
<td>۸۲/۷۵</td>
<td>۶</td>
<td>۲۳</td>
<td>۲۹</td>
</tr>
<tr>
<td>Festuca arundinacea</td>
<td>۶۴/۵۱</td>
<td>۱۱</td>
<td>۲۰</td>
<td>۳۱</td>
</tr>
<tr>
<td>Cynodon dactylon L.</td>
<td>۵۹/۰۹</td>
<td>۹</td>
<td>۲۲</td>
<td>۲۷</td>
</tr>
<tr>
<td>Poa pratensis L.</td>
<td>۶۳/۴۹</td>
<td>۴۳</td>
<td>۵۲</td>
<td>۱۱۵</td>
</tr>
<tr>
<td>Lolium prenne L.</td>
<td>۷۱/۸۹</td>
<td>۱۱</td>
<td>۷۸</td>
<td>۹۹</td>
</tr>
<tr>
<td>Festuca rubra</td>
<td>۸۵/۴۳</td>
<td>۹</td>
<td>۵۵</td>
<td>۶۴</td>
</tr>
<tr>
<td>Festuca arundinacea</td>
<td>۶۰/۴۱</td>
<td>۱۹</td>
<td>۴۷</td>
<td>۶۶</td>
</tr>
<tr>
<td>Cynodon dactylon L.</td>
<td>۴۸/۷۱</td>
<td>۲۰</td>
<td>۲۹</td>
<td>۵۹</td>
</tr>
<tr>
<td>Poa pratensis L.</td>
<td>۳۱/۰۸</td>
<td>۵۱</td>
<td>۷۴</td>
<td>۱۲۵</td>
</tr>
<tr>
<td>Lolium prenne L.</td>
<td>۶۵/۸۷</td>
<td>۴۳</td>
<td>۶۴</td>
<td>۱۰۷</td>
</tr>
<tr>
<td>Festuca rubra</td>
<td>۱۱۹</td>
<td>۱۱۹</td>
<td>۱۱۹</td>
<td>۱۱۹</td>
</tr>
<tr>
<td>Festuca arundinacea</td>
<td>۳۱</td>
<td>۳۱</td>
<td>۳۱</td>
<td>۳۱</td>
</tr>
<tr>
<td>Cynodon dactylon L.</td>
<td>۸۱</td>
<td>۸۱</td>
<td>۸۱</td>
<td>۸۱</td>
</tr>
<tr>
<td>Poa pratensis L.</td>
<td>۵۴/۸۴</td>
<td>۲۸</td>
<td>۶۲</td>
<td>۹۰</td>
</tr>
<tr>
<td>Lolium prenne L.</td>
<td>۷۱/۳۳</td>
<td>۱۶</td>
<td>۵۵</td>
<td>۷۷</td>
</tr>
<tr>
<td>Festuca rubra</td>
<td>۸۵/۷۱</td>
<td>۱۳</td>
<td>۷۸</td>
<td>۹۱</td>
</tr>
<tr>
<td>Festuca arundinacea</td>
<td>۱۸</td>
<td>۱۸</td>
<td>۱۸</td>
<td>۱۸</td>
</tr>
<tr>
<td>Cynodon dactylon L.</td>
<td>۴۳</td>
<td>۴۳</td>
<td>۴۳</td>
<td>۴۳</td>
</tr>
<tr>
<td>Poa pratensis L.</td>
<td>۵۹/۶۲</td>
<td>۳۱</td>
<td>۵۲</td>
<td>۸۳</td>
</tr>
<tr>
<td>Lolium prenne L.</td>
<td>۸۳/۱</td>
<td>۳۱</td>
<td>۵۲</td>
<td>۸۴</td>
</tr>
<tr>
<td>Festuca rubra</td>
<td>۶۰/۷۱</td>
<td>۱۸</td>
<td>۵۷</td>
<td>۷۵</td>
</tr>
<tr>
<td>Festuca arundinacea</td>
<td>۲۱</td>
<td>۲۱</td>
<td>۲۱</td>
<td>۲۱</td>
</tr>
<tr>
<td>Cynodon dactylon L.</td>
<td>۸۳/۵۳</td>
<td>۲۲</td>
<td>۴۴</td>
<td>۶۶</td>
</tr>
<tr>
<td>Poa pratensis L.</td>
<td>۵۵/۱۲</td>
<td>۱۵</td>
<td>۲۸</td>
<td>۴۳</td>
</tr>
</tbody>
</table>
در زمینی نوع درون و بین گونه‌های علف‌های چندساله با استفاده از

<table>
<thead>
<tr>
<th>ادامه جدول ۲</th>
<th>تعداد کل نوار</th>
<th>تعداد نوار یک چندشکل</th>
<th>تعداد نوار یک هر کونه</th>
<th>نوار در هر کونه</th>
<th>اسامی گونه‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-ACA M-CCC</td>
<td>۱۰۲</td>
<td>۷۵/۶۰</td>
<td>۱۱</td>
<td>۲۸</td>
<td>Poa pratensis L.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۷۳/۸۱</td>
<td>۱۱</td>
<td>۲۲</td>
<td>Lolium prenne L.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۹۲/۱۱</td>
<td>۳</td>
<td>۲۸</td>
<td>Festuca rubra</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۵۲/۲۷</td>
<td>۲۱</td>
<td>۴۴</td>
<td>Festuca arundinacea</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۷۵</td>
<td>۹</td>
<td>۳۷</td>
<td>Cynodon dactylon L.</td>
</tr>
<tr>
<td>P-ACG M-CCT</td>
<td>۸۷</td>
<td>۷۳/۱۰</td>
<td>۱۴</td>
<td>۵۸</td>
<td>Poa pratensis L.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۸۲/۳۱</td>
<td>۸</td>
<td>۴۶</td>
<td>Lolium prenne L.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۷۶/۱۱</td>
<td>۹</td>
<td>۳۹</td>
<td>Festuca rubra</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۴۴/۸۳</td>
<td>۱۷</td>
<td>۲۹</td>
<td>Festuca arundinacea</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۷۰</td>
<td>۹</td>
<td>۳۰</td>
<td>Cynodon dactylon L.</td>
</tr>
<tr>
<td>P-AGC M-CAC</td>
<td>۱۴۴</td>
<td>۸۸/۳۱</td>
<td>۸</td>
<td>۵۱</td>
<td>Poa pratensis L.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۸۲/۶۸</td>
<td>۱۲</td>
<td>۷۰</td>
<td>Lolium prenne L.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۷۶/۳۵</td>
<td>۱۵</td>
<td>۷۸</td>
<td>Festuca rubra</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۶۷/۳۹</td>
<td>۲۰</td>
<td>۹۲</td>
<td>Festuca arundinacea</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۴۴/۹۹</td>
<td>۳۴</td>
<td>۶۰</td>
<td>Cynodon dactylon L.</td>
</tr>
<tr>
<td>P-ACC M-CAA</td>
<td>۱۱۹</td>
<td>۷۵/۲۴</td>
<td>۲۵</td>
<td>۶۸</td>
<td>Poa pratensis L.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۷۶/۲۴</td>
<td>۱۳</td>
<td>۶۴</td>
<td>Lolium prenne L.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۷۶/۴۵</td>
<td>۱۹</td>
<td>۷۶</td>
<td>Festuca rubra</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۲۴</td>
<td>۲۲</td>
<td>۵۰</td>
<td>Festuca arundinacea</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۴۱/۴۰</td>
<td>۱۹</td>
<td>۴۶</td>
<td>Cynodon dactylon L.</td>
</tr>
<tr>
<td>P-AAG M-CAG</td>
<td>۱۶۶</td>
<td>۵۸/۹۷</td>
<td>۱۶</td>
<td>۳۹</td>
<td>Poa pratensis L.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۷۶/۴۳</td>
<td>۱۱</td>
<td>۵۱</td>
<td>Lolium prenne L.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۷۲/۸۱</td>
<td>۳۱</td>
<td>۱۱۴</td>
<td>Festuca rubra</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۷۵/۹۱</td>
<td>۱۰</td>
<td>۴۱</td>
<td>Festuca arundinacea</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۱/۷۰</td>
<td>۳۶</td>
<td>۹۴</td>
<td>Cynodon dactylon L.</td>
</tr>
</tbody>
</table>
پرندگان روز - روی همکاران قادر به تامارالا با در شناگر، AFLP و RAPD، همچنین نمونی‌ای آن را در نشان دادن ارتباط زنده‌ای بین گونه‌های چمن نشان داد. نتایج تجزیه و تحلیل آنها نشان می‌دهد که درنیازمندیهای مختلف چمن را مشخص نمود

(۱۷)

UPGMA

ضریب کوئینکی برای تجزیه خوشه‌ی به روش

سه ضریب تشای طاقب ساده (SM) چکاردار و دایس، نشان داد که گروه‌بندی بر اساس ضریب چکاردار با ضریب کوئینکی، ۰/۵ بهترین روش گروه‌بندی از من روش‌های فوق است. در گروه‌بندی حاصل، پیشنهاد نشان دهنده از این روش‌ها برای اولین‌بار با UPGMA

اندازه‌گیری شدن نیاز مفاهم. آنها از طرفی ماده اولیه، زننگی آنها از

کل و افعال را توجه کنند و بایگان این اقدام که نشانگری که اصلی از دارد که هم که نشانگری

AFLP

افزوده کنند. از طرفی کاسح اطلاعات به در داده‌های اصلی توانست تنها رقیه‌ای باعث تجربه خوشه‌ای از هم

جا کن (۳).

در گریختن نیز دست آمده از این تحقیق، ۵ گونه مورد مطالعه در فاصله زننگی ۲۵ درصد به طور کامل از یکدیگر جدا شده و در ۵ گروه مختلف قرار گرفته‌اند. با توجه به نتایج زننگی در این انسانی نیست. در طول مطالعات که تست دویل‌بند و همکاران،

کوئینکی و همکاران می‌دانند - همچنین مطالعه‌ای دیگر را در نشان داده‌اند. نتایج تجزیه و تحلیل آنها نشان می‌دهد که درنیازمندیهای مختلف چمن را مشخص نمود

UPGMA

ضریب کوئینکی برای تجزیه خوشه‌ی به روش

سه ضریب تشای طاقب ساده (SM) چکاردار و دایس، نشان داد که گروه‌بندی بر اساس ضریب چکاردار با ضریب کوئینکی، ۰/۵ بهترین روش گروه‌بندی از من روش‌های فوق است. در گروه‌بندی حاصل، پیشنهاد نشان دهنده از این روش‌ها برای اولین‌بار با UPGMA

اندازه‌گیری شدن نیاز مفاهم. آنها از طرفی ماده اولیه، زننگی آنها از

کل و افعال را توجه کنند و بایگان این اقدام که نشانگری که اصلی از دارد که هم که نشانگری

AFLP

افزوده کنند. از طرفی کاسح اطلاعات به در داده‌های اصلی توانست تنها رقیه‌ای باعث تجربه خوشه‌ای از هم

جا کن (۳).

در گریختن نیز دست آمده از این تحقیق، ۵ گونه مورد مطالعه در فاصله زننگی ۲۵ درصد به طور کامل از یکدیگر جدا شده و در ۵ گروه مختلف قرار گرفته‌اند. با توجه به نتایج زننگی در این انسانی نیست. در طول مطالعات که تست دویل‌بند و همکاران،

کوئینکی و همکاران می‌دانند - همچنین مطالعه‌ای دیگر را در نشان داده‌اند. نتایج تجزیه و تحلیل آنها نشان می‌دهد که درنیازمندیهای مختلف چمن را مشخص نمود

UPGMA

ضریب کوئینکی برای تجزیه خوشه‌ی به روش

سه ضریب تشای طاقب ساده (SM) چکاردار و دایس، نشان داد که گروه‌بندی بر اساس ضریب چکاردار با ضریب کوئینکی، ۰/۵ بهترین روش گروه‌بندی از من روش‌های فوق است. در گروه‌بندی حاصل، پیشنهاد نشان دهنده از این روش‌ها برای اولین‌بار با UPGMA

اندازه‌گیری شدن نیاز مفاهم. آنها از طرفی ماده اولیه، زننگی آنها از

کل و افعال را توجه کنند و بایگان این اقدام که نشانگری که اصلی از دارد که هم که نشانگری

AFLP

افزوده کنند. از طرفی کاسح اطلاعات به در داده‌های اصلی توانست تنها رقیه‌ای باعث تجربه خوشه‌ای از هم

جا کن (۳).

در گریختن نیز دست آمده از این تحقیق، ۵ گونه مورد مطالعه در فاصله زننگی ۲۵ درصد به طور کامل از یکدیگر جدا شده و در ۵ گروه مختلف قرار گرفته‌اند. با توجه به نتایج زننگی در این انسانی نیست. در طول مطالعات که تست دویل‌بند و همکاران،

کوئینکی و همکاران می‌دانند - همچنین مطالعه‌ای دیگر را در نشان داده‌اند. نتایج تجزیه و تحلیل آنها نشان می‌دهد که درنیازمندیهای مختلف چمن را مشخص نمود

UPGMA

ضریب کوئینکی برای تجزیه خوشه‌ی به روش

سه ضریب تشای طاقب ساده (SM) چکاردار و دایس، نشان داد که گروه‌بندی بر اساس ضریب چکاردار با ضریب کوئینکی
شکل ۱. انگوری نوازی حاصل از ترکیب آغازگری M-CCG و P-AAT در بین ۲۵ رقم مورد بررسی با استفاده از نشانگر AFLP

M=Marker 50bp
1,2,3,4,5= KB3, KB6, KB13, KB18, KB22= Poa pratensis L.
6,7,8,9,10= PR66, PR70, PR74, PR77, PR81= Lolium prenne L.
11,12,13,14,15= CH11, CH14, CH18, CH21, CH24= Festuca rubra var. Commutata
16,17,18,19,20= TF48, TF49, TFF2, TFF70, TFS1= Festuca arundinacea Scherb.
21,22,23,24,25= CD11, CD16, CD22, CD29, CD35= Cynodon dactylon L.
شکل ۲. گروه‌بندی ۲۵ رقم مختلف چمن متعلق به پنج گونه مختلف با استفاده از ضریب نشانه‌گر و بر اساس نشانگر AFLP.

CH11, CH14, CH18, CH21, CH24 = Festuca rubra var. Commutata
TF48, TF49, TFF2, TFF70, TFS1 = Festuca arundinacea Scherb.
PR66, PR70, PR74, PR77, PR81 = Lolium prente L.
KB3, KB6, KB13, KB18, KB22 = Poa pratensis L.
CD11, CD16, CD22, CD29, CD35 = Cynodon dactylon L.

AFLP

شکل ۳. تجزیه به موقعه‌های اصلی (PCA) بر اساس فراوانی داده‌های نشانگر AFLP.

سیاوا مولکولی جمعاً ۳۵ درصد کل تنوین در سطح مولکولی را توجیه نمودند.
می‌شود، بنابراین بررسی ت نوع درون گونه‌های چمن نیز با استفاده از نشانگرهای ملکولی امکان پذیر است. در پژوهش حاضر با استفاده از AFLP علامه بر جداسازی گونه‌های مختلف در برنامه وی‌دره نیز پیش رم مورد تحلیل ذکر شده و این موضوع پیشگیری ت نوع درون گونه‌ها می‌باشد. اما در این میزان پیش آن نتایج ت نوع می‌باشد.

برخورد انجام گرفته با استفاده از Cynodon dactylon L. رقم موجود در گونه‌ها بر اساس نتایج ت نوع کمتری از Cynodon dactylon L. و رقیبی که به همین سطح و نتیجه‌گیری وجود دارد به همین دلیل در پی‌ور برگ از کمترین ت%^{28} مورد احتمالی پذیرش می‌باشد.

با توجه به نتایج به دست آمده می‌توان گفتن نیز در گونه‌های Lolium prenne Scherb. استفاده کننده مایع‌پرور از Cynodon dactylon L. و Lolium prenne Scherb. در علاوه بر آنها که به عدد طبیعی هم اتفاق می‌افتد استفاده می‌نماید.

در این پژوهش برای Lolium prenne Scherb. و Cynodon dactylon L. انتخاب شده بود. در هیچ بین Lolium prenne Scherb. چمن گرمسیری و با رنگ‌های گونه‌های Lolium prenne Scherb. استخوان و برداشت تک‌برگی می‌شود و چهره گونه‌های Cynodon dactylon L. سردسیری است که به طور طبیعی به طرف به تک‌برگی. می‌پایند و به‌همین دلیل ت نوع درون گونه‌ها نسبت به گونه‌های چمن گربه باشد.

با توجه به نتایج به دست آمده می‌توان گفتن نیز در گونه‌های Lolium prenne Scherb. استفاده کننده مایع‌پرور از Cynodon dactylon L. و Lolium prenne Scherb. در علاوه بر آنها که به عدد طبیعی هم اتفاق می‌افتد استفاده می‌نماید.

در این پژوهش برای Lolium prenne Scherb. و Cynodon dactylon L. انتخاب شده بود. در هیچ بین Lolium prenne Scherb. چمن گرمسیری و با رنگ‌های گونه‌های Lolium prenne Scherb. استخوان و برداشت تک‌برگی می‌شود و چهره گونه‌های Cynodon dactylon L. سردسیری است که به طور طبیعی به طرف به تک‌برگی. می‌پایند و به‌همین دلیل ت نوع درون گونه‌ها نسبت به گونه‌های چمن گربه باشد.
منابع مورد استفاده

1. زمان خانپور، ف. 1372. چمن سازمان پارک‌ها و پوسته سبز شهر تهران. ص. 90 در اصلاح نیازمندیها، مقالات کلیدی چهارمین کنگره علوم زراعت و اصلاح نیازمندیها، ایران، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان.

2. کرکان، م. ف. تالاری و ن. نیازی. 1372. یافته‌های جدید از سازمان پارک‌ها و پوسته سبز شهر تهران.


