تنوع زننده‌ی درون و بین گونه‌ای علف‌های چمنی چند ساله با استفاده از نشانگر AFLP مولکولی

مجد طالبی، پدافند از ایرانی می‌ثابتی، خورشید رزمجوار، پهروز شیران

چکیده
شناسایی گونه‌های چمنی بر اساس خصوصیات مرفولوژیک به لحاظ شیوه‌های آنها مشکل است. از طریق گزینش زننده‌ی والدی بر اساس قابلیت زننده‌ی مناسب برای اجرای تلاش‌ها و بروز ضایعات جنبه‌ای همیشه است. بدین ترتیب استفاده از روش‌های ملکولی به عنوان ابزاری کارا در ارزیابی و شناسایی زننده‌ی والدی‌های مورد توجه قرار گرفته است. هدف از این پژوهش بررسی تنوع زننده‌ی والدی درون گونه‌های AFLP بوده است. تعداد پنج گونه چمن به هر سه پنج رقم از هر گونه مختلف زننده و برآورد روابط زننده‌ی آنها با استفاده از نشانگر AFLP انتخاب شد و با استفاده از نشانگر ملکولی مورد مطالعه قرار گرفت. با استفاده از 10 ترکیب آغازگری، تعداد 117 نوار حاصل شد که تمام آنها در بین ارقام چندشکلی نشان داده شد. از بین آغازگرهای مورد استفاده، ترکیب آغازگری P-AAG M-CAG و P-AAG P-ACT به ترتیب تعداد نوار مورد استفاده 21 و 20 نوار در گروه M-CG به ترتیب 81 نوار کمترین تعداد نوار را تولید کردند. گروه‌های زننده‌ی پیشترین تعداد نوار و ترکیب آغازگری AFLP M-CG و P-ACT با 81 نوار کمترین تعداد نوار را برای تولید کردند. از روش تجزیه خوشه‌ای بر اساس ضریب جاکارد، 5 گونه مورد نظر را از یکدیگر جدا کرد. ضمن این که رقم‌های متعلق به هر گونه نیز از یکدیگر تمایل به یکدیگر نم نشان داد. برای این شناسایی در مورد یک گونه، لازم است که این شناسایی در مورد جمله‌های مختلف چمن پیش آن است که این شناسایی در مورد جمله‌های مختلف بین و درون گونه‌های مورد استفاده قرار گیرد.

واژه‌های کلیدی: علف‌های چمنی چندساله، نشانگر AFLP، تنوع زننده‌ی فاصله‌ای زننده‌ی AFLP

مقدمه
گیاهان چمنی متعلق به گونه‌ها و جنس‌های مختلف به عنوان جزء اصلی و ضروری در اغلب باغ‌ها و پارک‌ها به شمار می‌رود

1. به ترتیب دانشجوی دکتری و دانشیار پویان‌پژوهی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
2. استادیار زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
3. استادیار علوم زراعی، دانشکده کشاورزی، دانشگاه شیرکرد
همچنین توانایی تشخیص ارتباط زننبقی میان گیاهان چمن در AFLP (9، 17) سونوی و همکاران از نشان‌گر بررسی خلقت زننبقی چمن دیالود استفاده نمودند (22). علیرغم استفاده از نشان‌گر AFLP در بررسی خلاصه ارقام علیف‌های چمن خارجی، استفاده از این تکنیک در بررسی ارقام داخلی اریار احساس می‌شود.

از آنجا که نشان‌گر مولکولی وایته به نظر می‌رسد نشان‌گر مولکولی مبتنی بر PCR (Polymerase Chain Reaction) سنگین‌سازی چندشکل‌های دنا و بررسی ارقام زننبقی است (2، 11، 12، 20 و 26) که از روش‌های مبتنی بر واکنش ABLF بیشتر استفاده می‌شود. شامل زنجره‌های پلمرایز می‌باشد که توسط وس و همکاران معرفی شد. این روش نسبت به سایر روش‌های موجود مرتبه‌های دارد (25).

از نشان‌گر مولکولی مبتنی بر PCR (Polymerase Chain Reaction) برای تعیین نوع زننبقی در تعدادی از گونه‌های گیاهان شامل گیاهان علف‌های جنی و علف‌های چمنی به طور موفقی استفاده شده است (10، 13، 15، 16، 21 و 27). چارچوب و همکاران برای نویسندگی فیزیکی و ترکیبی برای تولید دنای نشان‌گر AFLP استفاده نمودند (5). دوپن و همکاران در مطالعه نوع زننبقی درون و بین گونه‌های چمن با استفاده از تکنیک ABLF نتیجه‌گیری کردند که این روش می‌تواند برای مطالعه زننبق و طبقه بندی گونه‌های چمن به کار رود (11). گیلیان و همکاران برای مطالعه نوع زننبقی 12 گروه چمن دانسته استفاده کردند و اظهار داشتند که این نشان‌گر توان بیشتری را به توجه به دقت بالای مورد نیاز تأمین می‌نماید (8). ولدمن - روزی و همکاران یک ترکیبی و همکاران کاردیک در نشان‌گر ABLF برای تعیین نوع زننبقی درون گیاهان چمن با درجه مقاومت از جویشان، مورد ارزیابی قرار داده و مشخص نمودند که این نشان‌گر، قادر به تیمار بالا و
جدول 1. اسامی گونه‌ها و رقم‌های مورد بررسی در این تحقیق

<table>
<thead>
<tr>
<th>گونه مورد بررسی</th>
<th>رقم‌های گونه مورد نظر</th>
</tr>
</thead>
<tbody>
<tr>
<td>Festuca rubra var. commutate Gaud.</td>
<td>CH11(Frida), CH14(James town), CH18(Lirouge), CH21(Luster), CH24(Rasengold)</td>
</tr>
<tr>
<td>Festuca arundinacea Scherb.</td>
<td>TF48(Super-short), TF49(Gazelle), TFF2, TFF70, TFS(Salt)</td>
</tr>
<tr>
<td>Lolium prenne L.</td>
<td>PR66(Super-star), PR70(Edge), PR74(APM), PR77(Wos), PR81(Top-Hat)</td>
</tr>
<tr>
<td>Poa pratensis L.</td>
<td>KB3(Barblue), KB6(Bluebanner), KB13(Challenger), KB18(Huntsvill), KB22(Nugget)</td>
</tr>
<tr>
<td>Cynodon dactylon L.</td>
<td>CD11, CD16, CD22, CD29, CD35</td>
</tr>
</tbody>
</table>

ابدا به منظور برش DNA از دو آنزیم PsI و PstI تهیه شده از شرکت Roche آدامگرها با اندازه‌بندی برش پایه و با استفاده از آنزیم T4 لیگاند انجام شد. توالی آدامگرهای PsI و مسه به شرح زیر است:

1) MseI-1: 5'-GAC GAG TCC TGA GTA A-3'
2) PsI-1: 5'-GAC GAT GAG TCC TGA GTA A-3'
3) MseI-2: 5'-TAC TCA GGA CTC AT-3'
4) PsI-2: 5'-CCT ACG CAG TCT AGC GTG A-3'

تductor از مولکول‌های حساس برای استفاده در PCR نیز از دستگاه ترموسیکتور مدل P000 به صورت 3'-GAC TGC GTA GTT GCA G-5' و 5'-GAT GAG TCC TGA GTA A-3' استفاده شده است. واکنش در PCR از بهبود M000 به صورت استفاده گردید. برای کاهش دمای سانتی‌گراد 30 تا 25 درجه سانتی‌گراد و 25 درجه سانتی‌گراد در یک دقیقه انجام گرفت.

در محله میکروکورنی در حال مرحله تکیه پیش از انتخاب به بهبود رفته و در واکنش تکیه انتخابی استفاده شد. واکنش دمای دقیقه در دمای 45 درجه سانتی‌گراد برای اواخر دو تا 24 سانتی‌گراد در دمای 45 درجه سانتی‌گراد 30 تا 25 درجه سانتی‌گراد در یک دقیقه که در 15 برخه اولیه، دمای انتخابی آدامگر به میزان 70 درجه سانتی‌گراد در هر برخه کاهش یافت و در 33 برخه باقی مانده در دمای 55
جدول 2: اسامی آگازگرهای انتخابی مورد استفاده و تعداد نوارهای حاصل شده از این آگازگرهای به تفکیک گونه‌ها

<table>
<thead>
<tr>
<th>اسم گونه‌ها</th>
<th>تعداد کل نوار</th>
<th>تعداد نوار یک شکل در گونه</th>
<th>تعداد نوار چند شکل در گونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poa pratensis L.</td>
<td>80/95</td>
<td>8</td>
<td>42</td>
</tr>
<tr>
<td>Lolium prenne L.</td>
<td>82/75</td>
<td>5</td>
<td>49</td>
</tr>
<tr>
<td>Festuca rubra</td>
<td>87/75</td>
<td>6</td>
<td>49</td>
</tr>
<tr>
<td>Festuca arundinacea</td>
<td>64/51</td>
<td>11</td>
<td>31</td>
</tr>
<tr>
<td>Cynodon dactylon L.</td>
<td>59/09</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td>Poa pratensis L.</td>
<td>63/59</td>
<td>23</td>
<td>63</td>
</tr>
<tr>
<td>Lolium prenne L.</td>
<td>61/79</td>
<td>11</td>
<td>39</td>
</tr>
<tr>
<td>Festuca rubra</td>
<td>85/43</td>
<td>85</td>
<td>64</td>
</tr>
<tr>
<td>Festuca arundinacea</td>
<td>60/41</td>
<td>19</td>
<td>58</td>
</tr>
<tr>
<td>Cynodon dactylon L.</td>
<td>28/71</td>
<td>19</td>
<td>39</td>
</tr>
<tr>
<td>Poa pratensis L.</td>
<td>31/08</td>
<td>23</td>
<td>74</td>
</tr>
<tr>
<td>Lolium prenne L.</td>
<td>65/88</td>
<td>33</td>
<td>97</td>
</tr>
<tr>
<td>Festuca rubra</td>
<td>81/23</td>
<td>34</td>
<td>119</td>
</tr>
<tr>
<td>Festuca arundinacea</td>
<td>42/46</td>
<td>32</td>
<td>73</td>
</tr>
<tr>
<td>Cynodon dactylon L.</td>
<td>40/74</td>
<td>33</td>
<td>81</td>
</tr>
<tr>
<td>Poa pratensis L.</td>
<td>54/81</td>
<td>28</td>
<td>62</td>
</tr>
<tr>
<td>Lolium prenne L.</td>
<td>71/23</td>
<td>16</td>
<td>55</td>
</tr>
<tr>
<td>Festuca rubra</td>
<td>70/25</td>
<td>13</td>
<td>44</td>
</tr>
<tr>
<td>Festuca arundinacea</td>
<td>54/55</td>
<td>15</td>
<td>33</td>
</tr>
<tr>
<td>Cynodon dactylon L.</td>
<td>39/53</td>
<td>26</td>
<td>43</td>
</tr>
<tr>
<td>Poa pratensis L.</td>
<td>59/52</td>
<td>31</td>
<td>52</td>
</tr>
<tr>
<td>Lolium prenne L.</td>
<td>84/31</td>
<td>8</td>
<td>51</td>
</tr>
<tr>
<td>Festuca rubra</td>
<td>82/31</td>
<td>18</td>
<td>65</td>
</tr>
<tr>
<td>Festuca arundinacea</td>
<td>20/38</td>
<td>21</td>
<td>52</td>
</tr>
<tr>
<td>Cynodon dactylon L.</td>
<td>85/12</td>
<td>15</td>
<td>28</td>
</tr>
</tbody>
</table>

P-ACT M-CGC

P-AAA M-CGA

P-AAC M-CAT

P-AAG M-CCA

P-AAT M-CCG
ادامه جدول ۱

<table>
<thead>
<tr>
<th>نام و نویلنگاری گونه‌ها</th>
<th>مورد استفاده</th>
<th>عدد نوار پکه</th>
<th>عدد نوار یک پکه</th>
<th>عدد کل نوارها</th>
<th>عدد کل چندپکه‌های در هر کونه</th>
<th>اسامی گونه‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poa pratensis L.</td>
<td>۱۰۲</td>
<td>۷۶/۶۰</td>
<td>۱۱</td>
<td>۳۶</td>
<td>۴۷</td>
<td></td>
</tr>
<tr>
<td>Lolium perenne L.</td>
<td>۷۳/۸۱</td>
<td>۱۱</td>
<td>۳۱</td>
<td>۴۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Festuca rubra</td>
<td>۹۲/۱۱</td>
<td>۳</td>
<td>۳۵</td>
<td>۴۸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Festuca arundinacea</td>
<td>۵۲/۳۷</td>
<td>۲۱</td>
<td>۴۴</td>
<td>۴۴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cynodon dactylon L.</td>
<td></td>
<td>۵۵</td>
<td>۲۷</td>
<td>۶۶</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poa pratensis L.</td>
<td>۷۳/۰۸</td>
<td>۱۴</td>
<td>۳۸</td>
<td>۵۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lolium perenne L.</td>
<td>۴۸/۴۱</td>
<td>۸</td>
<td>۳۸</td>
<td>۴۶</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Festuca rubra</td>
<td>۹۹/۲۲</td>
<td>۹</td>
<td>۳۰</td>
<td>۳۹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Festuca arundinacea</td>
<td>۴۱/۸۳</td>
<td>۱۴</td>
<td>۳۱</td>
<td>۴۹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cynodon dactylon L.</td>
<td></td>
<td>۷۰</td>
<td>۲۱</td>
<td>۳۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poa pratensis L.</td>
<td>۸۷/۳۱</td>
<td>۸</td>
<td>۲۳</td>
<td>۵۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lolium perenne L.</td>
<td>۴۸/۸۷</td>
<td>۱۲</td>
<td>۵۸</td>
<td>۷۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Festuca rubra</td>
<td>۹۷/۴۵</td>
<td>۱۵</td>
<td>۵۸</td>
<td>۷۳</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Festuca arundinacea</td>
<td>۵۷/۳۹</td>
<td>۳۰</td>
<td>۶۲</td>
<td>۶۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cynodon dactylon L.</td>
<td>۴۷/۶۹</td>
<td>۲۴</td>
<td>۳۱</td>
<td>۶۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poa pratensis L.</td>
<td>۶۸/۲۴</td>
<td>۲۵</td>
<td>۴۵</td>
<td>۶۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lolium perenne L.</td>
<td>۱۰/۱۲</td>
<td>۱۳</td>
<td>۵۱</td>
<td>۶۴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Festuca rubra</td>
<td>۷۸/۹۵</td>
<td>۱۹</td>
<td>۶۰</td>
<td>۷۴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Festuca arundinacea</td>
<td></td>
<td>۱۳</td>
<td>۱۹</td>
<td>۴۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cynodon dactylon L.</td>
<td></td>
<td>۴۱/۳۰</td>
<td>۱۹</td>
<td>۴۶</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poa pratensis L.</td>
<td>۶۸/۰۷</td>
<td>۱۶</td>
<td>۳۳</td>
<td>۳۹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lolium perenne L.</td>
<td>۷۸/۳۳</td>
<td>۱۱</td>
<td>۴۰</td>
<td>۵۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Festuca rubra</td>
<td>۷۳/۰۱</td>
<td>۳۱</td>
<td>۸۳</td>
<td>۱۱۴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Festuca arundinacea</td>
<td>۷۵/۶۱</td>
<td>۱۰</td>
<td>۳۱</td>
<td>۴۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cynodon dactylon L.</td>
<td></td>
<td>۶۱/۱۰</td>
<td>۲۷</td>
<td>۵۸</td>
<td>۹۴</td>
<td></td>
</tr>
</tbody>
</table>

توجه: دسته‌بندی گونه‌های مختلف بر اساس کاربرد در جنگل‌ها و مراتع.
در گروه‌بندی ده دست آمده در این تحقیق، گونه مورد مطالعه در فاصله زنبقی از 20 درصد به طور کامل از یکدیگر جدا شده و در 6 گروه مختلف قرار گرفته‌اند. با توجه به تفاوت‌های زنبقی بین گونه‌های مختلف چمن انجام نشده‌اند. در مطالعات که توسط دیوان و همکاران، رواندان - روزن و همکاران قدرت تمایز بالا در شناسایی و RAPD این گروه‌ها چمن نشان دادند. نتایج تجزیه و تحلیل آنها نیز میزان جنده‌کشی بالا بین واریه‌های مختلف چمن را مشخص نمود.

(17). UPGMA

ضریب کوئینکی باید تجزیه خوش‌بینی به روش SM به ضریب نشان‌دهنده ابزار جاست (SM) چگونه در این امر از آزمایش‌های گروه‌بندی گروه‌بندی بر اساس ضریب کوئینکی با ضریب Festuca arundinacea Scherb. از گونه TFF70 49 درصد که بسیار نسبت به روش TFF70 تفاوت با این امر به بوده بررسی نشان‌دهنده این گونه Lolium prenne L. با ضریب 0.79 39 درصد مشابه با ضریب Cynodon dactylon L.

32
شکل ۱. انگوری نواری حاصل از ترکیب آغازگری M-CCG و P-AAT در بین ۲۵ رقم مورد بررسی با استفاده از نشانگر AFLP

M=Marker 50bp
1,2,3,4,5= KB3, KB6, KB13, KB18, KB22= Poa pratensis L.
6,7,8,9,10= PR66, PR70, PR74, PR77, PR81= Lolium perenne L.
11,12,13,14,15= CH11, CH14, CH18, CH21, CH24= Festuca rubra var. Commutata
16,17,18,19,20= TF48, TF49, TFF2, TFF70, TFSI= Festuca arundinacea Scherb.
21,22,23,24,25= CD11, CD16, CD22, CD29, CD35= Cynodon dactylon L.
شکل 2. گروه‌بندی 25 رنگ متعلق به پنجه مختلف با استفاده از ضریب نشانه‌گر بر اساس نشانگر AFLP.

CH11, CH14, CH18, CH21, CH24 = Festuca rubra var. Commutata
TF48, TF49, TFF2, TFF70, TFSI = Festuca arundinacea Scherb.
PR66, PR70, PR74, PR77, PR81 = Lolium prenne L.
KB3, KB6, KB13, KB18, KB22 = Poa pratensis L.
CD11, CD16, CD22, CD29, CD35 = Cynodon dactylon L.

شکل 3. تجزیه به مولفه‌های اصلی (PCA) بر اساس فراواتی داده‌های نشانگر AFLP.

سه مولفه ابتدایی جمعاً 35 درصد کل تنوع در سطح ملکولی را توصیف نمودند.
نوع زنده‌پذیری درون و بین گونه‌های علف‌های جمی جانساله با استفاده از...

می‌گویند، یک طریق بررسی نوع درون گونه‌های چمن نیز با استفاده از نشانگرهای مولکولی امکان‌پذیر است. در پژوهش‌های با استفاده از AFLP علائم بر جداسازی گونه‌های مختلف در یک گروه از گونه‌های مختلف مورد مطالعه از یکدیگر جدا شده و این موضوع باعث نیز بنده خودداری از توجه کمتری برخوردارند و از آن‌گاه که یک گونه به طور عمده به وسیله ریزوم و استolon تکثیر می‌شود کاملاً منطقی به نظر می‌رسد.

Lolium prenne L. و Festuca arundinacea Scherb. گونه‌هایی بسیار به هم ندیده‌اند و همواره کافی برای بودن به نظر می‌رسد. این گونه‌ها به یک‌گروه قرار گرفته‌اند. این امر نیز از مناطق جغرافیایی خاص جمع‌آوری شده است. AFLP تکثیر در Lolium prenne L. و Festuca arundinacea Scherb. استفاده می‌کند.

Lolium prenne L. یک گونه چمن گمی‌سیری و با ریزوم استolon و برد تکثیر می‌شود و چهار گونه دیگر چمن‌های سردسیری است که به طور عمده از یک گروه دره‌ی ماکج روی یک گروه قرار گرفته که به دست آمده می‌توان با استفاده از AFLP تکثیر است (۲۱) در بین گونه‌های چمن Cynodon dactylon L. استفاده از یک پژوهش‌نامه از نظر بسیاری از صفات از قبıl‌های اخلاقی، نحوه نفرین، نوع استفاده، مقاومت و نشانه‌های زندگی و غیر زندگی ریز و وجود نداشته‌ها (۲۱) بین اثرات دانه گروه‌بندی درست می‌باشد با استفاده از Nشانگرهای مولکولی وجود در گونه‌ها مشابه به نظر می‌رسد. در Nشانگرهای به دلیل کاربرد تعداد محدودی آغازگر احتمال ارزیابی بخشی از زنده‌پذیری و وجود دارد هنگامی که محسول‌های زنده‌پذیری ممکن است همراه با تأثیر محیطی صفات مورفولوژیکی را به وجود آورده‌اند.

تیپاسگزاري

امکانات مالی و تجهیزات این پژوهش بر اساس طرح مشترک بین دانشگاه‌های صنعت اصفهان و شهرداری فراه شده است. که بدين و سیاست مرتب قدردانی از مستندین مربوط اعلام می‌گردد.

AFLP