تنوع زنیکی درون و بین گونه‌های علف‌های چمن کند سال با استفاده از نشانگر AFLP مولکولی

مجد طالبی، بدلرالدین ابراهیم‌سید طباطبایی، خورشید رزمجو، بهروز شیران

چکیده
شناسایی گونه‌های چمن بر اساس خصوصیات مورفولوژیک به لحاظ شیاهت‌های آنها مشکل است. از طرفی گزینش زنیکی‌های والدی بر اساس فاصله زنیکی مناسب برای اجرای تلایی و پر ازیادی چمن حاصل شده است. بدین ترتیب اسفندیاری از روی گونه‌های مختلف چمن در آزمایشگاه AFLP مورد بررسی قرار گرفته است. تعداد پنج گونه چمن به همراه پنج رقم از هر گونه مختلف چمن و برآورد روابط زنیکی آنها با استفاده از نشانگر AFLP انتخاب شدند. با استفاده از نشانگر AFLP مورد مطالعه قرار گرفت. با استفاده از 10 ترکیب آغازگری، تعداد 117 نوار حاصل نمود. که تمام آنها در بین ارقام چندشکلی نشان داده شد، از بین آغازگرهای مورد استفاده، ترکیب آغازگری P-AAG و M-CAG با 166 نوار، بیشترین تعداد نوار و ترکیب اغازگری P-ACT و M-CGC با 81 نوار، کمترین تعداد نوار را تولید کردند. گروه‌بندی زنیکی‌ها با استفاده از روش تجزیه و تحلیل سیگما بر اساس ضریب چاکاردی، 5 گونه مورد نظر را از یکدیگر جدا کرد. ضمن آن که رقم‌های مختلف به هر گونه نیز از یکدیگر فاصله نشده که به این دلیل از نشانگر AFLP مورد استفاده کرد. تعداد تعداد نوار زیاد و بیزی کندشکلی بالا در گونه، به همراه مختلف چمن بینانگی آن است که این روش می‌تواند به طور کارا و مؤثری در تعیین روابط زنیکی رقم‌های مختلف بین و درون گونه‌های چمن مورد استفاده قرار گیرد.

واژه‌های کلیدی: علف‌های چمن، نشانگر AFLP، تنوع زنیکی، فاصله زنیکی.

مقدمه
گیاهان چمن متعلق به گونه‌ها و جنس‌های مختلف به عنوان جزء اصلی و ضروری در اغلب باغ‌ها و پارک‌ها به شمار می‌رود.

1. به ترتیب دانشجوی دکتری و دانشیار بیوتکنولوژی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
2. استادیار زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
3. استادیار علوم زراعی، دانشکده کشاورزی، دانشگاه شهرکرد

29
مقدمه: توانایی تشخیص ارتباط زنیتیکی میان گیاهان چمن را در AFLP (17) و همکاران از نشانگر بررسی نشان دادند. تکثیف و تخیض ارتباط زنیتیکی همکارانی در این مطالعه از AFLP بررسی و چارچوبی ارتباط خارجی از این تکثیف در بررسی ارتباط داخلی ایران احساس می‌شود.

از آن‌جا که نشانگرهای ملکولی وابسته به یک DNA انتخابی خلوت بوده و تحت تأثیر شرایط محیطی قرار نمی‌گیرند، تعداد زیادی از آن نشانگرهای را می‌توان برای تحقیج و تحلیل مورد استفاده قرار داد. این نشانگرهای می‌توانند به راحتی در کل زنوم جستجو نمود. از طرفی شناسایی نشانگرهای ملکولی به‌وسیله محققان استفاده از انتخاب به‌کمک نشانگری را در این مطالعه و تولید ارکام جدید را سرعت تحقیک به‌واسطه کاراکتر، تکرارپذیری و قابلیت اعتماد بالا برای بررسی بیشتر کاربردی ت秸秆 و همچنین مطالعات زنیتیکی مورد استفاده قرارگرفته است (23). به‌رحیل به‌تشکیل ظاهری بسیاری از چنین متعلق به چنین و گونه‌های مختلف و رقیم‌های موجود در آنها و نیز مراکز نشانگر در تشخیص و تفکیک آنها در یک چرخه مدار استفاده از نشانگرهای زنیتیکی بین و درون گونه و جنس‌های مختلف علف‌های چمن و شناسایی نشانگرهای خاص هردکم استفاده شده.

مواد و روش‌های برای دقت باعث شده تعداد بین جنس و گونه از علف‌های چمن خود در یک ساله از مرکز تحقیقات محیط‌آمیزه اصفهان انتخاب و از هر کدام تعداد بین رقم نمونه برداری می‌شود (جدول 1). استخراج DNA به روش شامل DNA کن بیتی نمونه‌های با روش الکتروفورز زل آگار استخراج DNA و روش اساسی روش ووس و همکاران صورت گرفت (25).
جدول ۱: اسامی گونه‌ها و رمزهای مورد بررسی در این تحقیق

<table>
<thead>
<tr>
<th>گونه مورد بررسی</th>
<th>رمزهای گونه مورد بررسی</th>
</tr>
</thead>
<tbody>
<tr>
<td>Festuca rubra var. commutate Gaud.</td>
<td>CH11(Frida), CH14(James town), CH18(Lirouge), CH21(Luster), CH24(Rasengold)</td>
</tr>
<tr>
<td>Festuca arundinacea Scherb.</td>
<td>TF48(Super-short), TF49(Gazelle), TFF2, TFF70, TFSI(Salt)</td>
</tr>
<tr>
<td>Lolium prenne L.</td>
<td>PR66(Super-star), PR70(Edge), PR74(APM), PR77(Wos), PR81(Top-Hat)</td>
</tr>
<tr>
<td>Poa pratensis L.</td>
<td>KB3(Barblue), KB6(Bluebanner), KB13(Challenger), KB18(Huntsvill), KB22(Nugget)</td>
</tr>
<tr>
<td>Cynodon dactylon L.</td>
<td>CD11, CD16, CD22, CD29, CD35</td>
</tr>
</tbody>
</table>

ابدا به منظور بررسی DNA از دو آنزیم بررسی PstI و MseI انتخاب به شرح زیر است:

1) MseI-1: 5'-GAC TGC GTA GGT GCA G-3'
2) PstI-1: 5'-GAC TGC GTA GGT GCA-3'
3) MseI-2: 5'-TAC TCA GGA CTC AT-3'
4) PstI-2: 5'-TAC TCA GGA CTC AT-3'

در مرحله تکنیک پیش انتخابی از آغازگرهای بدون نوکلئوتید انتخابی در انتهای ۳ استفاده شد. نوایی آغازگرهای 5'-GAC TGC GTA GGT GCA G-3' به صورت p0000 و نوایی آغازگرهای M0000 به صورت p000 مورد استفاده قرار گرفت. در PCR با 5'-GAC TGC GTA GGT GCA G-3' به صورت p0000 و نوایی آغازگرهای M0000 به صورت p000 مورد استفاده قرار گرفت. در PCR با 5'-GAC TGC GTA GGT GCA G-3' به صورت p0000 و نوایی آغازگرهای M0000 به صورت p000 مورد استفاده قرار گرفت.

در مرحله تکنیک پیش انتخابی به نسبت ۱:۵ رفیق و در واکنش تکنیک انتخابی استفاده شد. واکنش PCR شامل دو دقیقه برای دمای ۹۴ درجه سانتی‌گراد برای اولیه و پس از آن چرخه با دمای ۹۴ درجه سانتی‌گراد ۱۰ ثانیه، ۶۵ درجه سانتی‌گراد ۲۰ ثانیه و ۷۲ درجه سانتی‌گراد یک دقیقه که در ۱۲ چرخه اولیه، دمای انتخاب آغازگره به میزان ۷۰ درجه سانتی‌گراد در هر چرخه کاهش یافت و در ۳۳ چرخه باقیمانده در دمای ۵۴
جدول ٤ اسامی آغازگرهای انتحابی مورد استفاده و تعداد نوارهای حاصل شده از این آغازگرها به تفکیک گونه‌ها

<table>
<thead>
<tr>
<th>اسامی گونه‌ها</th>
<th>تعداد کل نوار</th>
<th>تعداد نوار</th>
<th>تعداد نوار</th>
<th>نوار در هر گونه</th>
<th>نوار در هر گونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poa pratensis L.</td>
<td>٨٠/٩٥</td>
<td>٨</td>
<td>٣٤</td>
<td>٤٧</td>
<td>٤٧</td>
</tr>
<tr>
<td>Lolium prenne L.</td>
<td>٨٢/٧٥</td>
<td>٥</td>
<td>٢٤</td>
<td>٤٩</td>
<td>٤٩</td>
</tr>
<tr>
<td>Festuca rubra</td>
<td>٨٨/٧٥</td>
<td>٦</td>
<td>٤٣</td>
<td>٤٩</td>
<td>٤٩</td>
</tr>
<tr>
<td>Festuca arundinacea</td>
<td>٧٤/٥١</td>
<td>١١</td>
<td>٣٠</td>
<td>٣١</td>
<td>٣١</td>
</tr>
<tr>
<td>Cynodon dactylon L.</td>
<td>٥٩/٠٩</td>
<td>٩</td>
<td>٢٢</td>
<td>٢٢</td>
<td>٢٢</td>
</tr>
<tr>
<td>Poa pratensis L.</td>
<td>٦٣/٤٩</td>
<td>٤٠</td>
<td>٦٣</td>
<td>٦٣</td>
<td>٦٣</td>
</tr>
<tr>
<td>Lolium prenne L.</td>
<td>٧١/٧٩</td>
<td>١١</td>
<td>٢٨</td>
<td>٣٩</td>
<td>٣٩</td>
</tr>
<tr>
<td>Festuca rubra</td>
<td>٨٥/٤٣</td>
<td>٩</td>
<td>٥٥</td>
<td>٤٦</td>
<td>٤٦</td>
</tr>
<tr>
<td>Festuca arundinacea</td>
<td>٦٠/٨١</td>
<td>١٩</td>
<td>٢٩</td>
<td>٣٨</td>
<td>٣٨</td>
</tr>
<tr>
<td>Cynodon dactylon L.</td>
<td>٨١/٢١</td>
<td>٢٠</td>
<td>١٩</td>
<td>٣٩</td>
<td>٣٩</td>
</tr>
<tr>
<td>Poa pratensis L.</td>
<td>٣١/٠٨</td>
<td>٥١</td>
<td>٤٣</td>
<td>٧٤</td>
<td>٧٤</td>
</tr>
<tr>
<td>Lolium prenne L.</td>
<td>٦٥/٩٨</td>
<td>٣٣</td>
<td>٦٤</td>
<td>٩٧</td>
<td>٩٧</td>
</tr>
<tr>
<td>Festuca rubra</td>
<td>٧١/٣٣</td>
<td>٣٤</td>
<td>٨٥</td>
<td>١١٩</td>
<td>١١٩</td>
</tr>
<tr>
<td>Festuca arundinacea</td>
<td>٧٣/٤٤</td>
<td>٣١</td>
<td>٣٣</td>
<td>٧٣</td>
<td>٧٣</td>
</tr>
<tr>
<td>Cynodon dactylon L.</td>
<td>٧٠/٧٤</td>
<td>٢٨</td>
<td>٣٣</td>
<td>٨١</td>
<td>٨١</td>
</tr>
<tr>
<td>Poa pratensis L.</td>
<td>٥٤/٨٤</td>
<td>٢٨</td>
<td>٣٤</td>
<td>٦٢</td>
<td>٦٢</td>
</tr>
<tr>
<td>Lolium prenne L.</td>
<td>٧١/٣٣</td>
<td>١٦</td>
<td>٤٠</td>
<td>٥٥</td>
<td>٥٥</td>
</tr>
<tr>
<td>Festuca rubra</td>
<td>٧٠/٣٥</td>
<td>١٣</td>
<td>٣١</td>
<td>٤٤</td>
<td>٤٤</td>
</tr>
<tr>
<td>Festuca arundinacea</td>
<td>٥٤/٥٥</td>
<td>١٥</td>
<td>١٨</td>
<td>٣٣</td>
<td>٣٣</td>
</tr>
<tr>
<td>Cynodon dactylon L.</td>
<td>٣٩/٢٥</td>
<td>٢٦</td>
<td>٣٣</td>
<td>٤٣</td>
<td>٤٣</td>
</tr>
<tr>
<td>Poa pratensis L.</td>
<td>٥٩/٨٢</td>
<td>٣١</td>
<td>٥٢</td>
<td>٥٢</td>
<td>٥٢</td>
</tr>
<tr>
<td>Lolium prenne L.</td>
<td>٨٤/٣١</td>
<td>٨</td>
<td>٤٣</td>
<td>٥١</td>
<td>٥١</td>
</tr>
<tr>
<td>Festuca rubra</td>
<td>٧٢/٣١</td>
<td>١٨</td>
<td>٤٧</td>
<td>٥٥</td>
<td>٥٥</td>
</tr>
<tr>
<td>Festuca arundinacea</td>
<td>٧٠/٢٨</td>
<td>٣١</td>
<td>٣٢</td>
<td>٥٢</td>
<td>٥٢</td>
</tr>
<tr>
<td>Cynodon dactylon L.</td>
<td>٦٥/١٢</td>
<td>٩</td>
<td>٩</td>
<td>٩</td>
<td>٩</td>
</tr>
<tr>
<td>ادامه جدول ۲</td>
<td>نام و تولید آغازگر</td>
<td>مورد استفاده</td>
<td>تعداد کل نوار</td>
<td>تعداد نوار گیاه</td>
<td>تعداد کل چندشکل در هر کونه</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>P-ACA M-CCC</td>
<td>۱۰۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-ACG M-CCT</td>
<td>۸۷</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-AGC M-CAC</td>
<td>۱۴۴</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-ACC M-CAA</td>
<td>۱۱۹</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-AAG M-CAG</td>
<td>۱۶۶</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
لغز رشکی، با کمک M-CAG و P-AAG در 169 نوار، بیشترین تعداد نوار و ترکیب آغازگری و P-AG و P-AG در 81 نوار، کمترین تعداد نوار را تولید کردند. نام ترکیبات آغازگری، تعداد نوارها و تولید شده توسط هر آغازگر و میزان چندشکلی آنها در جدول 2 آمده است.

تولید تعداد نوار زید و میزان چندشکلی بالا در گونه‌های مختلف چنمن نشان داد که در تعداد فیبر می‌توان مشخص نمود. این نتایج نشان‌دهنده اثر سیستم‌های مختلف کالریه است. این مطالعه با توجه به تغییرات محیطی و موارد مختلف در گونه‌های مختلف، نشان‌دهنده مطالعات تعداد زیادی از تنوع چنمنی و درون چنمنی و تعداد و تولید چنمنی آنها است.

حداقل چنمن نشان داد که در گونه‌های مختلف مطالعه در فاصله زمینی 20 درصد در طور کامل از یکدیگر جدا شده و در 5 گونه مختلف برای گرفتن نشان داده می‌باشد. میزان تولید به‌عنوان گونه‌های مختلف چنمن، دسته‌گروه‌های با اندازه‌گیری از درون این تعداد، مطالعات در طرح دوپل و همکاران، گویی از ویژگی‌های مختلف گونه‌های میزان چنمن دادهشد. با توجه به نتایج، روش‌های مرکب با دستگاه‌های مختلف چنمنی و درون چنمنی ممکن است

UPGMA

ضریب کوئینک در برابر تجزیه خوش‌یابی به روش SM به ضریب نشان‌دهنده تغییرات ساده (SM) چاکریک داس را نشان داد که با ضریب کوئینک، اثر کوره به پای بسیار یکسپرس چاکریک با ضریب کوئینک 2/7 در کوره به پای حاصل، بیشترین ترکیب پای ارتفاع TFF2

Festuca arundinacea Scherb. گونه‌های از گونه TFF70 تشخیص 79 درصد و کمترین تراشی به پای ارتفاع L. prenne L. با ضریب TFF70 در TFF70 و شماره L. prenne L. با ضریب TFF70 و شماره 29 از گونه Cynodon dactylon L. با ضریب TFF70 امکانی ملی می‌باشد. میزان زاید در تعداد 254.4 ضریب، زیرا هر دو متعلق به یک گونه‌اند و هر دو نسبت به
AFLP

شکل 1. انگشتر نواری حاصل از ترکیب آغازگری M-CCG و P-AAT در بین ۲۵ رقم مورد پروسی با استفاده از نشانگر

M=Marker 50bp
1,2,3,4,5= KB3, KB6, KB13, KB18, KB22= Poa pratensis L.
6,7,8,9,10= PR66, PR70, PR74, PR77, PR81= Lolium penna L.
11,12,13,14,15= CH11, CH14, CH18, CH21, CH24= Festuca rubra var. Commutata
16,17,18,19,20= TF48, TF49, TF72, TFF70, TFSI= Festuca arundinacea Scherb.
21,22,23,24,25= CD11, CD16, CD22, CD29, CD35= Cynodon dactylon L.
شکل 2. گروه‌بندی ۲۵ رقم مختلف چمن متعلق به پنج گونه مختلف با استفاده از ضریب تشابه جاکارد و بر اساس نشانگر AFLP.

CH11, CH14, CH18, CH21, CH24 = Festuca rubra var. Commutata
TF48, TF49, TFF2, TFF70, TFSI = Festuca arundinacea Scherb.
PR66, PR70, PR74, PR77, PR81 = Lolium prenne L.
KB3, KB6, KB13, KB18, KB22 = Poa pratensis L.
CD11, CD16, CD22, CD29, CD35 = Cynodon dactylon L.
می‌شود، با بررسی نتایج توزیع درون گونه‌های چمن‌های جنوبی، اطلاعاتی از
توجه زیستی درون و بین گونه‌های مختلف چمن‌های جنوبی استفاده از
AFLP

همچنین امکان دارد یک بخشی از زنده‌مانده به دست آمده
تک‌تیک‌های موردی که توسط آن‌ها جفت‌هایی از تک‌تیک‌های متغیر
به همین دلیل، این دو نشانگر تاج خاصی ندارند.
در درون گونه‌های نشانگر AFLP
قادر به جداسازی رقم‌ها بوده است (18). در پژوهش دیگری که توسط
مختلف چمن به‌دست آمده است (18). در پژوهش دیگری که توسط
روف و همکاران به منظور تعیین توزیع زیستی در گونه AFLP
با استفاده از نشانگر Festuca arundinacea Scherb.
اجرام گفت است رقم‌های توزیع درون یک گونه از یکدیگر مجزا
شده و هم‌زمان از رکرداری اولیه شده. این نشانگر از مناطق ژنتیکی جنوب‌غربی
شده در گروه‌های چندگانه یافته شده (18).
با توجه به نتایج، به دست آمده می‌توان برای هر گونه و یا
هر رقم یک نشانگر مشخص معرفی کرد که توانایی ارائه،
گونه و به رقیم مورد نظر را به سرعت در مراحل اولیه رشد
تشخیص داده به مراجعه که اصلاح گر یافته پر اساس آن، رقم
اصلاح شده و نه به تست بررسی. همچنین می‌توان
نشانگرانی وابسته به صفات مهم در گونه‌های مختلف چمن
رتبه‌های نمود که می‌توانند در کاهش در خلال اصلاحات مقایسه‌ای
بیشتر، نشان‌گرها معرفی شده هزار گونه تا آن‌ها تک‌تیک‌های
پخش از زنده‌مانده داده که اطلاعات از نشانگر AFLP
برای تحقیق با وشناسی گونه‌های چمن، مفید و مؤثر است.

پیشگزاری

امکانات مالی و تجهیزات این پژوهش بر اساس طرح مشترک
بين دانشگاه‌های صنعتي اصفهان و شهرداري تهران است. كه
بدين و سپيل مرتب قدردانی از مستند مربوط اعلام مي‌گردد.

