تنوع زننده کلونی درون و بین گونه‌های علف‌های چمنی چند ساله با استفاده از نشانگر AFLP مولکولی

مقدمة
گیاهان چمن متعلق به گونه‌های مختلف به علت جنس اصلی و ضروری در اغلب باها و پارک‌ها به شمار می‌رود. مínی به ترتیب دانشجوی دکتری و دانشیار بیوتکنولوژی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان. 1. استادیار دانشگاه اصفهان. 2. استادیار زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان. 3. استادیار علوم زراعی، دانشکده کشاورزی، دانشگاه شهید چمران. 1

چکیده
شناسایی گونه‌های چمنی بر اساس خصوصیات مورфولوژیک به لحاظ شیاه‌های آن‌ها مشکل است. از طرفی گزینش زننده‌های والدی بر اساس فاصله زننده مثل برای اجرای تغییراتی که به‌نژاد چمن حال اهمیت است. بدین ترتیب استفاده از روشهای مولکولی به عنوان ابزاری کارا در ارزیابی و شناسایی دو گونه‌ای مورد توجه قرار گرفت. هدف از این پژوهش بررسی توزیع زننده کلونی و درون گونه‌ها AFLP مولکولی متفاوت چمن و برآوردن روابط بین چند ساله با استفاده از نشانگر AFLP مورد استفاده قرار گرفت. با استفاده از 10 تکریک آغازگری، تعداد 117 نوار حاصل شد که تمام آن‌ها در بین 6 ارتفاع چندشکلی نشان داده شد. از بین آغازگرهای مورد استفاده، تکریک آغازگری P-AAG و P-AAGM 87 نوار، M-CAG و P-AAGM 92 نوار. نتایج نشان داده که تعداد نوار تکریک که می‌تواند به‌صورت قرار گیرد، تعداد متفاوت می‌باشد. در نتیجه، این نتایج نشان دهنده است که تعداد نوار تکریک قسمتی متفاوت بین و درون گونه‌های چمن مورد استفاده قرار گیرد.

واژه‌های کلیدی: علف‌های چمنی چندساله، نشانگر AFLP، توزیع زننده، فاصله زننده.
مقدمه

دماه محیط نیز می‌شود (۲۳). نظر به اهمیت فوائد بهداشتی که گونه‌های جنگلی در طراحی و ایجاد فضای سبز، اکثر اراضی با کیفیت مناسب از اهمیت ویژه‌ای برخوردارند. ارقام جدید چنین به طور اختصاصی برای خصوصیات محیطی مانند ظرفیت بروز رنگ، رشد کم و تراکم، مقاومت نسبی به عوامل نامساعد محیطی، امراض گیاهی و چربی و یکی از مطلوب اصلاح می‌شود (۱). از انواعی که سطوح ظاهری چنین تحت تأثیر عوامل محیطی بوده و تنشیت ارقام مختلف به وسیله این صفات مشاهده شده‌اند، بسیاری از این ارقات DNA و مولکول‌های ساختاری گونه و ارقام خاصی دارند. با بررسی PCR نظر می‌رسد: نشانگرهای مولکولی بینی بر روش قدتنمی‌سازی برای (Polymerase Chain Reaction) شناسایی چندشکل‌های گونه و بررسی نوع زنیتیک است DNA بی‌پیک از رساهای بینی با مشترک AFCP TE و تکثیر DNA این زنجیره‌های پلیمریز حاوی که توسط وسیله و هم‌گون معرفی شد. این روش نسبت به سایر روش‌های موجود مرتبه‌های دارد (۲۵).

از نشانگرهای جنگلی برای تعیین نوع زنیتیک در تعدادی از گونه‌های گیاهان غیرجنسیان علف‌های چنین به طور موفقی استفاده شده است (۲۰، ۲۱، ۲۲، ۲۳ و ۲۴). چارچوب و هم‌گونی این نوع تحقیق هپستیکی با تاکید نسل دیگر ارقات DNA و مولکولی، با نشانگرهای مولکولی بینی در AFCP استفاده نمودند (۵). دیوان و هم‌گونان مطالعه نوع زنیتیک درون و بین گونه‌های چنین با استفاده از تکنیک AFCP نتیجه گرفتند که این روش می‌تواند برای مطالعه زنیم و طبقه‌بندی گونه‌های چنین به کار رود (۷).

مواد و روش‌ها

در این پروژه تعداد بینج جنس و گونه از علف‌های چنین جنگل سالش از مرکز تحقیقات محیط‌زنا و اصیل انتخاب و از هر کدام تعداد بینج رقم نمونه برداری شد (جدول ۱). استخراج DNA نمونه به روش دانمارکی انجام شد (۶). کمیت و کیفیت نمونه‌های DNA با روش اکسی‌فورترز ذل آگاز در می‌شود. نشانگرهای بینی با استفاده روش ووس و AFCP در داده و مشخص نمونه‌کردن این نشانگر، قدرت تمایز بالا و
جدول 1. اسم‌های گونه‌ها و رقم‌های مورد بررسی در این تحقیق

<table>
<thead>
<tr>
<th>گونه مورد بررسی</th>
<th>رقم‌های گونه مورد نظر</th>
</tr>
</thead>
<tbody>
<tr>
<td>Festuca rubra var. commutate Gaud.</td>
<td>CH11(Frida), CH14(James town), CH18(Lirouge), CH21(Luster), CH24(Rasengold)</td>
</tr>
<tr>
<td>Festuca arundinacea Scherb.</td>
<td>TF48(Super-short), TF49(Gazelle), TFF2, TFF70, TFSI(Salt)</td>
</tr>
<tr>
<td>Lolium prenne L.</td>
<td>PR66(Super-star), PR70(Edge), PR74(APM), PR77(Wos), PR81(Top-Hat)</td>
</tr>
<tr>
<td>Poa pratensis L.</td>
<td>KB3(Barblue), KB6(Bluebanner), KB13(Challenger), KB18(Huntsvill), KB22(Nugget)</td>
</tr>
<tr>
<td>Cynodon dactylon L.</td>
<td>CD11, CD16, CD22, CD29, CD35</td>
</tr>
</tbody>
</table>

درجه سانتی‌گراد نبات شد و در نهایت به مدت دو دقیقه در دمای 72 درجه سانتی‌گراد قرار گرفت. توالی و تركیب آگازگرهای مورد استفاده در این تحقیق در جدول 2 آمده است.

به منظور مشاهده الگوی نواری از زل پی اکریل آمید-شیم درصد واریانس با فست مولوئار استفاده شد. قبل از بارگذاری نمونه‌ها الکتروفورز مقداماتی به مدت 30 دقیقه انجام گرفت. شرایط واتیم 100 و دمای 55 درجه سانتی‌گراد

MseI از آگازگرهای مورد استفاده گردید. الکتروفورز محصولات PCR نیز در همان شرایط و به مدت دو ساعت انجام شد. پس از الکتروفورز،

برنگ آمیزی زل به روش نیترات تنقیه (RNase) انجام گرفت و از الگوی نواری به دست آمده عکس برداری شد. الکتروفورز با S2 استاندارد بیومتریا (Sequencing gel) مدل NT SYS-PC Ver 2.02 انجام یافت.

و ضعع و عدم وجود نوار با اعداد بک و صفر برای رقم‌های مورد مطالعه کدگذاری شد. سپس ماتریس تتشابه تشکیل شده و تجزیه و تحلیل داده‌ها با استفاده از نرم‌افزار

MseI از آگازگرهای DNA از دو آزمایش بررسی

تهیه مربی 15 آزمایش‌گاه Roche توسط اتصال آدابوروها به انتحای قطعات برش یافته با استفاده از آزمایش T4 لیگاژ انجام شد.

توالی آدابوروها به شرح زیر است:

1) MseI-1: 5'-GAC TGC GTA GGT GCA G-3' 2) PstI-1: 5' -GAC TGC GTA GGT GCA-3' 3) MseI-2: 5' -TAC TCA GGA CTC AT-3' 4) PstI-2: 5' -CCT ACG CAG TCT ACG AG-3'

در مرحله تکنیک پیش انتخابی از آگازگرهای بدون تلنکنوبند دسته‌گاه ترموسیکتور (Mastercycler gradient) به صورت 15°C/30 دقیقه M000 پرتاب می‌شود. واکنش PCR در 5'-GAG TGC GTA GGT GCA G-3' و 3'-GAC TGC GTA GGT GCA G-3' در همان شرایط انجام می‌گردد.

چرخه شامل 44 درجه سانتی‌گراد 30 ثانیه، 45 درجه سانتی‌گراد 30 ثانیه و 72 درجه سانتی‌گراد در یک دقیقه انجام گرفت.

در مرحله دوم تکنیک محصولات حاصل از مرحله تکنیک پیش انتخابی به نسبت 5:1 رعیت و در واکنش تکنیک انتخابی استفاده شد. واکنش PCR شامل دو دقیقه در دمای 94 درجه سانتی‌گراد برای واریانس سازی اولیه و پس از آن 35 دقیقه با دمای 46 درجه سانتی‌گراد 30 ثانیه، 55 درجه سانتی‌گراد 30 ثانیه و 72 درجه سانتی‌گراد در یک دقیقه انجام گرفت.

چرخه شامل 44 درجه سانتی‌گراد 30 ثانیه، 45 درجه سانتی‌گراد 30 ثانیه و 72 درجه سانتی‌گراد در یک دقیقه انجام گرفت.

در مرحله انتخابی مربیهای واریانس سازی اولیه و پس از آن 35 دقیقه با دمای 46 درجه سانتی‌گراد 30 ثانیه، 45 درجه سانتی‌گراد 30 ثانیه و 72 درجه سانتی‌گراد در یک دقیقه انجام گرفت.

چرخه شامل 44 درجه سانتی‌گراد 30 ثانیه، 45 درجه سانتی‌گراد 30 ثانیه و 72 درجه سانتی‌گراد در یک دقیقه انجام گرفت.

چرخه شامل 44 درجه سانتی‌گراد 30 ثانیه، 45 درجه سانتی‌گراد 30 ثانیه و 72 درجه سانتی‌گراد در یک دقیقه انجام گرفت.

چرخه شامل 44 درجه سانتی‌گراد 30 ثانیه و 72 درجه سانتی‌گراد در یک دقیقه انجام گرفت.

چرخه شامل 44 درجه سانتی‌گراد 30 ثانیه و 72 درجه سانتی‌گراد در یک دقیقه انجام گرفت.

چرخه شامل 44 درجه سانتی‌گراد 30 ثانیه و 72 درجه سانتی‌گراد در یک دقیقه انجام گرفت.

چرخه شامل 44 درجه سانتی‌گراد 30 ثانیه و 72 درجه سانتی‌گراد در یک دقیقه انجام گرفت.
جدول ۲. آسامی آغازگرهای انتخابی مورد استفاده و تعداد نوارهای حاصل شده از این آغازگرهای به تفکیک گونه‌ها

<table>
<thead>
<tr>
<th>اسمگذار</th>
<th>تعداد کل نوار</th>
<th>تعداد نوار در صد</th>
<th>تعداد نوار در بین تمام مورد استفاده</th>
<th>تعداد کل چندشکل در هر گونه</th>
<th>اسامی گونه‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-ACT M-CGC</td>
<td>81</td>
<td>80/95</td>
<td>8</td>
<td>33</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>82/75</td>
<td>5</td>
<td>24</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>87/75</td>
<td>6</td>
<td>23</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>85/51</td>
<td>11</td>
<td>20</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>59/09</td>
<td>9</td>
<td>13</td>
<td>22</td>
</tr>
<tr>
<td>P-AAA M-CGA</td>
<td>102</td>
<td>62/49</td>
<td>23</td>
<td>20</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>71/19</td>
<td>11</td>
<td>28</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>85/93</td>
<td>9</td>
<td>55</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60/41</td>
<td>15</td>
<td>29</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48/61</td>
<td>20</td>
<td>19</td>
<td>39</td>
</tr>
<tr>
<td>P-AAC M-CAT</td>
<td>155</td>
<td>31/08</td>
<td>51</td>
<td>23</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65/98</td>
<td>33</td>
<td>64</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>71/63</td>
<td>34</td>
<td>85</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42/46</td>
<td>24</td>
<td>31</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40/74</td>
<td>28</td>
<td>33</td>
<td>81</td>
</tr>
<tr>
<td>P-AAG M-CCA</td>
<td>101</td>
<td>54/84</td>
<td>28</td>
<td>34</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>71/33</td>
<td>16</td>
<td>50</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70/65</td>
<td>13</td>
<td>31</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>54/55</td>
<td>15</td>
<td>18</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39/53</td>
<td>17</td>
<td>23</td>
<td>43</td>
</tr>
<tr>
<td>P-AAT M-CCG</td>
<td>113</td>
<td>59/62</td>
<td>21</td>
<td>31</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64/31</td>
<td>8</td>
<td>43</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72/31</td>
<td>18</td>
<td>27</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60/38</td>
<td>31</td>
<td>21</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>55/12</td>
<td>15</td>
<td>28</td>
<td>43</td>
</tr>
<tr>
<td>اسم گونه‌ها</td>
<td>تعداد کل نوار</td>
<td>نوار در هر چند شکل در هر گونه</td>
<td>تعداد نوار یک چند شکل در هر گونه</td>
<td>تعداد نوار یک در صد</td>
<td>نام و توائی آغازگر مورد استفاده</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------</td>
<td>--------------------------------</td>
<td>-----------------------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Poa pratensis L.</td>
<td>76/50</td>
<td>11</td>
<td>36</td>
<td>47</td>
<td>P-ACA M-CCC 102</td>
</tr>
<tr>
<td>Lolium prenne L.</td>
<td>73/81</td>
<td>11</td>
<td>31</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Festuca rubra</td>
<td>92/11</td>
<td>3</td>
<td>35</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Festuca arundinacea</td>
<td>52/27</td>
<td>7</td>
<td>21</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Cynodon dactylon L.</td>
<td>55</td>
<td>9</td>
<td>27</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Poa pratensis L.</td>
<td>73/60</td>
<td>14</td>
<td>28</td>
<td>52</td>
<td>P-ACG M-CCT 87</td>
</tr>
<tr>
<td>Lolium prenne L.</td>
<td>82/61</td>
<td>8</td>
<td>32</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Festuca rubra</td>
<td>86/92</td>
<td>9</td>
<td>30</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Festuca arundinacea</td>
<td>44/83</td>
<td>18</td>
<td>13</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Cynodon dactylon L.</td>
<td>70</td>
<td>9</td>
<td>21</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Poa pratensis L.</td>
<td>82/31</td>
<td>8</td>
<td>23</td>
<td>51</td>
<td>P-AGC M-CAC 144</td>
</tr>
<tr>
<td>Lolium prenne L.</td>
<td>82/86</td>
<td>12</td>
<td>38</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Festuca rubra</td>
<td>79/75</td>
<td>15</td>
<td>51</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Festuca arundinacea</td>
<td>67/59</td>
<td>30</td>
<td>62</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Cynodon dactylon L.</td>
<td>47/99</td>
<td>23</td>
<td>51</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Poa pratensis L.</td>
<td>53/74</td>
<td>25</td>
<td>22</td>
<td>58</td>
<td>P-ACC M-CAA 119</td>
</tr>
<tr>
<td>Lolium prenne L.</td>
<td>79/99</td>
<td>13</td>
<td>64</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>Festuca rubra</td>
<td>75/95</td>
<td>19</td>
<td>50</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Festuca arundinacea</td>
<td>49/53</td>
<td>28</td>
<td>22</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Cynodon dactylon L.</td>
<td>41/30</td>
<td>27</td>
<td>19</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Poa pratensis L.</td>
<td>58/97</td>
<td>16</td>
<td>23</td>
<td>39</td>
<td>P-AAG M-CAG 155</td>
</tr>
<tr>
<td>Lolium prenne L.</td>
<td>78/83</td>
<td>11</td>
<td>40</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Festuca rubra</td>
<td>72/81</td>
<td>31</td>
<td>33</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>Festuca arundinacea</td>
<td>75/61</td>
<td>10</td>
<td>31</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Cynodon dactylon L.</td>
<td>41/70</td>
<td>36</td>
<td>58</td>
<td>94</td>
<td></td>
</tr>
</tbody>
</table>
ضریب کوتینیک برای تجزیه خوش‌های به روش UPGMA، سه ضریب تغییر سطح ساده (SM) چاکریک و دایسی، نشان داد که گروه بندی بر اساس ضریب چاکریک با ضریب کوتینیک بهترین روش گروه بندی از روش‌ها فوت است. در گروه بندی حاصل، بیشتر نشانه‌های از ارتباط در سیستم تشخیصی بین ارتباطی و TFF2 با ضریب Festuca arundinacea Scher. از گونه TF70 نشانه 79 درصد و کمترین نشانه بین رقم 77 از گونه Lolium prenne L. و رقم شماره 29 از گونه Cynodon dactylon L. با ضریب تغییر ساده 14/1 درصد می‌باشد.

تشخیص زیاد در رقم TF70 و TFF2 امری کاملاً طبیعی به نظر می‌رسد، زیرا هر دو متعلق به یک گونه‌انداز هر دور نسبت به
شکل 1. انگور تواری حاصل از ترکیب آغازگری AFLP و P-AAT در بین 25 رقم مورد بررسی با استفاده از نشانگر M-CCG و P-AAT

M=Marker 50bp
1,2,3,4,5= KB3, KB6, KB13, KB18, KB22= Poa pratensis L.
6,7,8,9,10= PR66, PR70, PR74, PR77, PR81= Lolium prenne L.
11,12,13,14,15= CH11, CH14, CH18, CH21, CH24= Festuca rubra var. Commutata
16,17,18,19,20= TF48, TF49, TFF2, TFF70, TFS7= Festuca arundinacea Scherb.
21,22,23,24,25= CD11, CD16, CD22, CD29, CD35= Cynodon dactylon L.
شکل 2. گروه‌های ۲۵ رنم مختل چمن متعلق به پنج گونه مختلف با استفاده از ضریب تشابه چاکارد و بر اساس نشانگر AFLP.

CH11, CH14, CH18, CH21, CH24 = Festuca rubra var. Commutata
TF48, TF49, TFF2, TFF70, TFSl = Festuca arundinacea Scherb.
P R66, PR70, PR74, PR77, PR81 = Lolium prenne L.
KB3, KB6, KB13, KB18, KB22 = Poa pratensis L.
CD11, CD16, CD22, CD29, CD35 = Cynodon dactylon L.
می‌شود، بازاریان در این نوع گونه‌های چمن نیز با استفاده از نشان‌گرهای مولکولی ایجاد است. در پژوهش حاضر با استفاده از AFLP و ادراک بر جدیدترین گونه‌های مختلف، در مورد این نیز نشانه‌گر مورد نظر خاصی است. در پژوهش دیگری که توسط یک گروه قرار گرفته‌اند، ارایه نیز از مناطق گیاهی خاص جمع‌آوری شده در گروه‌های جدایی که وظیفه‌ای است.

اولین توصیف‌های است. در این پژوهش نیز درو که گروه قرار گرفته که صحبت شده بین دو گونه را نسبت به گونه‌های دیگر نشان می‌دهد. گونه Cynodon dactylon مورد استتقام یکنی به طور بهینه این اتفاقی می‌افتد استفاده تست نشان داده می‌شود که چنین نوع دیگری که مورد استتقام می‌باشد. بنابراین ارتباط دانه این گونه‌ها به گروه لی‌الریا و با بانک می‌شود. استتقام در این پژوهش نیز از نظر بسیاری از صفات از قبل احتیاجات غذایی، نحوه استتقام، نوع استتقام و مقاومت به تنها درخت و غیر زندگی زندگی وجود دارد (20)، بنابراین ارتباط دانه G. broom جهت استتقام با استفاده از نشان‌گرهای مولکولی موجود در گونه مشابه به نظر می‌رسد. در نشانگر AFLP به دلیل کاربرد پژوهش محدودیت آغازگر احتمال ارزیابی یکنی به زون از زمین وجود دارد همچنین تأثیر محیطی صفات مولکولی که وجود آورده‌اند.
منابع مورد استفاده

1. زمان خانپور، ف. 1377. سازمان پارک‌ها و فضای سبز شهر تهران. ص ۴۰.
2. قربانی، ب. 1375. کازرون به نگاره‌های DNA در اصلاح نیانات. مقالات کلیدی چهارمین کنگره علوم زراعت و اصلاح نیانات ایران، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان.
3. کرکان، م. ف. تالاری و ن. نژادی. 1372. باگی‌بی نژادی. جلد دوم، سازمان پارک‌ها و فضای سبز شهر تهران.