ارزیابی توان تجزیه لیگنوسلولز برخی از باکتری‌های جدا شده از انواع خاک و مواد در حال پوشیدگی

محسن برجی

چکیده

اکثری از کاربردهای میکروگانیسم‌ها برای تبدیل بیوماس گیاهی به سبزی مشابه از فراورده‌های با ارزش تجاری مورد بررسی قرار گرفته است. تعدادی از منومنه‌های خاک، مواد گیاهی در حال پوسیدگی و کودهای دامی پوسیده شده از یکدیگر مختلف است. مکان های محیطی به نشانه جداسازی و تعبیه هویت باکتری‌های هوازی که قادر به استفاده از منومنه‌های لیگنین بودند، جمع آوری شدند. باکتری‌ها با استفاده از سه نوع لیگنین کل، همگون و خاک ار مصرف می‌گردند. با کسب و کرای، یک چندانی از گروه باکتری، میان رشته استروتوماپس و سودوموناس در محیط دارای کلش گندم بیشتر از محیط حاوی خاک ار بود. نتایج دبیر نشان داد که فراوری باکتری‌ای مواد لیگنوسلولزی در استفاده از مکمل از این محیط کشت، آثار قابل توجهی بر ترکیب شیمیایی کلش و خاک ار داشت است. در جنس باکتری موجب افزایش پروتئین خام، لیگنین پلیمر قابل رسوب در آب، لیگنین محلول و کاهش کربوهیدرات‌ها و لیگنین تهیه‌کننده کلش خاک ار در مقایسه با شاهد بدون باکتری شدند (P<0/01). استروتوماپس به خصوص در محیط کشت دارای کلش توان تجزیه‌ای بیشتری نسبت به سودوموناس نشان داد. استفاده از عصاره مخمر (به عنوان منبع ارد) توان تجزیه‌ای باکتری‌ها را بهبود بخشید. نتیجه این پژوهش نشان داد که این باکتری‌ها می‌توانند برای بهبود سازی بیولوژیکی بامزه‌های کشاورزی به منظور تغذیه دام، مورد استفاده قرار گیرند.

واژه‌های کلیدی: لیگنوسلولز، تجزیه بیولوژیک، استروتوماپس، سودوموناس، کلش گندم، خاک ارد

مقدمه

بر اساس داده‌های FAO در سال 1994، سطح خلفزایی در جهان، 3/2 میلیارد هکتار است که حداقل هر سال 1 میلیارد تن گیاه علفی (بر اساس وزن خشک) در مورد علوم دامی، دانشکده کشاورزی و منابع طبیعی، دانشگاه آزاد اسلامی واحد ارد.
وجود لیگنین‌های گیاهی، عمده تحقیقات به شکستن اتصال بین
این ماده و هولوسولزها و یا ترجمه خود مولکول لیگنین‌های متمرکز
شده است (11). از نظر مهم از انواع‌گان ایمنی تجزیه
کننده لیگنین که ناکنون پیشرفت مورد بررسی قرار گرفته،
Phanerochaete chrysosporium (فازل‌های سفید پوسیدگی) به‌طور
دو برابر از اکتینومیکس‌ها است.

این اکتینومیکس‌ها به‌طور کلی (Actinomyces) به‌طور کلی (Acid precipitable polymeric lignin) (APPL) با توجه به ذرات خشک کلوش با خرد این کمپوزیت در توانایی گردندگی می‌کند و از نظر تجزیه لیگنوسولز، دارای روندی زیادی هستند (22).

کلته‌های گیاهی در میانی از لیگنوسولز، از جمله خاک،
کمپوسولز، علوفه خشک، کلوش با خرد این کمپوزیت در توانایی گردندگی
می‌کند و از نظر تجزیه لیگنوسولز، دارای روندی زیادی هستند
(22).

کلته‌های گیاهی در میانی از لیگنوسولز، از جمله خاک،
کمپوسولز، علوفه خشک، کلوش با خرد این کمپوزیت در توانایی گردندگی
می‌کند و از نظر تجزیه لیگنوسولز، دارای روندی زیادی هستند
(22).

کلته‌های گیاهی در میانی از لیگنوسولز، از جمله خاک،
کمپوسولز، علوفه خشک، کلوش با خرد این کمپوزیت در توانایی گردندگی
می‌کند و از نظر تجزیه لیگنوسولز، دارای روندی زیادی هستند
(22).

کلته‌های گیاهی در میانی از لیگنوسولز، از جمله خاک،
کمپوسولز، علوفه خشک، کلوش با خرد این کمپوزیت در توانایی گردندگی
می‌کند و از نظر تجزیه لیگنوسولز، دارای روندی زیادی هستند
(22).

کلته‌های گیاهی در میانی از لیگنوسولز، از جمله خاک،
کمپوسولز، علوفه خشک، کلوش با خرد این کمپوزیت در توانایی گردندگی
می‌کند و از نظر تجزیه لیگنوسولز، دارای روندی زیادی هستند
(22).

کلته‌های گیاهی در میانی از لیگنوسولز، از جمله خاک،
کمپوسولز، علوفه خشک، کلوش با خرد این کمپوزیت در توانایی گردندگی
می‌کند و از نظر تجزیه لیگنوسولز، دارای روندی زیادی هستند
(22).

کلته‌های گیاهی در میانی از لیگنوسولز، از جمله خاک،
کمپوسولز، علوفه خشک، کلوش با خرد این کمپوزیت در توانایی گردندگی
می‌کند و از نظر تجزیه لیگنوسولز، دارای روندی زیادی هستند
(22).

کلته‌های گیاهی در میانی از لیگنوسولز، از جمله خاک،
کمپوسولز، علوفه خشک، کلوش با خرد این کمپوزیت در توانایی گردندگی
می‌کند و از نظر تجزیه لیگنوسولز، دارای روندی زیادی هستند
(22).

کلته‌های گیاهی در میانی از لیگنوسولز، از جمله خاک،
کمپوسولز، علوفه خشک، کلوش با خرد این کمپوزیت در توانایی گردندگی
می‌کند و از نظر تجزیه لیگنوسولز، دارای روندی زیادی هستند
(22).

کلته‌های گیاهی در میانی از لیگنوسولز، از جمله خاک،
کمپوسولز، علوفه خشک، کلوش با خرد این کمپوزیت در توانایی گردندگی
می‌کند و از نظر تجزیه لیگنوسولز، دارای روندی زیادی هستند
(22).

کلته‌های گیاهی در میانی از لیگنوسولز، از جمله خاک،
کمپوسولز، علوفه خشک، کلوش با خرد این کمپوزیت در توانایی گردندگی
می‌کند و از نظر تجزیه لیگنوسولز، دارای روندی زیادی هستند
(22).

کلته‌های گیاهی در میانی از لیگنوسولز، از جمله خاک،
کمپوسولز، علوفه خشک، کلوش با خرد این کمپوزیت در توانایی گردندگی
می‌کند و از نظر تجزیه لیگنوسولز، دارای روندی زیادی هستند
(22).

کلته‌های گیاهی در میانی از لیگنوسولز، از جمله خاک،
کمپوسولز، علوفه خشک، کلوش با خرد این کمپوزیت در توانایی گردندگی
می‌کند و از نظر تجزیه لیگنوسولز، دارای روندی زیادی هستند
(22).

کلته‌های گیاهی در میانی از لیگنوسولز، از جمله خاک،
کمپوسولز، علوفه خشک، کلوش با خرد این کمپوزیت در توانایی گردندگی
می‌کند و از نظر تجزیه لیگنوسولز، دارای روندی زیادی هستند
(22).

کلته‌های گیاهی در میانی از لیگنوسولز، از جمله خاک،
کمپوسولز، علوفه خشک، کلوش با خرد این کمپوزیت در توانایی گردندگی
می‌کند و از نظر تجزیه لیگنوسولز، دارای روندی زیادی هستند
(22).

کلته‌های گیاهی در میانی از لیگنوسولز، از جمله خاک،
کمپوسولز، علوفه خشک، کلوش با خرد این کمپوزیت در توانایی گردندگی
می‌کند و از نظر تجزیه لیگنوسولز، دارای روندی زیادی هستند
(22).

کلته‌های گیاهی در میانی از لیگنوسولز، از جمله خاک،
کمپوسولز، علوفه خشک، کلوش با خرد این کمپوزیت در توانایی گردندگی
می‌کند و از نظر تجزیه لیگنوسولز، دارای روندی زیادی هستند
(22).

کلته‌های گیاهی در میانی از لیگنوسولز، از جمله خاک،
کمپوسولز، علوفه خشک، کلوش با خرد این کمپوزیت در توانایی گردندگی
می‌کند و از نظر تجزیه لیگنوسولز، دارای روندی زیادی هستند
(22).

کلته‌های گیاهی در میانی از لیگنوسولز، از جمله خاک،
کمپوسولز، علوفه خشک، کلوش با خرد این کمپوزیت در توانایی گردندگی
می‌کند و از نظر تجزیه لیگنوسولز، دارای روندی زیادی هستند
(22).

کلته‌های گیاهی در میانی از لیگنوسولز، از جمله خاک،
کمپوسولز، علوفه خشک، کلوش با خرد این کمپوزیت در توانایی گردندگی
می‌کند و از نظر تجزیه لیگنوسولز، دارای روندی زیادی هستند
(22).
به نام آزوتوباکتر (Azotobacter) و سراسریا مارسیسنس. قادیر به رنگ برای محیط کردن لیگنین بودنده (28، 24 و 29، سراسریا مارسیسنس آن‌ها) تولید نمود که فعال‌یابی این آنزیم همبستگی معنی‌داری با محلول کردن لیگنین داشت (29).

1. لیگنین دی اکسان (Dioxane lignin)

۲۵ گرم کلس و خاک به دو بخش یک‌میلی‌متری و برای ۲۰ ساعت در حالت جوش (۱:۱) عصاره گیپری شد. دمای کلس و خاک از عصاره گیپری شده برای مدت ۱۲ ساعت با ۳۰ میلی‌لیتر محلول در حالت جوش منشأ‌درد آکسان (1,4-Dioxane, or 1,4-diethylene oxide, Merck Co. LTD.) تغییر شده و لیگنین در آب مغذی دی یونیور ده کلم با فشار داده شد. لیگنین رواب داده شده سه مره با آب شسته و خشک کرده دیسپس با ۵۰ میلی‌لیتر آب نفت نشته شد (۲۰).

2. لیگنین کلونین (Klason-lignin)

۲۵ گرم کلس و خاک از عصاره گیپری شده با آب داغ (همچنان که در بالا توصیف شد) با ۵۰ میلی‌لیتر اسید سولفوریک 7۲ درصد فرازند شد. درد عصاره گیپری شده و لیگنین در آب مغذی دی یونیور ده کلم با فشار داده شد. لیگنین رواب داده شده سه مره با آب شسته و خشک کرده دیسپس با ۵۰ میلی‌لیتر آب نفت نشته شد (۲۰).

3. لیگنین اسید هیدروکلریدیک (HCl-Lignin)

۲۵ گرم کلس و خاک از آسیاب شده (به اندازه یک میلی‌متر) در ۵۰ میلی‌لیتر محلول اسید هیدروکلریدیک (۴۰٪) (وزن مخصوص ۱/۱۵) در ۵ دمای ۵ درجه سانتی‌گراد برای ۲ ساعت شد. درد عصاره گیپری شده و لیگنین در آب مغذی دی یونیور ده کلم با فشار داده شد. لیگنین رواب داده شده سه مره با آب شسته و خشک کرده دیسپس با ۵۰ میلی‌لیتر آب نفت نشته شد (۲۰).

13. موارد و روش‌ها

تهیه لیگنین و پلی‌سیاکارتایدها

کلک گندفا و خاک از به دلیل داشتن لیگنین زیاد) به توجه شد و با استفاده از آسیاب چکشی به اندازه یک میلی‌متر خرد گردیدند. دسیس، کلس و خاک از چهاربار با آب جوش عصاره‌کردن را در آب آجیش شسته و خشک شد (۲۰).

13. موارد و روش‌ها

تهیه لیگنین و پلی‌سیاکارتایدها

کلک گندفا و خاک از به دلیل داشتن لیگنین زیاد) به توجه شد و با استفاده از آسیاب چکشی به اندازه یک میلی‌متر خرد گردیدند. دسیس، کلس و خاک از چهاربار با آب جوش عصاره‌کردن را در آب آجیش شسته و خشک شد (۲۰).
پتروهای تهیه شده برای 48 ساعت در دمای 37 درجه سانتی‌گراد ایکوتورا بادین‌ساخته. بعد از این مدت، امکان رشد باکتری‌ها بی‌روی بترا ها (محیط جامد) با مشاهده مستقیم و در ارلن‌ها (محیط مایع) با روش رنگ آمیزی کرم و پتروهای کانت آکار (Count agar) شناسایی شد. همچنین با انجام سه زیر کشت متواوی، باکتری‌ها تا حد امکان خالق سازی شدند.

جدای سازی باکتری‌ها با تاکید بر استرتوپایزها
برای جداسازی استرتوپایز‌ها از نمونه‌های جمع‌آوری شده از محیط کشت کامبیا و جی انساف شدید (22 و 31). میلی‌لیتر از نمونه‌های رقیق شده میکربیکی (که قبلی ذکر شد) بر روی پشت‌هایی که با استفاده از آکار، محلول نمک‌های معدنی به‌کمک یکی از انواع لیگنول، کلنگ گذراندن پای کها در محیط 5/0/0/0 درصد و 1/0 درصد ونصی به حجمی) به عنوان مکمل از دست نرفته (فقط در محیط مایع که در این لیگن‌بندی بر شیر بود، کشت شدند. اکونوپاتسیون در دو اطراف و 3/5 درصد سانتی‌گراد انجام شد. دمای 3/5 درجه سانتی‌گراد، دمای بهره‌بری تجزیه لیگنولولیز تعمین شده است (31).

جدای سازی باکتری‌ها
در این پژوهش برای جداسازی باکتری‌ها از مواد مختلف مانند مواد گیاهی در حال پودر، خاک جنگلی، خاک معمولی، رسوبات رودخانه‌ای و مواد کودی در حال پودر استفاده شده (37). با توجه به شیوه انجام توانایی استرتوپایز‌ها در تجزیه لیگنولیز بر اساس از محیط‌های اختصاصی به منظور جداسازی این نوع باکتری‌ها استفاده شده است.

تربیت‌بندی 1-10 میلی‌لیتر از نمونه‌های جمع‌آوری شده برای جداسازی باکتری‌ها در 100 میلی‌لیتر از سرم فیبرولوزیک استریل به مدت 5 دقیقه بر روی شیکر نکتان داده شد. پس 1/0 میلی‌لیتر مخلوط به دست آمده برای تلفیق فلکس‌های میلی‌لیتر حاوی محلول نمک‌های معدنی پایه (مخلوط 6/2g NaH2PO4 + 3.5g KH2PO4 + 0.5g NaCl + 1.0g NH4Cl (در هر لیتر آب شیری) + 0/0 درصد یکی از انواع لیگن در حاوی محلول نمک‌های معدنی پایه و 0/0 درصد یکی از انواع لیگنولولیز استفاده شد. اردیک‌ها و

ليگنولولیز کلنگ گندم و خاک ار
کلنگ گندم و خاک ار با استفاده از یک آسیاب تیغه‌ای در جنوب مرحله نمونه‌های 5 میلی‌متر آسیاب شدند. سپس این مقدار با آب داغ (تا مرحله تغییر نکند رنگ آب) در مرحله دوم با مخلوط بینزین (89/7) - اتانول (95) (1:4 حجمی) در مرحله سوم با اثانول (79/5) و در مرحله آخر دوباره با آب داغ عصاره گیری و بعد از آن در هوا خشک شدند. از این لیگنولولیز در جداسازی باکتری‌ها و نیز بررسی تووان تجزیه باکتری‌ها استفاده شد (37).

42
ارزیابی نتوان تجزیه لیگوسولوز برخی از باکتری‌های جدا شده از انواع خاک و ...
جهانبیکاتری دیگری که در این پژوهش شناسایی شد، به عنوان Streptomyces somaliensis (Pseudomonas sp. (پژوهشگر 1991 در این پژوهش در کره کوکی نامه‌ای شکل گیری که، اکثریت گروه‌های گرفته و خاکتربنیکی شدند. پس از درصد سه، وزن کشی و در نهایت لیگن‌نامحل در این آزمایش استفاده از فرمول‌های موجود تعیین شد. در یک آزمایش دیگر آلترین استفاده از عصاره مخمر به میزان 0/5 درصد به عنوان مکمل نتروزن دار همراه با فرواری باکتریایی مورد بررسی قرار گرفت. سایر شرایط آزمایش با آنچه که در یکتا ذکر شد مشابه بود.

در آزمایش تغییر تعداد باکتری‌ها (محیطی رشد) و تعیین pH یا دقتی استفاده شد که گونه‌ها (فاکتورهای) شالی استفاده یا آزمایش فاکتوریل استفاده کردند. طی آزمایش (مطابق با (Streptomyces somaliensis) و 86/1 دیگر متعلق به جنس استرپتوومیس بوده که گونه‌ها در هر آزمایش نشده است. لیس (33) نژاد استرپتوومیس بود که گونه‌ها هر همکاری کمی می‌باشد. عملا استرپتوومیس بود، با اینکه گونه‌های باکتری‌های مزدرو در محیط‌های محتوی مواد چرخه کربن محیط زیست در محیط‌های مانند خاک و مواد گیاهی در حال یوستسیگی توجه نمود.

در ارتباط با میزان رشد در این آزمایش، نشان داد که از این عوامل مورد بررسی، نوع ماده (لیگنولژی) و عمل کاربرد و جنس باکتری، دارای تأثیر بررسی معنی دار بر میزان رشد باکتری بودند (جدول 1). در صورتی که عملکرد از عصاره مخمر، چنین یک نشان دهنده (جدول 1). از این موارد لیگنولژی و باکتری‌ها در محیط درای کلن، گندم توسط خاک ارائه می‌شده (شما). (شکل 1 و 2) نشان دهد، پژوهشگر از میزان عصاره خاکی می‌باشد. آنالیز عصاره مخمر به عنوان منبع از آن تأثیر به شاهد خاک باکتری‌ها، فیل اثر در اثر افزایش رشد هر در جنس باکتری، جنس باکتری‌ها در محیط آزمایش است. از این نغمه‌ها باکتری‌ها مورد بررسی نژاد بیشتر میزان رشد باکتری‌ها در محیط کشت لحیق شده با استرپتوومیس در مقایسه با لیگنولژی و شاهد تغییرات در (شما). تغییرات در جزییات درباره واریانس و مقایسه مقادیر نیز نشان داد که در مجموع، تغییراتی در خاکی و تغییراتی در محیط ساختهمان (21)
شکل 1. منحنی رشد باکتری‌های استرپتومایزس و سودورموناس بر روی کلش گندم با و بدون عصاره مخمر

شکل 2. منحنی رشد باکتری‌های استرپتومایزس و سودورموناس بر روی خاک اره با و بدون عصاره مخمر

باکتری‌های دارای تأثیر بسیار معنی‌داری (P<0.01) بودند. در حالی که افزودن عصاره مخمر در مقایسه با شاهد (بدون عصاره مخمر) تأثیر معنی‌داری بر pH محیط کشت نداشت (جدول ۱). میزان رشد باکتری در محیط کشت تأثیر نداشت. دارای کلش گندم و عصاره مخمر نسبت به سایر محیط‌های کشت بیشتر بوده است (جدول ۲). نتایج آزمایش با تأثیر رشد باکتری‌ها بود.

دانشگاه علوم پزشکی کرمان - مرکز آزمایش‌های آبیاری - دانشکده علوم زیستی - گروه آبیاری - و. هایrière
جدول 1. تکنیک تجزیه واریانس داده‌های حاصل از بررسی تأثیر فراوری باکتریایی در مقایسه با شاهد (بدون باکتری) بر رشد باکتری pH محیط کشت، کاهش وزن و تغییر ترکیبات شیمیایی مواد لیگنوسولازی (کلکس گندم و خاک اره)

<table>
<thead>
<tr>
<th>شیمیایی مواد</th>
<th>لیگنین محلول</th>
<th>آمیل-بنا (APPL)</th>
<th>تعداد باکتری</th>
<th>pH محیط</th>
<th>درجه تعیین تغییر</th>
<th>صفت تغییر</th>
<th>شیمیایی مواد</th>
<th>لیگنین محلول</th>
<th>آمیل-بنا (APPL)</th>
<th>تعداد باکتری</th>
<th>pH محیط</th>
<th>درجه تعیین تغییر</th>
<th>صفت تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماده لیگنوسولازی (A)</td>
<td>1129/18***</td>
<td>1/45***</td>
<td>1/20***</td>
<td>278/0.6**</td>
<td>35/0.6**</td>
<td>1124/15***</td>
<td>(A)</td>
<td>1</td>
<td>مکمل نیتروژن دار (B)</td>
<td>7/4**</td>
<td>1/50***</td>
<td>1/20***</td>
<td>224/0.6**</td>
</tr>
<tr>
<td>وجود و نوع باکتری (C)</td>
<td>0/27/27***</td>
<td>0/10***</td>
<td>0/30***</td>
<td>123/0.4**</td>
<td>15/0.4**</td>
<td>0/00/0.4**</td>
<td>AB</td>
<td>0</td>
<td>1</td>
<td>4/3/3/3***</td>
<td>0/20***</td>
<td>0/10***</td>
<td>0/30**</td>
</tr>
<tr>
<td></td>
<td>0/25/25***</td>
<td>0/30***</td>
<td>0/40***</td>
<td>55/0.5**</td>
<td>0/00/0.5**</td>
<td>0/00/0.5**</td>
<td>BC</td>
<td>0</td>
<td>2</td>
<td>8/2/2/2**</td>
<td>0/20***</td>
<td>0/10***</td>
<td>0/30**</td>
</tr>
<tr>
<td></td>
<td>8/17/17***</td>
<td>0/46/46***</td>
<td>0/46/46***</td>
<td>17/4/20**</td>
<td>20/4/20**</td>
<td>8/2/2/2**</td>
<td>خطا</td>
<td>0</td>
<td>3</td>
<td>0/00/0.0</td>
<td>0/00/0.0</td>
<td>0/00/0.0</td>
<td>0/00/0.0</td>
</tr>
<tr>
<td>ضریب تغییرات</td>
<td>0/17/17***</td>
<td>0/46/46***</td>
<td>0/46/46***</td>
<td>17/4/20**</td>
<td>20/4/20**</td>
<td>8/2/2/2**</td>
<td>خطا</td>
<td>0</td>
<td>4</td>
<td>0/00/0.0</td>
<td>0/00/0.0</td>
<td>0/00/0.0</td>
<td>0/00/0.0</td>
</tr>
<tr>
<td>خطای استاندارد</td>
<td>8/17/17***</td>
<td>0/46/46***</td>
<td>0/46/46***</td>
<td>17/4/20**</td>
<td>20/4/20**</td>
<td>8/2/2/2**</td>
<td>خطا</td>
<td>0</td>
<td>5</td>
<td>0/00/0.0</td>
<td>0/00/0.0</td>
<td>0/00/0.0</td>
<td>0/00/0.0</td>
</tr>
</tbody>
</table>

؛* و ****: به ترتیب نشان دهنده معنی‌دار بودن اثر عوامل آزمایشی در سطوح احتمال ۰.۰۵ و ۰.۱ درصد می‌باشد.
1. جدول نسبت میانگین ۴۰۰ تعمیم شده است.
2. درجه آزادی خطای برابر تعداد باکتری و pH و ۱۶۸ برای سایر معیارهای اندازه‌گیری شده ۲۴ بوده است.
جدول 2 مقایسه میانگین داده‌های حاصل از بررسی تأثیر فراوری باکتریایی در مقایسه با شاهد (بدون باکتری) بر رشد باکتری.

<table>
<thead>
<tr>
<th>نیم‌زاره</th>
<th>pH</th>
<th>میزان عصاره مخمر، بدون باکتری</th>
<th>میزان عصاره مخمر، با استرپتومیاپس</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/25</td>
<td>کلش، بدون عصاره مخمر، بدون باکتری</td>
<td>کلش، بدون عصاره مخمر، استرپتومیاپس</td>
<td>کلش، بدون عصاره مخمر</td>
<td>کلش، بدون عصاره مخمر</td>
<td>کلش، بدون عصاره مخمر</td>
</tr>
<tr>
<td></td>
<td>1/24</td>
<td>کلش، بدون عصاره مخمر، بدون باکتری</td>
<td>کلش، بدون عصاره مخمر، استرپتومیاپس</td>
<td>کلش، بدون عصاره مخمر</td>
<td>کلش، بدون عصاره مخمر</td>
<td>کلش، بدون عصاره مخمر</td>
</tr>
<tr>
<td></td>
<td>1/23</td>
<td>کلش، بدون عصاره مخمر، استرپتومیاپس</td>
<td>کلش، بدون عصاره مخمر</td>
<td>کلش، بدون عصاره مخمر</td>
<td>کلش، بدون عصاره مخمر</td>
<td>کلش، بدون عصاره مخمر</td>
</tr>
<tr>
<td></td>
<td>1/22</td>
<td>کلش، بدون عصاره مخمر، بدون باکتری</td>
<td>کلش، بدون عصاره مخمر</td>
<td>کلش، بدون عصاره مخمر</td>
<td>کلش، بدون عصاره مخمر</td>
<td>کلش، بدون عصاره مخمر</td>
</tr>
<tr>
<td></td>
<td>1/21</td>
<td>کلش، بدون عصاره مخمر، بدون باکتری</td>
<td>کلش، بدون عصاره مخمر</td>
<td>کلش، بدون عصاره مخمر</td>
<td>کلش، بدون عصاره مخمر</td>
<td>کلش، بدون عصاره مخمر</td>
</tr>
<tr>
<td></td>
<td>1/20</td>
<td>کلش، بدون عصاره مخمر، بدون باکتری</td>
<td>کلش، بدون عصاره مخمر</td>
<td>کلش، بدون عصاره مخمر</td>
<td>کلش، بدون عصاره مخمر</td>
<td>کلش، بدون عصاره مخمر</td>
</tr>
<tr>
<td></td>
<td>1/19</td>
<td>کلش، بدون عصاره مخمر، بدون باکتری</td>
<td>کلش، بدون عصاره مخمر</td>
<td>کلش، بدون عصاره مخمر</td>
<td>کلش، بدون عصاره مخمر</td>
<td>کلش، بدون عصاره مخمر</td>
</tr>
<tr>
<td></td>
<td>1/18</td>
<td>کلش، بدون عصاره مخمر، بدون باکتری</td>
<td>کلش، بدون عصاره مخمر</td>
<td>کلش، بدون عصاره مخمر</td>
<td>کلش، بدون عصاره مخمر</td>
<td>کلش، بدون عصاره مخمر</td>
</tr>
</tbody>
</table>

1. جذب در طول موج 400 نانومتر تغییر شده است.
2. در هر ستون میانگین هایی که دارای خط تکیه‌گاه 0.05 درصد اختلاف معنی‌دار دارند.
3. میزان لیزه‌بردی نمونه اولیه کلش گندم 50 درصد و خاک ار 16 درصد بود.
4. میزان کروموپرین نمونه اولیه کلش گندم 60 درصد و خاک ار 16 درصد بود.
5. میزان لیزه‌بردی نمونه اولیه کلش گندم 16 درصد و خاک ار 28 درصد بود.

خطای استاندارد
قرار گرفتن. همچنین به همان ترتیب که در مورد رشد باکتری‌ای عوامل pH در محیط‌های کشت دارای عصاره محمر بیشتر بوده، اختلاف معنی‌داری در مقایسه با محیط‌های کشت بدون عصاره محمر دیده نشد (جدول 1). یعنی این نتایج حائز اهمیت است که در محیط کشت‌هایی که رشد باکتری‌ای بیشتر بود pH بالاتری تیز تعبین شد.

سلاماً رشد باکتری‌ها نشان دهنده نوآوری آنها در تولید و ترشح آنزیم‌های تجزیه کندن اجزای دیواره سلولی است، زیرا

احتمال از ترکیبات استفاده در محیط کشت معمولاً آثار قابل توجهی بر میزان رشد میکرو‌اکسیون و عامل گیاه‌پروری که این نتیجه در محیط‌های کشت دارای pH هم در محیط‌های خاص است که بیشتر در محیط‌های کشت دارای pH، است. بنابراین نتایج از این مطالعه یافته است. از آنجا که ترنینگ (33) تعدادی از باکتری‌ها (از جمله فیش اسکیوز، و ...) در توان آنزیم‌ها (ناکامی بهبود، افزایش انرژی، تعمیر و ترمیم تولید انرژی و ...) توان نام باکتری‌ها (تعداد اولیه) تولید محصولات، افزوده زمینه مغذی منبع کلستر، نقده و خانه‌های دانست. نیزسیر و همکاران (39) در پژوهش بر روی باکتری (Thermomonospora fusca) که معمولاً در محیط‌های کشت دارای pH، نوع باکتری خاصی است. این نتایج از این مطالعه نشان می‌دهد تولید

این کننده آنزیم‌ها کاملاً وابسته به رشد است. یکی از مهم‌ترین عوامل مؤثر در روند رشد و فعالیت باکتری‌ها می‌تواند روند مربوط به رشد و اکسیجنسیون باکتری‌ها با دیگر نواحی شرایط محیطی که مشابه کننده‌های باکتری باشد. این مطالعه از رشد باکتری در محیط‌های کشت دارای pH، یا نشان می‌دهد که عوامل رشد باکتری به شکلی تأثیر گرفته هستند که نشان می‌دهد تولید

با، در این مطالعه از نظر محیطی بهبود و فعالیت باکتری‌ها ما توانایی مربوط به ویژگی‌های فیزیولوژی شیمیایی‌ها، شرایط محیطی و نوع اشتها چربی‌های بدین جنگان از دیواره سلولی، وجود کربوهیدرات‌های غیر ساختاری و محلول، جو و میزان ازدیاد در pH کاهش رشد محیط‌های بی‌رنگی باکتری‌ها تحت تأثیر قرار می‌دهد. به عنوان مثال میزان انرژی کاه جنگان (27/3 درصد) کاهش باکتری‌ها می‌باشد (37) از نظر محیطی کشت دیگر دارای اختلاف معنی‌دار می‌باشد. بنابراین روندی را می‌توان با دو موضوع مرتبط دانست. اول آن که خصوصیاتی شیمیایی خود ماده لیگوسولولزی منجر

50
اضافه از عصاره مخمر pH محیط کشت می‌شود و حس می‌کند که خصوصیات
شیمیایی کلش گنم موجب افزایش میزان رشد بакتری‌ها شده
که در نتیجه فعالیت آنها، pH محیط تغییر نموده است. به
علوه افزایش رشد بakteری‌ها در تغییر pH محیط بی‌تأثیر
تیست. یکی از دلایل اصلی افزایش pH محیط کشت،
افزار آمیپاک می‌تواند محیط در نتیجه فعالیت بروتئین مواد
نیکوئلوزری وبسیل بakteری‌ها می‌باشد (16). به‌همین دلیل
در محیط دام در کلش به دلیل رشد و تکثیر کلش در
میانه با گاه از و همچنین زمانی که ترکیبات نیترورز
عده افزایش به‌افته است. عامل دیگری را می‌توان تأثیر محیط
پای جه می‌باشد pH ناحیه اولیه تامونی در نظر گرفت. طبق
نیکوئلوزری و همکاران (10) سیستم BCR محیط کشت،
مکلف برای رشد بakteری را تحت تأثیر قرار می‌دهد. با این
توجه نمود که در پژوهش حاضر نیز وجود محلول
شامل ترکیبات بافری قابل توجهی (همچون دی سیدی
هیدروژن اسید) باید این بود. افزایش pH چالدر
و کلرید آمیپاک) است می‌تواند از تغییرات زیادی
جلوگیری کند. افزایش pH در نتیجه استفاده از عصاره مخمر
نیز قابل توجهی به نظیر می‌رسد، چراکه چنین ترکیباتی و محدودیت
PH محیط BCR (برنده فعالیت BCR با) pH محیط
می‌شود. همچنین در این پژوهش شرایط Faصله BCR و همکاران
35) به‌هوده. محیط کشت را افزایش داد
نتیج حاصل از بررسی تأثیر فراری BCR باکتری‌ها و افزودن
عصاره مخمر (در مقایسه با شاهدهای بدون بakteری و بدون
عصاره مخمر (بر تغییر وزن و ترکیب شیمیایی مواد
نیکوئلوزری در جدول 2 نشان داده شده است. در
ارتباط با میزان بروتئین، مشخص شد که هر فاکتور مورد
بررسی، تأثیر بسیار معنی‌داری بر بروتئین مواد
نیکوئلوزری داشتند (جدول 2) به‌نحوی که در بعضی از
موارد، باکتری‌های بودره بیرسی (به خصوص در صورت

51
نتایج کلی نشان می‌دهند (جدول 2) که استرپتومایزر نسبت به سودوموناس توانایی بالاتری در تجزیه لیگنن دارد که می‌تواند مرتبه بندی سیستم آزمی استرپتومایزر-ها باشد.

هایدر و تریوکسی (17) نیز عناوین نمودار 3-4 می‌تواند نشان دهد که محدودیت‌های کردن لیگنن به وسیله اکتینومیس‌ها کارآمدتر از باکتری‌ها در غیر رشته‌ای است. تجزیه لیگنن در گل‌های گندم نیز بیشتر از خاک آهوره است (P<0/0). در مطالعه آناتامی و کروتوورد (16) میزان کاهش لیگنن توسط استرپتومایزر و بردیوسوروس در چوب نرم‌ها، چوب سخت‌ها و کریستوس توسط استرپتومایز سنتی به ترتیب 72/0.30/0 و 22/5 درصد و برای استرپتومایزر سنتی نیز به ترتیب 74/21/0 درصد بود که نشان دهنده بیشتر بودن میزان تجزیه لیگنن در کریستوس نسبت به بقیه‌ها است. این مطالعه گروهی از کهنه به نوبه خود درون عضوی میزان تجزیه لیگنن توسط استرپتومایزر شده است.

نتایج گیری

نتایج این بررسی نشان می‌دهد که استفاده از باکتری‌ها در فراوری مواد خشیبی به نظر کاهش بی‌حفاظت لیگنن می‌تواند به عنوان یک راه کار، جایگزین روش‌های فیزیکی و شیمیایی در تولید خواص دام ایجاد کانفین تازه، مورد استفاده قرار گیرد. به طور حتم دست‌یابی به ثابتیت متقن و قابل کاربرد، نیاز به تحقیقات بیشتری به خصوص با استفاده از روش‌های دقیقتر مانند روش‌های رادیو‌رسپیرومتروی (Radio-respirometry) (استفاده از سولوئور، و لیگنن رادیو) (اکتوی) و آزمایش خواهی داشت. تحلیل انواع آزمایش تجزیه کننده ترکیب دیواره سلولی و اندوز روروبیونیکا با استفاده از سیستم‌های میکروپوزیتی، از جمله سیستم‌های کاربردی مطالعات این چنینی خواهد بود.

(بر اساس کاهش وزن) در 11 سویه آکتوی می‌بست (بعد از 4 هفته رشد) نشان داد که در 5 سویه، بیشترین کاهش وزن 10-20 درصد، در سه سویه کاهش وزن 20-30 درصد بوده که در پژوهش حاضر بیشتر بودن میزان کاهش وزن 50 درصد محاسبه شد (محاسبات از راه نشده است).

یک ترکیب حد واکسولحل در آب حاصل از APPL تجزیه لیگنن می‌باشد. بررسی‌های آماده نشان داد که در ارتباط با این مورد زیر هست که تعداد عصاره مخمر و ماده لیگنولزی (APPL) تأثیر سیبی بر مایع‌داری داشته‌اند (2001) در مورد برخی از گونه‌های باکتری‌های مختلف لیگننی بنا به خصوص لیگنن غارمی‌های را به لیگنن‌های چپی قبل رشود در اسید یا محیط در آب تجزیه می‌کند (0.7). انسان و همکاران (0.7) اعیادی دارد که به مصوب سیبی باکتری‌های کم منجر به کاهش وزن بیشتر لیگنولیسول می‌شود. کاهش لیگنن (کلیسون) بیشتر و تولید پژوهش حاضر این وضعیت در ارتباط با استرپتومایزر مشاهده شد.

بررسی داده‌های مربوط به لیگنن نشان داد که در ارتباط با کاهش لیگنن ناحیه (لیگنن کلیسون)، در حالی که فاکتورهای ماده لیگنولزی و گونه باکتری‌ای موجب کاهش لیگنن ناحیه (P<0/0) (جدول 1) استفاده از عصاره مخمری چنین اثری نداشته است. ویلی در ارتباط با افزایش لیگنن محلول، هر سه فاکتوری مورد بررسی تأثیر سیبی در دایره داشته‌اند (2001) (جدول 1). این مطالعه تأثیر تعداد زیادی مربوط به روش اندازه‌گیری است. از نظری که بیشتر ترکیب لیگنن محلول از روش کلیسون استفاده شده، افزودن عصاره مخمر به خوبی اثر دارد. نشان داد، حاصل آن که در روش اندازه‌گیری لیگنن محلول (استفاده از جذب نور) این اثر به خوبی تعیین و بررسی شده است.

