مقایسه نوتایبی گردسازی جدایی‌های ریزوبیومی توده‌های بومی عدس تحت تنش خشکی

مقدمه
برای تأیید نیاز تیتروژن محصولات زراعی گیاهان این خانواده، تبیین پیلولاریک تیتروژن در همزیستی ریزوبیومی و گیاهان لگومیریک به عنوان یکی از امکانات کم هزینه و بی‌مواد آلودگی

1. به ترتیب دانشجوی سایر کارشناسی ارشد و دانشجوی کارشناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
2. استادیار گیاهشناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
3. دانشیار زراعت، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
پژوهش‌ها (16 و 20) نشان داده‌اند که رژیم‌های مناسب به‌صورت خصوصی، در سه‌گانه‌های اختصاصی هر گونه گیاهی، قدرت تبیین نیروی و نیز سازگاری این رژیم‌ها به اقیم‌های مختلف، از جمله عواملی است که در موفقیت همزیستی رژیم‌ها - لگام اثر‌گذارند (18). یک کسب تجربه مطلوب از این نوع همزیستی می‌تواند از رژیم‌های در واریتی مناسب در شرایط گل‌سازی متفاوت، توجه نمود.

بودن جدایی‌های رژیم‌های اختصاصی هر گونه گیاهی، قدرت تبیین نیروی و نیز سازگاری این رژیم‌ها به اقیم‌های مختلف، از جمله عواملی است که در موفقیت همزیستی رژیم‌ها - لگام اثر‌گذارند (18). یک کسب تجربه مطلوب از این نوع همزیستی می‌تواند از رژیم‌های در واریتی مناسب در شرایط گل‌سازی متفاوت، توجه نمود.

بودن جدایی‌های رژیم‌های اختصاصی هر گونه گیاهی، قدرت تبیین نیروی و نیز سازگاری این رژیم‌ها به اقیم‌های مختلف، از جمله عواملی است که در موفقیت همزیستی رژیم‌ها - لگام اثر‌گذارند (18). یک کسب تجربه مطلوب از این نوع همزیستی می‌تواند از رژیم‌های در واریتی مناسب در شرایط گل‌سازی متفاوت، توجه نمود.

بودن جدایی‌های رژیم‌های اختصاصی هر گونه گیاهی، قدرت تبیین نیروی و نیز سازگاری این رژیم‌ها به اقیم‌های مختلف، از جمله عواملی است که در موفقیت همزیستی رژیم‌ها - لگام اثر‌گذارند (18). یک کسب تجربه مطلوب از این نوع همزیستی می‌تواند از رژیم‌های در واریتی مناسب در شرایط گل‌سازی متفاوت، توجه نمود.
پیمانه توانایی گرم‌سازی جدایی‌های ریزیوبیوم توهم‌ها

۷۳

شفاف از هر نمونه انتخاب و مجدد در محیط TY کشت Y. enterocolitica طولانی مدت جدایی‌های ریزیوبیوم عدس هر جدایی بوتیک ۱۰۰ میکروانیل فورمگرین (Cryo tube Nunc Co.) متوسط منقل شده لوله‌های نمونه پس از اتمام درون نیتروژن مایع به فریزر °C-۶۰ در واکنش به استفاده از این جدایی‌ها مقدار کمی از سوسپنسرین پخت TY میلی‌لیتر میلی‌لیتر کلی‌ترین

جهت تعیین مقاومت به شوری، جدایی‌های ریزیوبیوم از روش عامل تشییع شوری ریزیوبیوم‌ها در محیط TY مایع و مجدد استفاده شد. این بین مقدار، ۲۰۰ میکروانیل از سوسپنسرین حاوی ۱۰ واحد تکیه گیرنده به گرگرده در محیط TY میلی‌لیتر (cfu/ml) هر جدایی به ۱ میلی‌لیتر محیط کشت سترون دارای غلظت‌های صفر، ۳۰۰، ۴۰۰، ۵۰۰ و ۶۰۰ میلی‌متر کاروز سدوم اضافه گردید. محیط‌های کشت

در دمای °C ۲۸ و در خال ناگهانی (۱۰۰ در در دقیقه) گرگرده شدند. پس از ۴۸ ساعت تغییر نکردند شفافیت محیط کشت در حضور بی‌کشک به منزول ناتوانی رشد جدایی‌های ریزیوبیوم در محیط مایع جایی غلظت خاصی از کلرور سدیم آزمایی شد. در مواردی که بی‌کشکی رشد کرده بود بر حسب میزان کنترل محیط توانایی رشد جدایی در محیط کشت، محیط غلظت مشخصی از کلرور سدیم از یک تا همه درجه بندی شد. در این نوع ارزیابی مشاهده‌ای، نیاز به افزایش ۲ کرم رشد از آنها مطالعه کردند. در میزان ترکیبی که این کلمات ترکیبی رشد به نشان داده به عنوان درجه ۱ محیط شدید. قبلاً نمونه‌ها نیز که ترکیب زبان یا بدون درجه ۳ ارزیابی شدند. به طور همزمان ۳۰ میکروانیل از سوسپنسرین تهیه شده برای هر جدایی، روی محیط TY جامد محتوی همان غلظت‌های بالشی سه

بن شهرکرد و عمومی برای استان چهارمحال و بختیاری نمونه برداری مکرر صورت گرفت. به این مقدار نپتن نمونه های به طور تصادفی از اتفاق سطحی صفر نپتن سانتی متر از سه مزرعه در هر محل برداشت گردید و پس از اکتشاف و ملاحظه ۱۱۱ از نمونه‌های خاک از خاک منقل دیگر داده شد و مقداری از هر نمونه خاک پس از خشکی شدن در معرض هوا برای تعیین خصوصیات میکرو تئوری و شبیه‌سازی استفاده شد. این بقیه هر نمونه خاک به سه مشترک سطحی مخلوط شد. مخلوط خاک حاصل در گلدانها با طوفان سیلیکوگرین ریخته و دو هر گلدان ۱۲ عدد برده از هر نمونه محلی مختلف عدس به نامه پی نام دانه درشت فریبندی و دوزی کشت شد.

گلدان‌ها در شرایط گلخانه‌ای با دمای ۳۲ ± ۰ درجه C و تور از ۶۰ تراکم گردیدند. پس از ده هفته، گیاهان برداشت و ریشه‌ها به وسیله جنگل آزمایش شدند.

۷۴

سپوتن از هر نمونه عدس در هر نمونه خاک انتخاب و تعداد گرگرها آنها شمارش شد. بین گرگرهای شمارش شده در هر پنت، سه گرگ سالم درشت و صورتی رنگ برای جداسازی ریزیوبیوم در نظر گرفته شد. به این منظور، پس از ضدعفونی گرگها با اکل اتیلک ۷۰ درصد به مدت دو دقیقه و در ادامه با محیط هیپکارین سدیم ترکیبات (وایکنس) ۶ در هزار به مدت دو دقیقه و سه به اندازه گلدان‌ها آب مقطع سترن، سپس به طور جدایی‌کننده درون چک‌چک بیپلو ELISA محیط ۵۰ میکروانیل آب مقطع سترن قرار داده شد و به کمک میله فلزی سترون به گرگردید. یک لوب از سوسپنسرین تهیه شده از هر گرگ بر روی محیط غلظت‌های TY محیط کاروزکسمی با دو مکرون آب ۹ گرم، تریپورت ۴ گرم عصاره مخمر ۳ گرم و آکر ۱۵ گرم در پک یک لیر آب مقطع (۷) به صورت خصی کشت شد. پس از نگهداری متحیه‌های کشت در دمای °C ۲۸ به مدت ۷۲ ساعت پرگیاه تشکیل شده بر روی محیط از حفاظ مولوژیکی بررسی شد و یک گرگ شاخه ریزیوبیوم سفید، لعاب دار و
شکل 1. گروه‌بندی جدایی‌های ریپوبومی همبستگی با عدس از نظر تحمیل به سطوح مختلف کلروفورم مسیم

کلروفورم مسیم به صورت لکه، مایه زئیش و محبی‌های کشت در دمای 28°C نگهداری شدند. پس از گذشت 48 ساعت، میزان رشد هر جدایی در غلظت‌های مختلف نمک در مقایسه با تیمار کنترل بر حسب مشاهده چشمی از صفر تا یک درجه بندی شد. براساس ارزیابی تراکم رشد در محیط

<table>
<thead>
<tr>
<th>غلظت نمک (میلی مولار)</th>
<th>میزان رشد (درصد)</th>
<th>تعداد جدایی‌های ریپوبومی</th>
<th>نرخ مولار در نظر گرفته شد (12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

درجه نسبت به یک درجه بندی شد. براساس ارزیابی تراکم رشد در محیط

<table>
<thead>
<tr>
<th>غلظت نمک (میلی مولار)</th>
<th>میزان رشد (درصد)</th>
<th>تعداد جدایی‌های ریپوبومی</th>
<th>نرخ مولار در نظر گرفته شد (12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

میلی مولار کلروفورم مسیم (میلی مولار کلروفورم مسیم) نسبتاً متحمل (قادر به رشد در غلظت‌های 200-400 میلی مولار کلروفورم مسیم) میلی مولار کلروفورم مسیم (قادر به رشد در غلظت‌های 500-400 میلی مولار کلروفورم مسیم) و

پس از آزمایش‌های اولیه و بر اساس درجه بندی میزان رشد به صورت مشاهده به 50-500 میلی مولار کلروفورم مسیم، نسبتاً متحمل (قادر به رشد در 200-400 میلی مولار کلروفورم مسیم) و

پس از آزمایش‌های نسبتاً متحمل (قادر به رشد در غلظت‌های 500-400 میلی مولار کلروفورم مسیم) و

پس از آزمایش‌های نسبتاً متحمل (قادر به رشد در غلظت‌های 500-400 میلی مولار کلروفورم مسیم) و

پس از آزمایش‌های نسبتاً متحمل (قادر به رشد در غلظت‌های 500-400 میلی مولار کلروفورم مسیم) و

پس از آزمایش‌های نسبتاً متحمل (قادر به رشد در غلظت‌های 500-400 میلی مولار کلروفورم مسیم) و

پس از آزمایش‌های نسبتاً متحمل (قادر به رشد در غلظت‌های 500-400 میلی مولار کلروفورم مسیم) و

پس از آزمایش‌های نسبتاً متحمل (قادر به رشد در غلظت‌های 500-400 میلی مولار کلروفورم مسیم) و

پس از آزمایش‌های نسبتاً متحمل (قادر به رشد در غلظت‌های 500-400 میلی مولار کلروفورم مسیم) و

پس از آزمایش‌های نسبتاً متحمل (قادر به رشد در غلظت‌های 500-400 میلی مولار کلروفورم مسیم) و

پس از آزمایش‌های نسبتاً متحمل (قادر به رشد در غلظت‌های 500-400 میلی مولار کلروفورم مسیم) و

پس از آزمایش‌های نسبتاً متحمل (قادر به رشد در غلظت‌های 500-400 میلی مولار کلروفورم مسیم) و
مقياس توآنتی گرمسازی جدایی‌های رژیومیتو نوداهای...
شکل ۲ تعداد گره‌های ارقام مختلف عدس در ۱۲ نمونه خاک (۱) رقم عدس توده محلی قرمز، (۲) رقم عدس بی نام دانه درشت و (۳) رقم عدس فروینی)

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>5</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>S2</td>
<td>3</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>S3</td>
<td>2</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>S4</td>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>S5</td>
<td>4</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>S6</td>
<td>6</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>S7</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>S8</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>S9</td>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>S10</td>
<td>3</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>S11</td>
<td>5</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>S12</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

اطلاعات حاصل از این آزمایش‌ها توسط نرم‌افزار آماری MSTATC مورد تجزیه و تحلیل آماری قرار گرفت و مقایسه میانگین‌ها در صورت معنی‌دار بودن اثر عامل آزمایش با آزمون چند دامنای دانکن به عمل آمد.

نتایج

نتایج به دست آمده از کاشت سه رقم عدس بی نام دانه درشت، توده محلی قرمز و توده محلی قرمزینی در ۱۲ نمونه خاک جمع آوری شده از مناطق مختلف نشان داد که در خاک مطلقه بین استان چهارمحال و بختیاری دارای سابقه کاشت عدس، پس از این مرحله و با توزین روزانه گلدان‌ها، مقدار آب مصرفی آنها محاسبه و پس از رسیدن رطوبت به حد مجاز تعیین شده در هر کشور، آبیاری گلدان پس از رسیدن به حد موثر نمایه انجام گرفت. افزایش وزن گلدان‌ها در اثر شرایط گیاهان، به دست نظر گرفت ورود و تعداد گیاهان شاهد در محاسبه میزان آب مورد نیاز گیاهانی مختلف ملحوظ نشده و تصمیم مربوط انجام گرفت. پس از ۱۲ هفته، گیاهان، برداشت شده و پس از شستشوی ریشه‌ها، چهار پوشه از هر تیمار به طور تصادفی انتخاب شد. پس از توزین ریشه‌ها، تعداد گره‌های ایجاد شده روي آنها شماره گردید.
پیشترین تعداد گره وجود داشت، ولی در خاک فروج کرچی استان گلستان، بودن سابقه کاشت عدس، کمترین تعداد گره تبت شد. در بقیه نمونه‌های خاک، میزان گرندینی در حد واسط این در نمونه خاک قرار داشت (شکل ۳). در بررسی تعداد گره و اندام گیری مختلف فیزیوکمپیوتابای نمونه‌های خاک، این در خاک دو نام داشت دو تعداد تفاوتی از گره‌های درشت‌سینه، به حالت در خاک عدس قرار گرفتند و تعداد گره‌ها در نتیجه محل خاک و قربینی در همه خاک‌های مشابه و متوسط ارتفاعی شد. در هیچ کدام از موارد، اثر خصوصیات شیمیایی خاک مانند pH . CaCO3 . OM 3 جهانکردهای برای Na وال حلال خاک بر میزان گرندینی ریشه‌ها در سطح ریشه در مورد عدس در نتیجه نبود.

برگ گازی کاوشک گیاهانی گره‌های مصرفی ریزپروسی تعداد گره‌های مورد بررسی در محیط گیاهانی جامعه‌ای از نظر مولفه‌های یکسان PEG و هم بسیار شناخته‌شده‌اند و علاوه بر آن بسیاری از موردگیری‌های ژنتیکی در مرکز گیاهان‌های خاکی. در مجموع ۴۵۶ جدایی ریزپروسی از خاک‌های نمونه، جهانی‌سازی شده و در آزمایش‌های بعدی کار گرفته شد. در بررسی مقادیر میزان خاکی شکاف در شرایط مختلف کلاه‌های آزمایش‌های ریزپروسی و RL211 در تعداد های کمترین حمایت یا تعداد خاک (برای مثال، ترکیب مولض منطقه‌ای NPK) ۱۰۰٪ میزان عدس از این گرندینه به کار رفته بود. در حالت که فقط میزان عدس از این گرندینه به کار رفته بود، در حالت که فقط ۶۰٪ میزان عدس از این گرندینه به کار رفته بود، در حالت که فقط ۶۰٪ میزان عدس از این گرندینه به کار رفته بود و در حالت که فقط ۶۰٪ میزان عدس از این گرندینه به کار رفته بود، در حالت که فقط ۶۰٪ میزان عدس از این گرندینه به کار رفته بود. در حالت که فقط ۶۰٪ میزان عدس از این گرندینه به کار رفته بود.

۲۳۴ جدایی ریزپروسی از خاک‌های نمونه، جهانی‌سازی شده و در آزمایش‌های بعدی کار گرفته شد. در بررسی مقادیر میزان خاکی شکاف در شرایط مختلف کلاه‌های آزمایش‌های ریزپروسی و RL211 در تعداد های کمترین حمایت یا تعداد خاک (برای مثال، ترکیب مولض منطقه‌ای NPK) ۱۰۰٪ میزان عدس از این گرندینه به کار رفته بود. در حالت که فقط میزان عدس از این گرندینه به کار رفته بود، در حالت که فقط ۶۰٪ میزان عدس از این گرندینه به کار رفته بود، در حالت که فقط ۶۰٪ میزان عدس از این گرندینه به کار رفته بود، در حالت که فقط ۶۰٪ میزان عدس از این گرندینه به کار رفته بود، در حالت که فقط ۶۰٪ میزان عدس از این گرندینه به کار رفته بود.

۲۳۴ جدایی ریزپروسی از خاک‌های نمونه، جهانی‌سازی شده و در آزمایش‌های بعدی کار گرفته شد. در بررسی مقادیر میزان خاکی شکاف در شرایط مختلف کلاه‌های آزمایش‌های ریزپروسی و RL211 در تعداد های کمترین حمایت یا تعداد خاک (برای مثال، ترکیب مولض منطقه‌ای NPK) ۱۰۰٪ میزان عدس از این گرندینه به کار رفته بود. در حالت که فقط میزان عدس از این گرندینه به کار رفته بود، در حالت که فقط ۶۰٪ میزان عدس از این گرندینه به کار رفته بود، در حالت که فقط ۶۰٪ میزان عدس از این گرندینه به کار رفته بود، در حالت که فقط ۶۰٪ میزان عدس از این گرندینه به کار رفته بود، در حالت که فقط ۶۰٪ میزان عدس از این گرندینه به کار رفته بود، در حالت که فقط ۶۰٪ میزان عدس از این گرندینه به کار رفته بود، در حالت که فقط ۶۰٪ میزان عدس از این گرندینه به کار رفته بود.
جدول ۱. تجزیه واریانس اثر تیمارهای مورد بررسی بر تعداد گره و وزن تریش عدس

<table>
<thead>
<tr>
<th>منابع تغییرات</th>
<th>درجه آزادی</th>
<th>صفات مورد بررسی</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین مربعات</td>
<td>وزن تریش</td>
<td>تعداد گره</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۲۲۵</td>
<td>**</td>
</tr>
<tr>
<td>۰/۲۵۵</td>
<td>**</td>
</tr>
<tr>
<td>۰/۷۶۵</td>
<td>**</td>
</tr>
<tr>
<td>۰/۱۵۳</td>
<td>**</td>
</tr>
<tr>
<td>۰/۳۲</td>
<td>**</td>
</tr>
<tr>
<td>۰/۵۴</td>
<td>**</td>
</tr>
<tr>
<td>۰/۷۳</td>
<td>**</td>
</tr>
<tr>
<td>۰/۱۷۷</td>
<td>**</td>
</tr>
</tbody>
</table>

ruzam ایبازی
پارسی
ایزوله رژیوبرم
رزام ایبازی × ایزوله رژیوبرم
خطر
ارقام عدس
رزام ایبازی × ارقام عدس
ایزوله رژیوبرم × ارقام عدس
رزام ایبازی × ایزوله رژیوبرم × واریته عدس
خطر
* : در سطح پنج درصد معنی‌دار می‌باشد. ** : در سطح یک درصد معنی‌دار می‌باشد.

جدول ۲. مقایسه اثر تنش خشکی بر تعداد گره ارقام عدس دانه درشت (واریته ۱) و توده محلی فردی (واریته ۲)

<table>
<thead>
<tr>
<th>میزان مصرف آب قابل استفاده</th>
<th>میانگین تعداد گره</th>
<th>واریته</th>
</tr>
</thead>
<tbody>
<tr>
<td>مصرف ۰ درصد آب قابل استفاده</td>
<td>۲۶/۳۲۳</td>
<td>واریته ۱</td>
</tr>
<tr>
<td>مصرف ۲۰ درصد آب قابل استفاده</td>
<td>۱۰/۶۷</td>
<td>واریته ۲</td>
</tr>
<tr>
<td>مصرف ۴۰ درصد آب قابل استفاده</td>
<td>۱۱/۱۱</td>
<td>واریته ۱</td>
</tr>
<tr>
<td>مصرف ۶۰ درصد آب قابل استفاده</td>
<td>۷/۴۲</td>
<td>واریته ۲</td>
</tr>
<tr>
<td>مصرف ۸۰ درصد آب قابل استفاده</td>
<td>۹/۴۴</td>
<td>واریته ۱</td>
</tr>
<tr>
<td>مصرف ۱۰۰ درصد آب قابل استفاده</td>
<td>۴/۴۴</td>
<td>واریته ۲</td>
</tr>
</tbody>
</table>

میانگین هر گروه که حداقل دریک حرف مشترکاند فاقد تفاوت آماری بر اساس آزمون دانکن در سطح احتمال ۵ درصد می‌باشد.
جدول 3 مقایسه میانگین های وزن در ریزپویوم

<table>
<thead>
<tr>
<th>شماره جدایی ریزپویوم</th>
<th>میانگین‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLV7</td>
<td>1/579</td>
</tr>
<tr>
<td>RLV11</td>
<td>1/695</td>
</tr>
<tr>
<td>RLV29</td>
<td>1/981</td>
</tr>
</tbody>
</table>

توجه کنید تعداد گروه‌های مربوط به جدایی‌های RLV211 و RLV449 در تیمارهای مختلف نسبت به RLV7 بیشتر بود. به طور معنی‌داری درصد آب قابل استفاده، تعادل 79 گروه برای RLV449 شمارش شد. در حالتی که برای RLV7 در همان تیمار خشکی فقط 49 گروه قابل استفاده، سطح مختلف خشکی و نوع روز عدس در ایجاد گره توسط ریزپویوم در گیاهان مزود بود. برای نمونه می‌توان گفت هر چند گروه رزپویوم در 50 درصد عدس در ایجاد گره میزان رزپویوم واریان داشت. درصد قابل توجه بود و با اعمال نش مصرف 75 درصد آب قابل استفاده، تعادل گروه‌ها به روش مقایسه میانگین‌ها تا 52 درصد کاهش پیدا کرد و در نش مصرف 98 درصد آب قابل استفاده، رزپویوم کاهش معنی داری داشت. این روند در نتیجه عدس مربوط به اندازه‌گیری و نتیجه‌گیری در بررسی وزن

بررسی عدس تحت نش خشکی، مشخص شد که بین سه نوع جدایی ریزپویوم در سطح یک درصد، تفاوت معنی‌داری از نظر تأثیر روی وزن و ریزه وجود دارد، به طوری که هر گاه از جدایی ریزپویوم RLV299 به عنوان ریزپویوم تلقیحی استفاده شد، وزن و ریزه نسبت به بقیه جدایی‌های ریزپویوم افزایش داشت. به طور معنی‌داری بررسی روز نش ریزه‌های از میزان نش خشکی، در تمام تیمارها وزن و ریزه عدس بس ای نام داشت. نسبت به واریان ریزپویوم شبیه می‌گردد و مشاهدات ظاهری رشد حجمی رشد ریزه نیز با نتایج محاسبات آماری به

طرور کامل مطابقت داشت (جدول 3).
رشد درابند. با وجودی که در مشاهدات ظاهری به طور کلی سرعت رشد ساقه، برانک و نیز سبزینه گیاه عدس دانه درشت دریافت ویژه شده در افزایش انرژی های مصرفی، 90 و 98 درصد آب قابل استفاده، رشد ارگانی کاشت بافت و سیاری از گیاهان 12 از 16 هفته خشک شدن که این تعداد برای رقیق فرندی بیشتر بود. مشخص شده است که تحت تنش خشکی، ماده قندی مانند گلورک و فروکتوز در سالنها تجمع کرده و به همین دلیل رشد کاهش می‌یابد (23). اعمال تنظیم خشکی در کاهش میزان گره‌های بارا بالا (14) و (5) نیز گزارش شده است. از عده‌های دلتن منحصربه‌فرد شدن گروه‌های طی مهیجی‌سی می‌توان به غیر از بلوته و کوکه مانند تاره‌های کشتی‌ها و کاشن تغییری اکسیون در گروه اکسونی به نمود (67 و 89). از طرف دیگر تنظیم خشکی، تنظیم سلولی را در میکروبی‌ها کند ساخته و بنابراین رشد گره و تعداد باکتری‌های گروزا کم می‌شود (12 و 26).

ویژه به ما یک چند علت ملاحظه شده که بجای RL2484ی، نسبت به RL2494ی سایر جاده‌ها در نمای سطوح خشکی گروه‌های بیشتری ایجاد می‌کند. گرچه نجیب و ارتباط با این ارتجاجی گرمسازی را برای US9725 تأیید نکرد، ولی به استناد مشاهدات ظاهری، پتانسیل نمایش این جاده‌ها برای گروه‌های اولین ارقام عدس در شرایط نشی شاخص است. مخصوصاً در کمی گردش دنیا، این چنین جاده به تنظیم شریکان، این ارگانی دلتن کاهش گرده که این روش‌هایی به کنترل این بخش‌های مناسب این شریکان زیر بارا بیشتر از یک روزه گرایی همیجی‌سی محصول می‌شود و تأثیر متقابل ریزوبیوم و کلر عدصرشکی در منیا تغییر گوزن از این افرازی امکان دارد. شاید نشان دهنده با بررسی دیقیک تر همیجی‌سی این جاده‌ها با ارگانی این روش مشابه گرده عدس، این جاده به علت این ویژگی‌ها میزان ارزیابی بختیاری به عمل اورده.

برای مثال مقررات نسبی به نشی شریکان در عدس فرندی، به دلیل حجم و وزن تر ریشه‌ها و محدودیت تنشیک جهه

در مقابله اعداد گروه‌های ایجادش داد بر روی ریش‌ها سه رقم عدس محلی، مشخص شد که توده بوته عدس سبب نام‌نام درشت نسبت به سایر ارقام، گروه‌های بیشتری داشته و انتها و گروه‌های ثانویه درشت‌تر بود. این نتیجه مؤید بوده‌است که گوره‌گران یا بیشتری داشته باشند (15). گزارش‌های دیگری (10) نیز نشان داده است که در گیاه‌های هنگام آن‌ها به‌دست آید بود بود با دلیل جوان نیز سیر، تعداد گروه‌های ایجادش بیشتر نیز می‌باشد. همچنین قدرت فردی بیشتر، دلیل قابل توجهی بین آنها وجود داشت، به طوری که 60 درصد از جاده‌ها نسبت متحمل به شهر و 20 درصد آنها تنشیک داده شدند.

توجه به شهری برای اثر ریزوبیوم‌ها گزارش شده است (11). ظاهراً به دلیل تجمع سریع تر ترکیبات خاصی مانند گلوتامات و نتایج در سلوه‌های ریزوبیوم‌ها تحت تاثیر شوری، تعیین در پتانسیل اکسیور، بکریکی را به شوری توجه به آنها و جایگزین گردش و قابل توجهی به خشکی در عدس گزارش شده است. به طوری که جاده‌های عدس مورد آزمایش عدس، قبل انظار بود. نیز در سایر ریزوبیوم‌های همیجی‌سی نیز تلفن‌های پیده‌ای گزارش شده است. به طوری که جاده‌های متصل به خشکی کانکتر Sinorhizobium meliloti غلظت بالایی از کلر سدوم بودند. ظاهراً تا جمع آزمایش‌های مختلف مانند آلایموتیپنتش در ریزوبیوم‌های متصل به شهری، نتایج آنها را دریافت می‌توان آنها را برای ایجاد شرایط به کار خشکی نیز افزایش می‌دهد (20).

نتایج ازمایش‌های پذیرش سازمانی در شرایط نشی شریکان جاده‌های ریزوبیوم عدس نشان داد که ارقام مرید آزمایش، تحت شرایط مختلف نشی شریکان، و اکتشافات متفاوتی از نظر
In an attempt to examine the effects of temperature on growth, sugar concentrations and amino acid accumulation in N2 fixing alfalfa, Plant Physiol. 46:541-546.

References...