مقایسه توانایی گرگسازی جدایی‌ها یوزبیومی توهدهای بومی عدس تحت نش خشکی

مریم بارقی مفیدی، سعید بهار، حسین شریعتمداری و محمدرضا خواجه پور

چکیده

برای تهیه جدایی‌های متقابل به خشکی باکتری‌های بی‌وزن از همی‌پیمیتونه عدس، 12 نمونه خاک از مناطق مختلف استان‌های گلستان، چهار محله، و چهارشاهرخ و اصفهان جمع آوری شد و ارقام محلی عدس را نام داده درشت، فروندی و فریدی در هر نمونه خاک در گلخانه‌های کشت شد. گونه‌هایی از گرگسازی‌های جداکننده در شرایط مختلفی از گسترش شده. در مورد کریزیت، سیبیونیت، جدایی‌ها، مشخص شد که تهیه جدایی‌های دست‌آمده یک رشته در میان کشت حاصل 200 میلی‌مولار کلور سدیم را دارند. در مقابل یک از نکات (پیش از 400 مولار) از نظر تئوری به شوری، نتایج عصبی در بین جدایی‌ها وجود داشت. به طوری که فقط 20 درصد از آنها به عنوان متقابل به شوری ارزیابی گردیده. جدایی‌های یوزبیومی تهیه می‌شود با استفاده از تولید محصولات متفاوتی و شرایط آزمایشگاهی مشابه

تکرار، گرگسازی جدایی‌ها متقابل به شوری قاده به تکرار نش خشکی در سطح بالاتر از 50 درصد صرف آب قابل استفاده گرگسازی کاهشی معنی‌داری داشت.

واژه‌های کلیدی: عدس، یوزبیومی، همی‌پیمی، مقاوم به شوری، مقاوم به خشکی

مقدمه

تربیت بیولوژیک یوزبیومی در همی‌پیمیتونه و گیاهان

لگوینژوف به عنوان یکی از اکماتان که هرگونه به بدون آموار

1. به ترتیب دانشجوی سایق کارشناسی ارشد و دانشیار خاک‌شناسی. دانشکده کشاورزی، دانشگاه صنعتی اصفهان

2. استادیار گیاه‌پژوهی. دانشکده کشاورزی، دانشگاه صنعتی اصفهان

3. دانشیار زراعت. دانشکده کشاورزی، دانشگاه صنعتی اصفهان
پژوهش‌ها (۱۶ و ۲۰) نشان داده‌اند که ریزوبیوم‌های متحمل به خشکی، در شرایط نیز توانایی رشد خوبی دارند. چینین یافته‌های نشان می‌دهد که احتمالاً پاتوژن‌زایی ریزوبیوم‌ها در حمل به شوری و خشکی بکنن می‌شوند. نشان شوری، همانند نش خشکی به نحوی به نش آنها منجر می‌شود.

با شناسایی ریزوبیوم‌های که حمل نشان خشکی شوری را دارند قادیر خواهند بود در نش رطوبت‌های نزدیک مناسب داشته باشند.

تاکنون کارایی جذب‌های ریزوبیوم عدس در مناطق مختلف ایران که تحت نش خشکی قرار دارند، مطالعه نشده و معلوم نیست که در یک از اقلیت اکثریه کشور جهان، انسان‌ها رشد عدس را دارند. به این ترتیب بین منابعی بیشتر جذب‌های ریزوبیوم‌های عدس از نظر حمل به نش خشکی در ازمایشگاه‌ها و گلخانه‌های می‌تواند به انتخاب ریزوبیوم‌های مؤثر که هر دوی مناسبی با تدوینهای بومی عدس در مناطق دیگر ایران دارند کمک نماید.

در این پژوهش برای جادسازی باتک‌های ریزوبیوم‌های هم‌بستگی با عدس از اکثریه اسلتانیا کلاتسم، اصول و چهارمحال و بختیاری انواع برداری شد. با توجه به یافته‌های قبلی که پاتوژن‌زایی ریزوبیوم‌ها در حمل به شوری و خشکی پیشتر است (۲۰ و ۲۱) و در دلیل سهولت کار آزمایشگاه‌های در غرب دانی‌هم‌سیست‌ها از نظر حمل به شوری، این نکته در نظر عدس‌های با استخراج ریزوبیوم در محیط‌های کشت حاوی غلظت‌های مختلف کلرر سدیم ارزیابی شد و سپس جادسازی محتمل به شوری از نظر حمل به نش خشکی در شرایط آزمایشگاهی و گلخانه‌های برسی شدند. نتایج این سه‌تا نش جادسازی مناسبی با تدوینهای بومی عدس دیم کاری شده در این مناطق معرفی گردید.

مواد و روش‌ها

برای جادسازی ریزوبیوم‌های بومی و تغییر خصوصیات فیزیولوژی و شیمیایی خاک، از اراضی مختلف نواحی قرق کرچی، سرخخت‌کاله‌ها و کمال آباد استان‌گلستان، فردان‌شاهر اصفهان و بودن جذب‌های ریزوبیوم اختصاصی هر گونه گیاهی، قدرت تثبیت نیتروژن و نیز سازگاری این ریزوبیوم‌ها به اقلیت‌های مختلف، از جمله عوامل است که در موقعیت همزیستی ریزوبیوم - لگوم اثر می‌گذارند (۱۸). البته با عایق کسب تیجیه مطلق از این نوع همزیستی باید به کار آوردن جادسازی ریزوبیوم‌ها در اوایل به گیاهان مناسب و در شرایط محیطی متفاوت، توجه نمود.

عدس از جمله گیاهان لگوم‌دان محسوب می‌شود که در رژیم غذایی مردم ایران اهمیت دارد و به دلیل مقاومت به شیمک و اکسیژن کاسیم به دلیل در بعضی مناطق کشور به عنوان محصول دیم در تناوب با غلات کشت می‌شود. این گیاه به دلیل داشتن همزیستی با مختلف گیاه‌های دیگر و تثبیت را تحت تأثیر قرار می‌دهد (۶). شوری خاک نیز که مناسب عدس در مناطق دیگر ایران دارند ممکن است در بیشتر خاک‌ها وسیع‌تر به خشکی باشد. البته بازدارندای روش همزیستی و در تیجیه منافع حاصل از آن دارد (۲۱). به طور کلی، شوری منجر به محدود شدن تنش‌های کشته و چم‌چین کم شدن تعداد نفوذ ریزوبیوم‌ها به داخل تاریک کشته‌ها می‌شود (۲۲ و ۲۳). مطالعات بر روی ریزوبیوم پونجه (۵) و ظرفیت (۲۱) نشان داده است که با افزایش خشکی، تعداد گرده و زنگ خشکی گیاه و مقدار نیتروژن این‌تعداد هیچ‌کدام می‌پاید. پژوهش‌های دیگر (۲۴ و ۲۵) نیز مسئله نمودند که گرمسیری پونجه و سویا تحت نش خشکی نژل پیدا کردند که این اتفاق، احتمالاً به خاطر تحقیب پاسخ‌پذیری‌های مناسبی که روابط‌گونا نیز سبب گرده و نخریده فضایی بین سلول‌ها یا دیگریکنده سطح گرده و نخریده فضایی بین سلول‌ها با کرویکولا در بایست نیز می‌شود. به این ترتیب می‌توان نتیجه گرفت که نش خشکی قادر است میزان تثبیت نیتروژن، تنفس گرده‌ها، و زنگ خشکی گیاه و بارده محصور را کاهش دهد (۱۶).

۷۲
به گردید و نمونه بر یک مکب صورت گرفته بود. بنابراین نیاز به طور تمام‌رسانی از افق سطحی صفر نداشت. سانتی‌متری از سه مزرعه در هر محل برداشت شد. پس از اختلاف نامی، به عنوان نمونه آن محل در آزمایش‌ها با کار رفت. تمام نمونه‌ها خاک از این محل کرید و میله‌های گرمایش دادند و قطعی از هر نمونه خاک پس از خشک شدن در معرض هوا برای تعیین خصوصیات فیزیکی و شیمیایی استفاده شد. شد (8 و 9). بقیه نمونه خاک به شیب 11/1 با ماسه سترن مخلوط شد. مخلوط خاک حاصل در گلدان‌ها و در طی فرآیند کیلوگرم ریخته و در هر گلدان 12 عدد برداشت و سه نمونه محلی مختلف عدس به نامه یبت نام داشته و درصد فرضی و فرضی کننده شد. گلدان‌ها در شرایط گلخانه‌ای با دمای حداکثر 32 °C و حداقل 15 °C و نور ضعیف نگهداری شدند. پس از دو هفته، گیاهان برداشت و ریشه‌ها به وسیله جریان آرام آب شست و شده شدند.

سه بوته از هر توده عدس در هر نمونه خاک انتخاب و تعداد گهواره‌ای آنها کمیت شد. از این گهواره شمارش شده در هر بوته، رنگ سالم، درشت و صورتی زنگ برای گیاهان برگ گرفته شد. بنابراین، پس از ضدعفونی گرده با الکاپا ظلی، 70 درصد به مدت دو دقیقه و در ادامه به محلول الکاپا سدیم تجاری (واتکسنت) 6 در هزار به مدت دیده و سه بار شست و شده به آب مقدار سترون، همراه به طور گچ‌کاری‌گی درون یک چاه با پیل ELISA محیطی 50 میکرولیتر آب مقدار سترون قرار داده شد و به کمک میله فلزی سترون، به گردید. پس لوب از سوسپانسون تهیه شده از هر گرم، بر روی میله مناسب تیفیکTY محیطی کلرورسیلن با مولکول 20/9 گرم، تریتوسین 5 گرم، عصاره مخمر 3 گرم و آگار 15 گرم در یک لیتر آب مقدار (7) به صورت خمیش کشت شد. پس از نگهداری میله‌های کشت در دمای 28 °C به مدت 72 ساعت. پیکر فیلتری شکل شده بر روی میله محیطی از لحاظ مرولوژیکی بررسی شد و یک پرگش شاخص رژیوئومی سفید، لعاب دار و

شایع از هر نمونه انتخاب و مجدداً در محیط TY کشت شد. پس از نگهداری طولانی مدت گیاهان رژیوئومی عدس، هر گیاهان یبت از 36 ساعت مدت در محیط TY به مقدار 400 میکرولیتر به لوله‌های گرید قرار گرفته (Cryo tube Nunc Co.) سترون مخلوط شد. لوله‌های نمونه به‌طور متوسط در هر نمونه خاک پس از خشک شدن در محیط با راه تغییر خصوصیات فیزیکی و شیمیایی استفاده شد. (8 و 9). بقیه نمونه خاک به شیب 11/1 با ماسه سترن مخلوط شد. مخلوط خاک حاصل در گلدان‌ها و در طی فرآیند کیلوگرم ریخته و در هر گلدان 12 عدد برداشت و سه نمونه محلی مختلف عدس به نامه یبت نام داشته و درصد فرضی و فرضی کننده شد. گلدان‌ها در شرایط گلخانه‌ای با دمای حداکثر 32 °C و حداقل 15 °C و نور ضعیف نگهداری شدند. پس از دو هفته، گیاهان برداشت و ریشه‌ها به وسیله جریان آرام آب شست و شده شدند.

سه بوته از هر توده عدس در هر نمونه خاک انتخاب و تعداد گهواره‌ای آنها کمیت شد. از این گهواره شمارش شده در هر بوته، رنگ سالم، درشت و صورتی زنگ برای گیاهان برگ گرفته شد. بنابراین، پس از ضدعفونی گرده با الکاپا ظلی، 70 درصد به مدت دو دقیقه و در ادامه به محلول الکاپا سدیم تجاری (واتکسنت) 6 در هزار به مدت دیده و سه بار شست و شده به آب مقدار سترون، همراه به طور گچ‌کاری‌گی درون یک چاه با پیل ELISA محیطی 50 میکرولیتر آب مقدار سترون قرار داده شد و به کمک میله فلزی سترون، به گردید. پس لوب از سوسپانسون تهیه شده از هر گرم، بر روی میله مناسب تیفیکTY محیطی کلرورسیلن با مولکول 20/9 گرم، تریتوسین 5 گرم، عصاره مخمر 3 گرم و آگار 15 گرم در یک لیتر آب مقدار (7) به صورت خمیش کشت شد. پس از نگهداری میله‌های کشت در دمای 28 °C به مدت 72 ساعت. پیکر
شکل 1: گروه‌بندی جدایی‌های ریزوبیومی همبستگی با عدس از نظر تحلیل به سطوح مختلف کلرور سدیم

کلرور سدیم به صورت لکه، مایه زنی شد و محیط‌های کشت در دمای ۲۸ ℃ به‌طور مداوم نگهداری شدند. پس از گذشتن ۴۸ ساعت، میزان رشد حاصل در غلظت‌های مختلف نمک در مقایسه با تیمار شاهد بر حسب مشاهده چشمی از صفر تا سه درجه بندی شد. براساس ارزیابی تراکم رشد در محیط حاصل غلظت‌های مختلف نمک، جدایی‌های ریزوبیومی عدس در چهار گروه حساس (قادر به رشد در غلظت‌های ۲۰۰ میلی‌مولار کلرور سدیم)، نسبتاً متحمل (قادر به رشد در غلظت‌های ۴۰۰ میلی‌مولار کلرور سدیم)، متحمل (قادر به رشد در غلظت‌های ۵۰۰ میلی‌مولار کلرور سدیم) و بسیار متحمل (قادر به رشد در غلظت‌های ۷۰۰ میلی‌مولار کلرور سدیم) بودند.
مقایسه نوایی‌های آزمایشگاهی جدایی‌های رژیومیو توده‌ها

شک‌ها یکی ستون محتوی کاغذ صاف مربوط به کشت شدید. پس از دو روز، بذر یا جوانه زده به سوسپن‌سازی‌های حاوی حدود 101 واحد تکمیل دهنده کلیه در هر میلی‌لتر تهیه شده از جدایی به مدت نهایی به آن تکمیل و به‌صورت مجزا شده توسط یک دوباره جوشی قرار داده شدند. به این ترتیب تعادل 43 گلدان در یک طرح یک‌ویک انجام شد کاملاً تصادفی. با چهار استفاده، با سه جدول رژیومیو مایه زینی و در توده عدس (دئون درشت و مخلوط فرینی) و با ستار کردن (استفاده از ۱۴ گلدان)، در آزمایش ۱۴ جدول رژیومیو حاوی حدود 41 واحد تکمیل دهنده پرگذرا در میلی‌لیتر جدایی رژیومیو به موجهیت به‌طور کلی شده، میان‌کاهشی در حال توانایی خودرسانه (۱۰۰ درصد) از شرایط آزمایشگاهی به مدت ۲۷ ساعت به‌طور کامل شدند.

سپس به دلیل عدم تضخیل صحیح تراکم بانکی‌ها در محیط حاوی ۶۰۰ PEG، محیط حاوی ۶۰۰ PEG یا محیط PEG ۶۰۰۰ بین ۲۴ و ۲۸ ساعت، مردان رشد هر جدول رژیومیو در غلظت‌های PEG از ۲۳ تا ۵۰ میلی‌مولار درشدی سیستم شد. در این پلی اتان‌گیلکول بر حسب صفر تا میانه بندی شد. در این ارزیابی مشاهده شد که از ۱۰ کلیه در محیط کشت به‌طور کلی، تغییرات غیر قابل شمارش باکتری با تمرکز ۳ درجه‌بندی شد. درج ۲ یا ۳ تیمارهای تغلق دقت شد که زیادتر از ۱۰ کلیه قابل شمارش داشت.

پس از انجام آزمایش‌ها، در جدول رژیومیو عدس که دارای بالاترین میزان تحمیل به شوری و غلظت‌های پلی اتان‌گیلکول در شرایط آزمایشگاهی بودند، برای تعيین مقاومت به خشک‌یکی کمتر از ۱۰ کلیه در محیط کشت به‌طور کلی سرکوت گرفتند. جدول‌های دیگری که حساسیت زیادی به شرایط تنش شوری و خشک‌یکی نشان داد، به‌طور کلی به عنوان ناهنجار استفاده شد. مقادیر بال‌تر عدس نوع محلی فریدنی و بی‌تان داشتند. پس از ضدعفونی سطحی با هیپوکلریت سدیم و الکل اتیلیک ۹۶ درصد به مدت دو دقیقه و مسی پار شستن با آب مقطر ستون به طور جداگانه در
نمودار گره در نمونه خاک

شکل ۲ تعداد گره‌های ارقام مختلف عدس در ۱۲ نمونه خاک (۱) رم عدس توده محلی فردینی، (۲) رقم عدس بی نام

داهن درشت و (۱) رقم عدس فوری‌گری

S_1 = سرخکنل‌های خاک
S_2 = تور نسبی سیستم کشاورزی
S_3 = فرود کهنه‌ها در فرودان
S_4 = آبادانی بی‌نام
S_5 = فرودان بدون سیستم کشاورزی
S_6 = برنج بدون سیستم کشاورزی
S_7 = جمع آوری گردان
S_8 = جمع آوری شرکتی
S_9 = جمع آوری تطهیف

نتایج

نتایج به دست آمده از کاشت سه رقم عدس بی نام دانه درشت، توده محلی فردینی و توده محلی فوکیونی در ۱۲ نمونه خاک

جمع آوری شرکتی از مناطق مختلف نشان داد که در خاک منطقه

بن استان چهار محل و بخش‌های دارای سیستم کشاورزی بی نام،
به عنوان حساس ترین جذابیت‌های رژیومویی عدس نسبت به شوهر پرگزیده شدند. در بررسی مقاومت به تنش خشکی 14 جذابیت رژیومویی که در این کمترین تنش به تنش شوری بود مشخص شد که تمام جذابیت‌های قدرت تحمل غلتقهای 56 و 142 گرم در هر لیتر میوه PEG4000 در این تنش بالاتر قرار داشت. در تیمارهای 288 و 3582 گرم در لیتر که تریت پتانسیل مترکسی معادل 6/9 و
RL249 تنش استفاده گردید، تنش خشکی به عقل توانست که نمونه‌های محصول روزگاری قهوه و مربوط به رژیومویی شرکت می‌گردید. در این تنش بالاتر قرار گرفت.

به عنوان حساس ترین جذابیت‌های رژیومویی عدس نسبت به شوهر پرگزیده شدند. در بررسی مقاومت به تنش خشکی 14 جذابیت رژیومویی که در این کمترین تنش به تنش شوری بود مشخص شد که تمام جذابیت‌های قدرت تحمل غلتقهای 56 و 142 گرم در هر لیتر میوه PEG4000 در این تنش بالاتر قرار داشت. در تیمارهای 288 و 3582 گرم در لیتر که تریت پتانسیل مترکسی معادل 6/9 و
RL249 تنش استفاده گردید، تنش خشکی به عقل توانست که نمونه‌های محصول روزگاری قهوه و مربوط به رژیومویی شرکت می‌گردید.

در بررسی مقاومت به تنش خشکی در شرایط گلخانه‌ای، از جذابیت‌های رژیومویی RL249 و RL271 که در این کمترین تنش به تنش شوری را در شرایط میوه کشت نشان دادند. این استفاده شد. به منظور بررسی تأثیر سطوح تیمار خشکی بر گرمبندی، امر عدس توسط جذابیت‌های رژیومویی آنتی‌وایرانات تیمارها بر اساس طرح فاکتوریل استفاده شد. در قابلیت کاوش احتمالی در بالاتر Q (جدول 1)، براساس اطلاعات به دست آمده، بین میزان درمانی و سطوح مختلف خشکی، تفاوت معنی‌داری در سطح پنج درصد وجود داشت (جدول 2). هرچند شرایط خشکی حالت شهد بود، تعداد گره کاهشی داشت. همچنین ارقام عدس مورد آزمایش از نظر گواهی تفاوت معنی‌داری نشان دادند. به طوری که حداکثر گواهی در رقم نام داشت. در شبکه رژیومویی ریز در تجزیه و تحلیل آماری، تأثیر جذابیت‌های رژیومویی روزگاری میزان رژیومویی ریز در تجزیه و تحلیل آماری، تأثیر جذابیت‌های رژیومویی روزگاری میزان رژیومویی ریز در تجزیه و تحلیل آماری، تأثیر جذابیت‌های رژیومویی روزگاری میزان رژیومویی ریز در تجزیه و تحلیل آماری، تأثیر جذابیت‌های رژیومویی روزگاری میزان رژیومویی ریز در تجزیه و تحلیل آماری، تأثیر جذابیت‌های رژیومویی روزگاری میزان رژیومویی ریز در تجزیه و تحلیل آماری، تأثیر جذابیت‌های رژیومویی روزگاری میزان رژیومویی ریز در تجزیه و تحلیل آماری، تأثیر جذابیت‌های رژیومویی روزگاری میزان رژیومویی ریز در تجزیه و تحلیل آماری، تأثیر جذابیت‌های رژیومویی روزگاری میزان رژیومویی ریز در تجزیه و تحلیل آماری، تأثیر جذابیت‌های رژیومویی روزگاری میزان رژیومویی ریز در تجزیه و تحلیل آماری، تأثیر جذابیت‌های رژیومویی روزگاری میزان رژیومویی ریز در تجزیه و تحلیل آماری، تأثیر جذابیت‌های رژیومویی روزگاری میزان رژیومویی ریز در تجزیه و تحلیل آماری، تأثیر جذابیت‌های رژیومویی روزگاری میزان رژیومویی ریز در تجزیه و تحلیل آماری، تأثیر جذابیت‌های رژیومویی روزگاری میزان رژیومویی ریز در تجزیه و تحلیل آماری، تأثیر جذابیت‌های رژیومویی روزگاری میزان رژیومویی ریز در تجزیه و تحلیل آماری، تأثیر جذابیت‌های رژیومویی روزگاری میزان رژیومویی ریز در تجزیه و تحلیل آماری، تأثیر جذابیت‌های رژیومویی روزگاری میزان رژیومویی ریز در تجزیه و تحلیل آماری، تأثیر جذابیت‌های رژیومویی روزگاری میزان رژیومویی ریز در تجزیه و تحلیل آماری، تأثیر جذابیت‌های رژیومویی روزگاری میزان رژیومویی ریز در تجزیه و تحلیل آماری، تأثیر جذابیت‌های رژیومویی روزگاری میزان رژیومویی ریز در تجزیه و تحلیل آماری، تأثیر جذابیت‌های رژیومویی روزگاری میزان رژیومویی ریز در تجزیه و تحلیل آماری، تأثیر جذابیت‌های رژیومویی روزگاری میزان رژیومویی ریز در تجزیه و تحلیل آماری، تأثیر جذابیت‌های رژیومویی روزگاری میزان رژیومویی ریز در تجزیه و تحلیل آماری، تأثیر جذابیت‌های رژیومویی روزگاری میزان رژیومویی ریز در تجزیه و تحلیل آماری، تأثیر جذابیت‌های رژیومویی روزگاری میزان رژیومویی ریز در تجزیه و تحلیل آماری، تأثیر جذابیت‌های رژیومویی روزگاری میزان رژیومویی ریز در تجزیه و تحلیل آماری، تأثیر جذابیت‌های رژیومویی روزگاری میزان رژیومویی ریز در تجزیه و تحلیل آماری، تأثیر جذابیت‌های رژیومویی روزگاری میزان رژیومویی ریز در تجزیه و تحلیل آماری، تأثیر جذابیت‌های رژیومویی روزگاری میزان رژیومویی ریز در تجزیه و تحلیل آماری، تأثیر جذابیت‌های رژیومویی روزگاری میزان رژیومویی ریز در تجزیه و تحلیل آماری، تأثیر جذابیت‌های رژیومویی روزگاری میزان رژیومو
جدول ۱. تجزیه واریانس اثر تیمارهای مورد بررسی بر تعداد گره و وزن ترشیه عدس

<table>
<thead>
<tr>
<th>منابع تغییرات</th>
<th>درجه آزادی</th>
<th>تعداد گره</th>
<th>وزن ترشیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین مربوطات</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>رژیم آبیاری</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ایزوله رایموئومی</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>رژیم آبیاری × ایزوله رایموئومی</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>خطا</td>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>ارقام عدس</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>رژیم آبیاری × ارقام عدس</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ایزوله رایموئومی × ارقام عدس</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>رژیم آبیاری × ایزوله رایموئومی × واریت عدس</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>خطا</td>
<td></td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

*: در سطح پنجم درصد معنی‌دار می‌باشد. **: در سطح ۴ درصد معنی‌دار می‌باشد.

جدول ۲. مقایسه اثر تنش خشکی بر تعداد گره ارقام عدس دانه درشت (واریت ۱) و توده محلی فردی (واریت ۲)

<table>
<thead>
<tr>
<th>میانگین تعداد گره</th>
<th>واریت ۱</th>
<th>واریت ۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>میزان مصرف آب قبل استفاده</td>
<td></td>
<td></td>
</tr>
<tr>
<td>مصرف ۵۰ درصد آب قبل استفاده</td>
<td>۱۴/۱۱۱ ۱۵/۴۴۴ ۹/۴۴۴</td>
<td>۱۴/۱۱۱ ۱۵/۴۴۴ ۹/۴۴۴</td>
</tr>
<tr>
<td>مصرف ۵۰ درصد آب قبل استفاده</td>
<td>۶/۴۴۴ ۶/۴۴۴ ۶/۴۴۴</td>
<td>۶/۴۴۴ ۶/۴۴۴ ۶/۴۴۴</td>
</tr>
<tr>
<td>مصرف ۵۰ درصد آب قبل استفاده</td>
<td>۲۶/۳۳۳ ۲۶/۳۳۳ ۲۶/۳۳۳</td>
<td>۲۶/۳۳۳ ۲۶/۳۳۳ ۲۶/۳۳۳</td>
</tr>
</tbody>
</table>

میانگین هر گروه که حداقل دریک حرف مشترک کاندید تفاوت آماری بر اساس آزمون دانکن در سطح احتمال ۵ درصد معنی‌دار می‌باشد.
جدول ۳ مقایسه میانگین‌های وزن ترسپ در (gr) گیاهان تولید شده با جدایی‌های رژیم‌های

<table>
<thead>
<tr>
<th>شماره جدایی‌های رژیم‌های</th>
<th>میانگین‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RL77</td>
</tr>
<tr>
<td></td>
<td>RL211</td>
</tr>
<tr>
<td></td>
<td>RL249</td>
</tr>
</tbody>
</table>

در تیمارهای مختلف نسبت به روز روی روز شکوفه‌های درخت شکوفه‌های ۷۵ درصد آب قابل استفاده، تعداد ۷۹ گره برای RL249 شمارش شد، در حالت که برای RL211 در همان تیمار شکوفه فقط ۴۹ گره تربیت شد.

سطح مختلف شکوفه و نوع رقدم آب در ایجاد گره توسط رژیم‌ها در گیاهان اثر نشان داده که در سطح ۵۰ درصد مصرف آب قابل استفاده، نیروی گروه‌ای واریز داده درشت توده توجه بود و با اعمال نیروی مصرف ۵۵ درصد آب قابل استفاده، تعداد گره‌ها بالا یافته به مقایسه میانگین‌ها تا ۵۴ درصد کاهش پیدا کرد و در نیروی مصرف ۹۸ درصد آب قابل استفاده، گروه‌ای کاهش معنی‌دار داشت. چنین روندی در توده عدس فردینی نیز مشاهده شد. در بررسی وزن ترسن در اثر اختلاف در سطح مختلف شکوفه، مشاهده شد که بین سه نوع جدایی‌های رژیم‌های در سطح یک درصد، تفاوت معنی‌داری از نظر تأثیر روی وزن ترسن وجود دارد، به طوری که هو گاگ آب جدایی‌های رژیم‌های RL249 به عنوان رژیم‌های تلقیح استفاده شد، وزن ترسن نسبت به بقیه جدایی‌های رژیم‌های افزایش داشت و در سطح مختلفی از نظر تأثیر روی وزن ترسنی از میزان ترسن شکوفه، در تمام تیمارها وزن ترسن عدس بیان داشت نسبت به واریز رفسنجان درشت بود و مشاهدات ظاهری رشد حجمی رشد ریشه نیز با تأثیر محاسبت آماری به طور کامل مطابقت داشت (جدول ۳).
در مقایسه تعداد گره‌های ایجاد شده بر روی رشته سه رقم عدس محلی، مشخص شد که تعداد پیوندهای بی‌نمای عدس دانه درشت، نسبت به سایر اقسام، گروه‌ای بیشتری داشته و اندماه گره‌های نیز درشت‌تر بود. این نتیجه می‌تواند به دلیل این دلایل باشد که وقایع گاهی مختلف در عید جمعیت متنوعی از ریزروپیوم‌های مختلفی، به دلیل تأثیرات بیشتری از نظر سیگنال‌های شیمیایی با گیاه میزان مشخص، توانایی گره‌سازی بیشتری داشته باشد.

(15) گاریش‌های دیگر (10) نیز، داده است که در گیاه اسپرمیس، هنگامی که اندماه، بیشتری در شبینها و بود، ذوب در جوانه‌های سریعتر، تعداد گره‌های ایجاد شده نیز بیشتر بود. تمام گیدرها و گردهای روی عدس در غلظت ملیول کروز سدیم قادر به درشت بود. ولی از نظر کمکه به مقایسه بالاتر، طول توانایی کنترل این نتایج بین آنها وجود داشت، به طوری که 40 درصد از جدایی‌ها نسبتاً متحمل به شهری و 60 درصد آنها متحمل به شهری تشخیص دادند.

تولید به شهری باید اکثر ریزوپیوم‌ها گازرخ شده است (11).

ظاهرآ به دلیل اینکه سریع‌تر تر ترکیبات ایجاد گرده‌های با استفاده گروه‌های ایجاد نیز، بیان می‌شوند. ولی به استناد مطالعات، توانایی مناسب این جدایی‌ها برای گره‌سازی رؤیا اتفاق عدس در شرایط گذشته قابل درک عرض نبود. مخصوصاً تمرین این جدایی به نشان این بی‌پایی گروه‌های ایجاد شده است.

(12) و 4-6) نیز، با توجه به شهری، می‌توانیم شرح و شرایط آزمایشگاه نیز بسیار قابل توجه بود و برای بررسی این جدایی در دلیل کافی ارائه کرد. اما به دلیل این که ایجاد گره‌ای به‌ویژه هم‌روستی مربوط می‌شود و نتایج متقابل ریزوپیوم و کم‌رو در میزان بیشتری از این بین در آزمایشات دارد، شاید بتواند با بررسی دقیق تر هم‌روستی این جدایی با این اتفاق نیز اگر دریغ عدس، از این جدایی به عنوان هم‌روستی مقداً که میزان ارتباطی بیشتری به عمل اورد.

(20) می‌دهد.

نتایج ارزیابی قدرت گره‌سازی در شرایط نش خشکی، گره‌سازی ریزوپیومی عدس نشان داد که ارقام سه‌تایی، تحت شرایط مختلف نش خشکی، با اکثریت متفاوتی از نظر

80
پاسخگویی گرمساری جدایا‌های زیستی تووده‌ها

در آن، این عدس احتمالاً نمی‌تواند ظرفیت استفاده بهبودی از فرازند تیپ مکلی نیش‌زوز و داشته باشد. در مقابل، رقم عدس بی‌نام داده در شرایط با توجه به تراکم زیاد ریشه و ماره گرمساری بیشتر در هموسی تای بریویوم که مخصوصاً برای محصول بود، رقم مناسبی تری از نظر تیپت از

متابع مورد استفاده

1. پاقری، م. غلدانی و م. حسن‌زاده. ۱۳۷۶. زراعت و اصلاح عدس. انتشارات جهاد دانشگاهی مشهد.
2. مهربخش، م. ۱۳۷۵. بررسی سازگاری خصوصیات فیزیولوژیک و مورفولوژیک، عمک کرک و پروتئین لایه‌های عدس در اصفهان.