برآورد خصوصیات افق سطحی خاک با استفاده از مدل رقیم پستی و بلندی زمین

(مطالعه موردی: پیش نمایی از حوزه آبخیز مهر سبزوار استان خراسان)

چکیده
روش‌های مرسوم مطالعات خاک‌شناسی در حوزه‌های آبخیز ایران، نیازمند هزینه، کارشناسی و زمان زیاد است. باعث انحراف بودن برخی نقاط حوزه و مشکلات نمونه برداری نیز به مشکلات اضافه‌ای منجر شده. به‌وسیله محدودیت‌های مزبور در اغلب شواهد آبخیز کشور، اطلاعات مکانی و پیوسته دقیقی از خصوصیات خاک به منظور برآورد فرایندهای تونسی مدل‌های مختلف نظر از ویژگی‌های موردی و پرانتزی موجود نیست. البته این به روش‌های نوین نیاز است که با حداکثر نیروی برداری کم و به‌کمک پارامترهای سطح زمین (که محاسبه آنها به مراتب ارزانتر است) پیش نمایی از شواهد سطحی خاک را به طور نسبتا دقیق در حوزه آبخیز مهر سبزوار مشتمل بر یک واحد سنجشی غالب حوزه، شامل خصوصیات مورد مطالعه خاک که با رو به رو هر E2cE kuPLc با منظور ایجاد مدل‌های رگرسیون خاک-پسیان اندام، صورت گرفته است. خصوصیات مورد مطالعه خاک شامل سطحی، شالاب درصد شن، رس، مواد آلی، سنگریزه، رطوبت و زنی خاک در حالت FC و مقدار وزن مخصوص ظاهری بوده است. در حال حاضر مدل‌های مختلف در جمع 216 نقطه مطالعاتی انجام شد که اثرات مدل‌های شناخته شده شدت با بیشتری از مدل‌های دیگر که مدل‌های کنونی با روش‌های مختلف به دست آمده هستند. مدل‌های مورد مطالعه پستی و بلندی مهمی به کار خصوصیات خاک ارتباط بیشتری داشته و در مدل رگرسیون نیز وارد شده. به‌طور عمدی شامل شبد و جهت آن. آنتاف شاخصی فراکس و شاخصی قدرت جریان، شاخص حامل رسوب و انتفاع زمین بوده است. این تأثیر می‌تواند از مدل‌های است که خصوصیات خاک در منطقه تحت شناخت فراهم‌می‌کند. هیپروتوپسی، مؤثر از نظر عملکردی می‌باشد. تأثیر ایجاد مدل‌های نیز بر تاریکی و جریان قدرت می‌باشد مدل‌ها حکایت می‌کنند. تأثیر نشان داده که مدل‌های به دست آمده در مقیاس حوزه و فواصل 100 متر، قادرون در واحد‌های مختلف سنجشی شناسی از حداقل 22 حداکثر 22 درصد از کل نیروی خاص مدل‌های مختلف سطحی خاک را پیش‌بینی کند.

واژه‌های کلیدی: خصوصیات پستی و بلندی، خصوصیات سطحی خاک، مدل خاک-چشم‌انداز

1. استادیار خاک‌شناسی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
2. دانشجوی سابق کارشناسی ارشد مرغ و آبخیزداری، دانشکده مرغ و آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

85
بحث خصوصیات سطحی خاک در حوزه آبیاری با استفاده از دسترس بندی، مختصاً در ارتباط با پایان سیستم فرسایش ذیلی خاک و یا محاسبه فرسایش و رسوپ، توصیف مدل‌های مختلف تجزیه و تحلیل از همبستگی بین برخورداری این خصوصیات سطحی، می‌توان به توزیع اینوگرافی در ناحیه تحقیقاتی مستند شدن. سپس، مقدار میان در مواقع افزایش اساسی در محاسبه ضریب فرسایش ذیلی (K) و همچنین به پارامترهای حد ظرفیت مزرعه. و برنمایش مفاهیم در سیرایه سیستم‌های آبیاری که همراه با انتخاب و روش‌های جمله‌ای برخورداری باشد. به این ترتیب آن مراحل تعمیراتی در آبیاری خاک را درجه انتخاب بالاتری صورت خواهد گرفت.

دسترس بندی برخی نقاط خاک در حوزه آبیاری می‌تواند سطحی تجربی نمونه‌های خاک ارائه روش‌های به محدوده به‌طور بهره‌برداری مستقیم خصوصیات خاک طبیعی می‌کند. نمونه‌گیری از این روش‌های غیر مستقیم در مقیاس حوزه آبیاری، استفاده از فاکتورهای نویزگرایی و مدل‌ها (cuentas de artefactos) است یا استفاده از (Digital Elevation Model) سیستم‌های جمع‌آوری اطلاعات با خصوصیات هیدرولاتیکی و فرازیایی در مرز و رسوپ روش دنیای استحکام به خوشه‌ای در ارتباط با خصوصیات سطحی خاک، نتایج ضخامت افقی (pH) میزان فسفر، مواد آلی و افق سطحی به ویژگی‌های به‌بینی و بلندی به دست آوردن (پتانسیم‌گیری به‌صورت تغییر پیشنهادی مکانیک خاک در نظر گرفته‌است نمی‌شود و به‌طور چاپی در دستورالعمل‌های اقدامی در مقیاس نهاده شده در این تحقیقات به روش‌های تغییر چاپی در مقیاس تغییر‌پذیری مکانیکی خاک در نظر گرفته‌است نمی‌شود (5). که در این‌جا افتراقهای با کلکتروزا فاصله‌ای از قبیل شاهد یک واحد اراضی به گروهی از اراضی، همان خصوصیات بی‌پایان شاهد و به‌خوره اختصاص می‌دهد. در تحقیقات موردی، پاراکس جغرافیایی خاک به‌صورت واحدهای تحقیقاتی همان نمایندگی داده می‌شود، با فرض این که خصوصیات داخل این واحد از یکسان‌سازی و هموگونی
برآورد خصوصیات افق سطحی خاک با استفاده از مدل پستی و بلندی زمین ...

شکل 1. موقعیت جغرافیایی منطقه مورد مطالعه و پراکنش جغرافیایی واحدهای سنگ‌شناسی در منطقه انتخابی

همگونی نیست و از موارد مادهی مختلفی تشکیل شده است که

به ترتیب واحدهای سنگ‌شناسی آن، واحدهای "کنگلومرا"با

"مارن" در بخش سپیتوی پلیوسن (Ple) سنگ آهن کریستال

و ترکیسی از مارن، ماسه سنگ و کنگلومرات انسن (Ktt)

(سیستم با ایس.)

از آنجا که بقیه از گیاه‌شناسی و

خصوصیات خاک، موارد مادی است، واحدهای مورد نظر به

عنوان واحدهای کارا انتخاب و مدل رگرسیونی به طور

جدی‌گیری برای اینها برآورد شده است. باید منظور در واحدهای

بروز به ترتیب ۱۲۵، ۱۳۱ و ۷۸ نقطه در پژوهش

مواد و روش‌ها

منطقه مورد مطالعه با مساحت ۷۵۷ هکتار، بخشی از حوزه

آبشار مهر سیروار در ۶۱ کیلومتری غرب شهرستان سیروار در

عرض جغرافیایی ۱۵°۲۲.۲۳ ثانیه و طول جغرافیایی ۴۶°۳۷.۲۵ ثانیه واقع شده است (شکل ۱). دمای

متوسط منطقه، درجه سانتی‌گراد و متوسط بارندگی سالانه

۲۶۰ میلی‌متر است. منطقه مورد مطالعه از نظر زمین‌شناسی

18
شکل 2. پراکنش نقاط مطالعاتی در منطقه مورد مطالعه (نقاط توپور: برای ایجاد مدل، نقاط تنوخلایی: نس مدل)

شیب‌های و فواصل منظم 100 متر انتخاب شد. ناحیه پراکنش نقاط نمونه برداری (شامل نقاط مدلسازی شده و نقاط اعتبار سنگین) در منطقه مورد مطالعه در شکل 2 نشان داده شده است. نقاط مورد مطالعه توسط GPS در سطح حوزه آبخیز شناسایی شد. در هر نقطه از افق سطحی از عمق 0-10 سانتی‌متری اقدام به نمونه‌برداری گردید. همچنین از هر نقطه، نمونه دست نخورده بایا اندامگیری حد ظرفیت مزرعه و وزن مخصوص ظاهری خاک جمع آوری شد. در مرحله آزمایشگاهی توزیع اندازه‌زان به روش هیدرومتری (3)، مقدار ماده آلی به روش سوزاندن تر (9)، وزن مخصوص ظاهری به روش کلوخه و پارافین، حد ظرفیت خاک با استفاده از صفحه فشار و (Field Capacity) (FC) درصد سنگریزه به وسیله حجم سنگی در هر نمونه محاسبه شد.

محاسبه شاخص‌های توپوگرافی

شاخص‌های توپوگرافی (شیب، جهت شیب، ارتفاع و ..) به طور مستقیم از مدل رقموی ارتفاع محاسبه می‌شود و ویژگی‌های مدل رقموی ارتفاع (Interpolation) مختصات میزان نقاط توپوگرافی رقموی در (DEM)
دانلود فونت سایت...
انحراف از میانگین (Mean Error) (ME)، ریشه مربع میانگین حسابی (Root Mean Square Error) (RMSE) و خطای محاسبات (Mean Error) (ME) به شکل زیر محاسبه شده است:

\[
\text{RMSE} = \sqrt{\frac{\sum (z_i - \bar{z})^2}{n}}
\]

\[
\text{ME} = \frac{\sum (z_i - \bar{z})}{n}
\]

شناختن ME شاخص نشان دهنده ارتباط بین مقدار مورد تخمین است که باید به ردیابی نسبت صفر باید یا RMSE نمایانگر درجه پیوستگی تخمین است که باید برای باید نا حذف اکنون در جداح باشد. به منظور پژوهش از توضیحات مکرر بایا علامت مخفف، این علامت به شرح زیر عبارت‌اند از:

- RMSE: انحراف از میانگین مجموعه
- ME: انحراف از میانگین
- ME: انحرافات
- Plc: واحدهای سنجش پیژود، واحدهای سنگ
- Gravel، Ko: شاخص اینسان، Ku: سنگریزه، Sand، سی، Cu: سنگریزه، oM، M: سنگریزه
- Elev: وزن در حد مصرف
- pb: وزن مصرف‌های نمازل خاک
- Strm: شیب
- Sp: شیب رطوبت
- Ê: ارتفاع
- Proc: انحنای تابیتی
- Plac: ارتفاع
- Sdp: ضریب تغییرات
- MAX: مکرر
- KURT: فرمول
- MEAN: میانگین
- b: ضریب کشیدگی
- N: عدد
- تحقیقات

بحث و تناوب

اصلی، موارد ماد، توربوفیری و موجودات زندگی مهم‌ترین

عوامل مؤثر در تشکیل خاک محسوب می‌شود. با توجه به این

که خصوصیات اقلیمی در مقابل بیشتر تغییر می‌کند، بنا بر

به صورت ناحیه‌ای و به شیوه یک‌تا چند دسته موارد ماد و

بورخی می‌باشد. این تغییرات خاک را پیگیری کرد. (5) توضیح منطقی این ارتباط آن است که

فرآیندهای هیدرولوژیکی، حركت آب سطحی و زیر سطحی و

حرکت ذرات خاک و انعکاس‌هایی را در چندین شرایط به

وسله خصوصیات توربوفیریا و اندازه‌گیری تعداد می‌شود. بین

ورونایی، چنین فاکتورها خصوصیات مختلف فیزیکی و شیمیایی خاک
جدول 1. آمار توصیفی از خصوصیات مورد بررسی افق سطحی خاک در واحدهای مختلف سگشناسی منطقه مورد مطالعه

<table>
<thead>
<tr>
<th>No. Obs</th>
<th>Kurt</th>
<th>Skew</th>
<th>(C)</th>
<th>Mean</th>
<th>Max</th>
<th>Min</th>
<th>واحد سگ و یا گی</th>
<th>واحد سگ و یا گی</th>
</tr>
</thead>
<tbody>
<tr>
<td>165</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>0.73</td>
<td>0.91</td>
<td>13.3</td>
<td>24.1</td>
<td>11.8</td>
<td>13.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>0.70</td>
<td>0.91</td>
<td>13.6</td>
<td>28.2</td>
<td>13.2</td>
<td>19.59</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

سطح ورود حوزه و درجه شهراب شناسی از موقعیت مکانی یک نقطه در طول یک کانال (Catena) می‌باشد. مقادیر کم آن در مناطق بالایی شهراب و مقادیر زیاد در نقاط پست و آبراهه‌ها دیده می‌شود. شکل 4-4 این مسئله را تایید می‌کند. عنوان نمونه پارامترهای شیب (بر حسب نرخ تناژت زاویه کن) و شاخص رطوبتی برای یک منطقه مورد مطالعه در 4 نماش داده شده است. حان طور که از یک شکل برمی‌آید، توزیع شیب در منطقه در طیف وسیعی قرار دارد. مقادیر شاخص رطوبتی در منطقه صفر تا 14 متغیر است. به طوری که گسل و همکران (2000) عنوان کره‌های صاخبی رطوبتی با ترکیب
 фигурه ۴ پراکنش جغرافیایی مقادیر محاسبه شده شاخص رطوبی (الف) و شیب (ب) مورد مطالعه، در درجات مختلفی با خصوصیات خاک از مهورین خصوصیات انالیز سطح زمین که با خصوصیات خاک ارتباط می‌ندارند نشان می‌دهد. می‌توان به ارتفاع، شیب، شاخص رطوبی، شاخص قدرت جریان و در مواردی جهت شیب و درجه انحنای قائم زمین اشاره کرد که در نقاطی که مورد مطالعه، در درجات مختلفی با خصوصیات خاک همیشه معنی داری دارند. وجود همیشه معنی آماری بین ویژگی‌های مذکور و

۹۲
جدول ۲ شرایط همبستگی (r) بین خصوصیات خاک و ویژگی‌های توپوگرافی در واحد سنگ‌شناختی E2S

<table>
<thead>
<tr>
<th>Elev</th>
<th>Plac</th>
<th>Proc</th>
<th>Asp</th>
<th>Slp</th>
<th>Wetn</th>
<th>Strm</th>
<th>Sedtind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay</td>
<td>-0.89**</td>
<td>-0.75**</td>
<td>-0.53**</td>
<td>0.22</td>
<td>-0.15</td>
<td>0.12</td>
<td>-0.04</td>
</tr>
<tr>
<td>Sand</td>
<td>0.50**</td>
<td>0.49**</td>
<td>0.25**</td>
<td>-0.17</td>
<td>-0.14</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>Gravel</td>
<td>0.37**</td>
<td>0.38**</td>
<td>0.28**</td>
<td>-0.05</td>
<td>-0.04</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>O.M</td>
<td>-0.47**</td>
<td>-0.46**</td>
<td>-0.29**</td>
<td>-0.01</td>
<td>-0.01</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>F.C</td>
<td>-0.32**</td>
<td>-0.32**</td>
<td>-0.23**</td>
<td>-0.01</td>
<td>-0.01</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>pb</td>
<td>0.49**</td>
<td>0.52**</td>
<td>0.51**</td>
<td>0.13</td>
<td>0.16</td>
<td>0.11</td>
<td>0.16</td>
</tr>
</tbody>
</table>

* : معنی دار در سطح ۰/۰۵
** : معنی دار در سطح ۰/۰۱

جدول ۳ ضرایب همبستگی (r) بین خصوصیات خاک و ویژگی‌های توپوگرافی در واحد سنگ‌شناختی Plc

<table>
<thead>
<tr>
<th>Elev</th>
<th>Plac</th>
<th>Proc</th>
<th>Asp</th>
<th>Slp</th>
<th>Wetn</th>
<th>Strm</th>
<th>Sedtind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay</td>
<td>-0.87**</td>
<td>-0.74**</td>
<td>-0.53**</td>
<td>0.22</td>
<td>-0.15</td>
<td>0.12</td>
<td>-0.04</td>
</tr>
<tr>
<td>Sand</td>
<td>0.50**</td>
<td>0.49**</td>
<td>0.25**</td>
<td>-0.17</td>
<td>-0.14</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>Gravel</td>
<td>0.37**</td>
<td>0.38**</td>
<td>0.28**</td>
<td>-0.05</td>
<td>-0.04</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>O.M</td>
<td>-0.47**</td>
<td>-0.46**</td>
<td>-0.29**</td>
<td>-0.01</td>
<td>-0.01</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>F.C</td>
<td>-0.32**</td>
<td>-0.32**</td>
<td>-0.23**</td>
<td>-0.01</td>
<td>-0.01</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>pb</td>
<td>0.49**</td>
<td>0.52**</td>
<td>0.51**</td>
<td>0.13</td>
<td>0.16</td>
<td>0.11</td>
<td>0.16</td>
</tr>
</tbody>
</table>

* : معنی دار در سطح ۰/۰۵
** : معنی دار در سطح ۰/۰۱

جدول ۴ ضرایب همبستگی (r) بین خصوصیات خاک و ویژگی‌های توپوگرافی در واحد سنگ‌شناختی Ku

<table>
<thead>
<tr>
<th>Elev</th>
<th>Plac</th>
<th>Proc</th>
<th>Asp</th>
<th>Slp</th>
<th>Wetn</th>
<th>Strm</th>
<th>Sedtind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay</td>
<td>-0.75**</td>
<td>-0.69**</td>
<td>-0.49**</td>
<td>-0.22</td>
<td>-0.15</td>
<td>0.12</td>
<td>-0.04</td>
</tr>
<tr>
<td>Sand</td>
<td>0.50**</td>
<td>0.49**</td>
<td>0.25**</td>
<td>-0.17</td>
<td>-0.14</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>Gravel</td>
<td>0.37**</td>
<td>0.38**</td>
<td>0.28**</td>
<td>-0.05</td>
<td>-0.04</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>O.M</td>
<td>-0.47**</td>
<td>-0.46**</td>
<td>-0.29**</td>
<td>-0.01</td>
<td>-0.01</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>F.C</td>
<td>-0.32**</td>
<td>-0.32**</td>
<td>-0.23**</td>
<td>-0.01</td>
<td>-0.01</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>pb</td>
<td>0.49**</td>
<td>0.52**</td>
<td>0.51**</td>
<td>0.13</td>
<td>0.16</td>
<td>0.11</td>
<td>0.16</td>
</tr>
</tbody>
</table>

* : معنی دار در سطح ۰/۰۵
** : معنی دار در سطح ۰/۰۱

از خصوصیات خاک ارائه می‌کند. به همین لحاظ در تمامی مدل‌ها، سطح احتمال ۵ درصد تعداد بیشتری پارامتر وارد مدل شده که

با تعیین شاخص‌های متغیر مدل مشخص گردید. حالت دوم

به واسطه استفاده از پارامترهای کمکی بیشتر بر این

برازش معنی‌داری

سطح احتمال ۵ درصد، تعداد بیشتری پارامتر وارد مدل شده که

به واسطه استفاده از پارامترهای کمکی بیشتر بر این

برازش معنی‌داری
جدول 5. مدل‌های رگرسیون چند متغیره خطي (معمی‌دار در سطح 5 درصد) برای برآورد خصوصیات سطحی خاک بر اساس ویژگی‌های پشتی و بلندی در واحد سنجش‌سازی E2sc

<table>
<thead>
<tr>
<th>مدل رگرسیون خاک - چشم انداز</th>
<th>R²</th>
<th>نتیجه‌گیری (n=200)</th>
<th>ME</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay(%)=9.984 - 0.00874×Strm -0.025 Elev - 0.0021×Sedtind - 802.398×Proc</td>
<td>0.36</td>
<td>0/39</td>
<td>0/39</td>
<td></td>
</tr>
<tr>
<td>Sand(%)= 58.218+0.00622×Elev – 2.12 Asp</td>
<td>0/52</td>
<td>0/52</td>
<td>0/52</td>
<td></td>
</tr>
<tr>
<td>Gravel(%)=-99.018 - 0.0019 Strm + 0.0805 Elev + 390×Proc</td>
<td>0/55</td>
<td>0/55</td>
<td>0/55</td>
<td></td>
</tr>
<tr>
<td>O.M(%)= 50.98 -0.0018×Strm - 0.0039×Sedtind - 0.14×Slp - 0.021×Elev</td>
<td>0/35</td>
<td>0/35</td>
<td>0/35</td>
<td></td>
</tr>
<tr>
<td>FC (%) =270.28 - 15.195×Sedtind - 0.02175×Elev - 0.0143×Proc</td>
<td>0/59</td>
<td>0/59</td>
<td>0/59</td>
<td></td>
</tr>
<tr>
<td>ρb= 1.343 +0.0163×Wetn +0.00156×Elev – 2.12 Asp</td>
<td>0/63</td>
<td>0/63</td>
<td>0/63</td>
<td></td>
</tr>
<tr>
<td>Clay (%) = -13.551 -0.0146×Elev + 0.269×Wetn - 0.04733×Sedtind +409.652×Plac + 0.00121×Strm</td>
<td>0/72</td>
<td>0/72</td>
<td>0/72</td>
<td></td>
</tr>
<tr>
<td>Sand (%) = 43.172 + 0.002911×Elev</td>
<td>0/32</td>
<td>0/32</td>
<td>0/32</td>
<td></td>
</tr>
<tr>
<td>Gravel (%) = -33.8 + 0.0343×Elev – 1.193×Wetn</td>
<td>0/34</td>
<td>0/34</td>
<td>0/34</td>
<td></td>
</tr>
<tr>
<td>O.M (%) = -0.966 – 0.000835×Elev + 0.697×Slp</td>
<td>0/29</td>
<td>0/29</td>
<td>0/29</td>
<td></td>
</tr>
<tr>
<td>FC (%) = 56.37 – 0.00278×Elev - 31.99×Slp – 0.187×Sedtind</td>
<td>0/31</td>
<td>0/31</td>
<td>0/31</td>
<td></td>
</tr>
<tr>
<td>ρb = 0.0023 + 0.0302×Elev + 0.01055×Wetn</td>
<td>0/42</td>
<td>0/42</td>
<td>0/42</td>
<td></td>
</tr>
</tbody>
</table>

جدول 6. مدل‌های رگرسیون چند متغیره خطي (معمی‌دار در سطح 5 درصد) برای برآورد خصوصیات سطحی خاک بر اساس ویژگی‌های Plc پشتی و بلندی در واحد سنجش‌سازی

<table>
<thead>
<tr>
<th>مدل رگرسیون خاک - چشم انداز</th>
<th>R²</th>
<th>نتیجه‌گیری (n=88)</th>
<th>ME</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay (%) = 215.597- 0.0104×Elev -0.0075×Strm -0.125 Asp</td>
<td>0/81</td>
<td>0/81</td>
<td>0/81</td>
<td></td>
</tr>
<tr>
<td>Sand (%) = 63.318 +0.0126×Elev -0.129×Wetn +0.024×Strm - 25.64 × Proc</td>
<td>0/59</td>
<td>0/59</td>
<td>0/59</td>
<td></td>
</tr>
<tr>
<td>Gravel (%) = -15.59+ 0.0286×Elev +120.2 Slp</td>
<td>0/52</td>
<td>0/52</td>
<td>0/52</td>
<td></td>
</tr>
<tr>
<td>O.M (%) = 1.495 -0.000462 Elev -11.58 × Slp – 0.00156×Strm + 0.00735 × Asp</td>
<td>0/38</td>
<td>0/38</td>
<td>0/38</td>
<td></td>
</tr>
<tr>
<td>F C (%) = 455.67 - 0.0554×Elev -0.015×Strm -12.14 × Slp - 0.111 × Asp</td>
<td>0/59</td>
<td>0/59</td>
<td>0/59</td>
<td></td>
</tr>
<tr>
<td>ρb = 7.465 + 0.00449×Elev +0.021 Strm -0.01045×Wetn - 43.26 × Proc</td>
<td>0/71</td>
<td>0/71</td>
<td>0/71</td>
<td></td>
</tr>
</tbody>
</table>

جدول 7. مدل‌های رگرسیون چند متغیره خطي (معمی‌دار در سطح 5 درصد) برای برآورد خصوصیات سطحی خاک بر اساس ویژگی‌های Ku پشتی و بلندی در واحد سنجش‌سازی

<table>
<thead>
<tr>
<th>مدل رگرسیون خاک - چشم انداز</th>
<th>R²</th>
<th>نتیجه‌گیری (n=30)</th>
<th>ME</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay (%) = 215.597- 0.0104×Elev -0.0075×Strm -0.125 Asp</td>
<td>0/81</td>
<td>0/81</td>
<td>0/81</td>
<td></td>
</tr>
<tr>
<td>Sand (%) = 63.318 +0.0126×Elev -0.129×Wetn +0.024×Strm - 25.64 × Proc</td>
<td>0/59</td>
<td>0/59</td>
<td>0/59</td>
<td></td>
</tr>
<tr>
<td>Gravel (%) = -15.59+ 0.0286×Elev +120.2 Slp</td>
<td>0/52</td>
<td>0/52</td>
<td>0/52</td>
<td></td>
</tr>
<tr>
<td>O.M (%) = 1.495 -0.000462 Elev -11.58 × Slp – 0.00156×Strm + 0.00735 × Asp</td>
<td>0/38</td>
<td>0/38</td>
<td>0/38</td>
<td></td>
</tr>
<tr>
<td>F C (%) = 455.67 - 0.0554×Elev -0.015×Strm -12.14 × Slp - 0.111 × Asp</td>
<td>0/59</td>
<td>0/59</td>
<td>0/59</td>
<td></td>
</tr>
<tr>
<td>ρb = 7.465 + 0.00449×Elev +0.021 Strm -0.01045×Wetn - 43.26 × Proc</td>
<td>0/71</td>
<td>0/71</td>
<td>0/71</td>
<td></td>
</tr>
</tbody>
</table>
مدل‌های زیست‌شناسی دقت مناسب و قابل قبول پراوردها به نمایش گذاشته و در منطقه مورد نظر، این پژوهش‌ها توانسته‌اند با ارائه مختلف سلسله‌های مختلف از خصوصیات مختلف سطح زمین، تعداد و ایجاد انجمن‌های گیاه‌های کشاورزی احساس می‌شود. نتایج کلی پژوهش نشان می‌دهد که در سطح حوزه آبخیز که مشکلات خاص نموی در برداری، معیار دیوارین برخی مناطق و همچنین نیز اطلاعات دقیق و پویسته از خصوصیات خاک، وجود دارد. در این انجمن پژوهشی دقیق آزمایشی و عملیاتی که تاکنون اطلاعات دقیق خاک استایل، یافته‌ها از روش معرفی شده در این پژوهش استفاده کرده‌اند. همچنین مدل‌های به دست آمده در این پژوهش‌هایی با قابلیتی بالا را در شرایط شناسایی حوزه از نظر پژوهش‌هایی و مواد مادی برای پیش‌بینی خصوصیات خاک (بدون نمونه برداری از خاک) با دقت مناسب می‌توان به کار گرفت. ولی استفاده از مدل‌هایی با نمونه مواد مادی و پژوهش‌هایی در حالی است که مدل‌های مانند دیوار در دیوار و دیواری نیز دارد. ممکن است تلفش‌های محلی‌های مزبور با اطلاعات حاصل از تغییرات محیطی و سایر لایه‌های اطلاعاتی به نتایج رضایت بخش تری متفاوت گردد.

نتایج اخیر سایر مدل‌های دیگر جدول 5 نشان داده که به توجه به سایر مدل‌های موجود در این مطالعه، که برای این انتخاب مدل‌های به صورت یکپارچه و همکاری با هر یک از این مدل‌های با استفاده از متغیرهای زمین‌شناسی، مدل‌های اینستیوشن نیز به روش مناسب است. مقدار MSE پایین‌تر نشان‌دهنده کیفیت بهتر بوده است. مقدار MSE پایین‌تر نشان‌دهنده کیفیت بهتر بوده است.