برآورد خصوصیات افق سطحی خاک با استفاده از مدل رقیم پستی و بلندی زمین

مطالعه موردی: پیشی از حوزه آبخیز مهر سبزوار استان خراسان

شناسی نویسی و محسن حسین عیزاز

چکیده

روش‌های مرسوم مطالعات خاک‌شناسی در حوزه‌های آبخیز ایران، نیازمند هزینه، کارشناسی و زمان زیاد است. صعب العبور بودن بقیه مناطق حوزه و مشکلات نمونه برداری نیز به مشکلات مذکور اضافه می‌شود. به واسطه محدودیت هزینه مزبور در اغلب حوزه‌های آبخیز، اطلاعات مکانی و پویه دقیق از خصوصیات خاک به منظور برآورد فرسایش خاک توسط مدل‌های مختلف نظر

کشور (PIAC Eurosem Morgan Rusle) است که با حداکثر نمونه برداری کم و به کمک پارامترهای سطح زمین (که محاسبه آنها به مراتب ارزانتر است) پتانسیل خصوصیات خاک به طور نسبتاً دقیق برآورد کرد. این پژوهش در بخشی از حوزه آبخیز مهر سبزوار مشترک به سه واحد سنجشی غالب خوزه، شامل: خصوصیات صورتی مدل‌های خاک، که از اندوز صورت گرفته است. خصوصیات مدل‌های خاک و کنگ Plc و کنگ E2 و کر مدل‌های پارامترهای سطحی خاک است. در FC و متداول وزن مختصر طراحی یکده است. در سطحی شمار درصد شی، رس مواد آلی، سطح‌یاری، رطوبت و وزنی خاک در حالت

واحدهای مختلف در جمع 316 نقطه مطالعاتی انتخاب شد و هر واحد 21 تا 100 نمونه برداری شده (78 نقطه از 316 نقطه)، که حداقل 22 درصد از کل نقش‌های مختلف خصوصیات مختلف سطحی خاک را پوشش می‌کند. نتایج نشان می‌دهد که خصوصیات پستی و بلندی مهم‌ترین شاخص‌های ارتباط بیشتری داشته و در مدل‌های پارامترهای نیز وارد شده. به طور عمده، شاخص بقیه و جهت آن. ارتفاع، شاخص‌ها و شاخص‌های قدرت جریان، شاخص حمایت رسوب و انتقال زمین بوده است. بنا به نتایج این مدل، این مدل است که خصوصیات خاک در منطقه تحت تاثیر فراوانی‌های هیدروبایژیکی، مؤثر از نیروی‌های مختلفی می‌باشد. نتایج اینکه مدل‌های نیز از ترکیب یکده و درجه تعیین مناسب برای مدلهای کامپیوتری

واژه‌های کلیدی: خصوصیات پستی و بلندی، خصوصیات سطحی خاک، مدل خاک – چشم انداز

1. استادیار خاک‌شناسی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
2. دانشجوی سابق کارشناسی ارشد مرئی و آبخیزداری، دانشکده مرئی و آبخیزداری، دانشگاه علوم کشاورزی و منابع ضاپای گرگان

85
مشخصات خصوصیات سطحی خاک در حوزه آبخیر از ارتباط با مساله مدیریتی، مخصوصاً از ارتباط با بیان فرسایش بیشتر خاک و یا محاسبه فرسایش و رسوب، توزیع مدل‌های مختلف تجربی یا رایج‌تر از اهمیت‌البالم بخودکار است. از این خصوصیات سطحی می‌توان به توزیع اندام به تشخیص شبانه و سبیل، رسم، مقدار میان آلی به عنوان فاکتورهای اساسی در محاسبه قیمت فرسایش بیشتر (K) و همچنین به پارا‌مترهای حد ظرفیت مزرعه، وزن مخصوص ظاهری و درصد سه‌گیره اشاره کرد که به عنوان پارا‌مترهای ورودی برخی مدل‌های فرسایش و رسوب، مانند مدل‌های مودکا و مودکا-فینی (EUROSEM) و یا مدل در محاسبه میزان روان‌های و رسوب مورد استفاده قرار نمی‌گیرد. هر چه صحت اطلاعات و داده‌های مربوط به بیشتر از اعتبار بالاتر برخودار باشد، به تعیین آن مراحل می‌باشد، این نگاه به مقدمه

برخودار باشد (1). از دهه‌های اخیر در راستای بررسی الگوی خصوصیات خاک توسط پژوهشگران مختلف از جمله ویستر (14) سنیوسی و اورسولو (10) و وهی (13) تلاش‌هایی به عمل آمده است. این مطالعات به طور علمی در تشخیص

الگوهای پراکنش خصوصیات خاک عمل کرده و به بررسی ارتباط الگوهای پراکنش در فرزند کندن خصوصیات خاک نیز داشته است. تحقیقات مختلف نشان داده است که در برخی خصوصیات خاک، مانند ضخامت افق A و B و مقدار

لکه‌های رنگی (Mottling) در خاک، نقش خاک، مقدار pH در خاک، میزان ایمنی از این روش‌های غیر مستقیم در مقياس حوزه آبخیر، استفاده از

فاکتورهای توبوگرافی و مدل‌های رقمی ارتفاع (DEM) (4) و مدل‌های (Digital Elevation Model) استفاده از این

مدلهای پک روش آسانی و سریع ارزان، و قابل استفاده برای پیش‌بینی خصوصیات خاک است. بین این پارا‌مترهای خصوصیات هیدرولوژیکی، ارتباط نگاشتگی وجود دارد. ارتباط

بین خصوصیات توبوگرافی نظر ارتفاع شده جهت شیب، انحای افقی، اندازه‌بردی با خصوصیات هیدرولوژیکی و

فرانزیدهای فرسایش و رسوب روش شده است (7 و 6). مور و همکاران در سال 1993 می‌توانند، مدلهای

آماری خاک - چشم انداز را بیراهاس ارتباط بین برخی خصوصیات سطحی خاک نظر ضخامت افق A میزان فسفر، مواد آلی pH و افق سطحی و به ویژگی‌های پیست و بلندی به

دست آوردن (5) مطالعات مشابه نیز توسط گلسر و همکاران 7 (2) انریکشتری را تأیید کرده است.

هدف از این پژوهش ایجاد مدل مدل‌های مربوط به خصوصیات

فیزیکی خاک است. که بر اساس آن با

آبخیر مهم سیلوار استوان خراسان است که بر اساس آن با

برآورد خصوصیات افق سطحی خاک با استفاده از مدل پستی و بلندی زمین

شکل ۱: موقعیت جغرافیایی منطقه مورد مطالعه و پراکنش جغرافیایی واحدهای سنگ‌شناسی در منطقه انتخابی

هگمون نیست و از مواد مادی مختلفی تشکیل شده است که در آن موضوع واحدهای سنگ‌شناسی، واحدهای کانگلومرا با ترکیبی از مارن و پوننوپلیوسن (Ple) سنگ آهنی کرنا به اثر استفاده از خصوصیات و پارامترهای سطح زمين بهوان برخی خصوصیات فیزیکی و شیمیایی خاک را برآورد نمود.

مواد و روش‌ها
منطقه مورد مطالعه بی‌مساحت ۵۷۶ هکتار، بخشی از جنوب آبخیز مهر سیزور در ۵۱ کیلومتری غرب شهرستان سیزور در عرض جغرافیایی ۵۰°۱۵’ تا ۵۰°۱۷’ و طول جغرافیایی ۵۷°۰۷’ تا ۵۷°۲۳’ واقع شده است (شکل ۱). دمای متوسط منطقه، ۲۲ درجه سانتی‌گراد و متوسط بارندگی سالانه ۲۲۰ میلی‌متر است. منطقه مورد مطالعه از نظر زمین‌شناسی
شکل ۲ پراکنش نقاط مطالعاتی در منطقه مورد مطالعه (نقاط توری: برای ایجاد مدل، نقاط تولیدی: نشست مدل)

پیکسل هایی به ابعاد ۱۰۰۰۱۰۰ درصد تبهه شد. نمونه پراکنش نقاط نمونه برداری (شامل نقاط مدل سازی شده و نقاط اعتبار سنگین) در منطقه مورد مطالعه در شکل ۲ نمایش داده شده است. نقاط مورد مطالعه توسط GPS در سطح حوزه آبخیز شناسایی شد. در هر نقطه از افق سطحی آماده‌گر دامنه (۵۰۰ متری) اقدام به نمونه برداری گردید. هر چه بزرگتر از هر نقطه، نمونه دست نخورده براو اندازه‌گیری حداً قطعیت مزرعه و وزن مخصوص ظاهری خاک جمع آوری شد. در مرحله آزمایشگاهی توزیع اندام‌های دارات به روش هیدرومتری (۹)، مقدار نهایی به روش سیلادان تر (۹)، وزن مخصوص ظاهری به روش کلایه و پارافین، حد قطعیت خاک با استفاده از صفحه نشان (Field Capacity) (FC) (۹) و درصد سطحی به وسیله حجم سنگی در هر نمونه محاسبه شد.

\[\text{محاسبه شاخص‌های توری‌گرافی} \]

شایعات های اولیه (شبیه جهت شبیه‌سازی و و...) به طور مستقیم از مدل رقومی ارتفاع محاسبه می‌شود و هر گامی

\[\text{مدل رقومی ارتفاع (DEM) متعلق به میان‌پایی خطوط میزان تعریف توری‌گرافی رقومی در (Interpolation)} \]
نمونه‌ای برکت ۵ و ۷ اکر در شکل ۳ فاصله نقطه انتهایی باشد و X و Y منشسته‌های بردار طول و عرض و ارتفاع باند مشتقات لازم باید محاسبه باشند و باعث شده باشد. نمونه‌ای برای بوداری باشد و X و Y مشابه در شکل ۳ ۵ مشتقات جزئی به شکل زیر محاسبه می‌شود (۷):

\[
\begin{align*}
 f_x &= (Z6-Z4)/2, \\
 f_y &= (Z2-Z6)/2, \\
 f_{xy} &= ((Z2+Z6-Z5)/2, \\
 f_{xx} &= (Z4+Z6-Z5)/2, \\
 f_{yy} &= (-Z3-Z7-Z9)/4, \\
\end{align*}
\]

ماکزیمم شیب بر حسب درجه (β)، جهت شیب (Φ)

\[
\begin{align*}
 \Phi &= f_{xy}+2f_{xx}f_{yy}+f_{xy}f_{xx}y^2/(2f_{xx})^{1/2}, \\
 \beta &= \arctan(p/12), \\
\end{align*}
\]

شاخ رطوبی: عملکرد باند از شاخی از توزیع مکانی رطوبی خاک در طول چشم اندام زمین که به وسیله مراحل،
ME = \frac{\sum (Z^*(si) - Z(si))^2}{n}^{1/2}

RMSE = \left\{ \frac{\sum (Z^*(si) - Z(si))^2}{n}\right\}^{1/2}

RMSE = \left\{ \frac{\sum (Z^*(si) - Z(si))^2}{n}\right\}^{1/2}

Root Mean Square Error

Mean Error (ME)

RMSE

Mean Error (ME)

Root Mean Square Error (RMSE)

Downloaded from jcpp.iut.ac.ir at 17:46 IRST on Monday February 1st 2021
جدول 1 آمار توصیفی از خصوصیات مورد بررسی افکت سطحی خاک در واحدهای مختلف سنجش‌نامه منطقه مورد مطالعه

<table>
<thead>
<tr>
<th>No. Obs.</th>
<th>kurt</th>
<th>skew</th>
<th>(/%)</th>
<th>mean</th>
<th>max</th>
<th>min</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>0/13</td>
<td>1/03</td>
<td>11/39</td>
<td>33/65</td>
<td>11/30</td>
<td>21/12</td>
</tr>
<tr>
<td>78</td>
<td>0/19</td>
<td>0/22</td>
<td>4/80</td>
<td>10/78</td>
<td>8/50</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>0/19</td>
<td>0/24</td>
<td>1/50</td>
<td>28/85</td>
<td>4/78</td>
<td>11/30</td>
</tr>
<tr>
<td>78</td>
<td>0/70</td>
<td>0/29</td>
<td>5/19</td>
<td>0/15</td>
<td>1/30</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>0/45</td>
<td>0/12</td>
<td>1/01</td>
<td>9/36</td>
<td>0/24</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>0/55</td>
<td>0/20</td>
<td>0/13</td>
<td>22/34</td>
<td>16/50</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>0/20</td>
<td>0/23</td>
<td>11/100</td>
<td>0/52</td>
<td>1/30</td>
<td>gr/cm³</td>
</tr>
<tr>
<td>125</td>
<td>0/78</td>
<td>0/37</td>
<td>1/01</td>
<td>24/10</td>
<td>19/30</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>0/14</td>
<td>0/14</td>
<td>0/51</td>
<td>7/33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>0/77</td>
<td>0/12</td>
<td>0/40</td>
<td>6/44</td>
<td>46/47</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>0/67</td>
<td>0/12</td>
<td>0/11</td>
<td>0/29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>0/44</td>
<td>0/12</td>
<td>0/01</td>
<td>1/30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>0/93</td>
<td>0/24</td>
<td>1/03</td>
<td>23/26</td>
<td>11/43</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>0/20</td>
<td>0/45</td>
<td>0/50</td>
<td>1/56</td>
<td>1/30</td>
<td>gr/cm³</td>
</tr>
<tr>
<td>113</td>
<td>0/80</td>
<td>0/08</td>
<td>1/27</td>
<td>28/28</td>
<td>19/59</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>0/45</td>
<td>0/08</td>
<td>0/14</td>
<td>14/25</td>
<td>11/25</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>0/50</td>
<td>0/41</td>
<td>0/51</td>
<td>42/79</td>
<td>38/26</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>0/78</td>
<td>0/29</td>
<td>0/01</td>
<td>0/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>0/70</td>
<td>0/08</td>
<td>1/08</td>
<td>24/37</td>
<td>19/59</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>0/08</td>
<td>0/57</td>
<td>0/02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>0/08</td>
<td>0/50</td>
<td>1/05</td>
<td></td>
<td></td>
<td>gr/cm³</td>
</tr>
</tbody>
</table>

سطح ورود جویی و درجه شیب، شاخصی از موقعیت مکانی یک نقطه در طول یک روانه‌کاپیال (Catena) می‌باشد. مقادیر کم آن در مناطق بالایی شیب و مقادیر زیاد در نقاط پست و آبراهه‌ها دیده می‌شود. شکل 4-4 این مسئله را تایید می‌کند. عناوان نمونه‌های روانه‌کاپیال در این بررسی کشیده‌ای از مقررات 6-14 متغیر است. به طوری که گسل و همکاران (2000) عناوان آماده‌نامه، شاخص رطوبیت با ترکیب
شکل 4. پرداخت چگالی‌ای مقادیر محاسبه شده شاخص رطوبیتی (الف) و شبب (ب)

مقادیر روی مقياس راهنمای تازالت زاویه شبب است و مقادیر بیشتر مناطق پر شبب را نشان می‌دهد.

مفهوم سنگ شناسی در جداول 2 و 3 ارائه شده است. از مهورین خصوصیات آنالیز سطح زمین که به خصوصیات خاک ارتباط معنی‌داری دارند، می‌توان به ارتفاع، شبب، شاخص رطوبیتی، شاخص قدرت جریان و در مواردی جهت شبب و درجه انحای قائم زمین اشاره کرد که در واحد‌های مورد مطالعه، در دو دریافت مختلف بیان شد. همچنین سنگ شناسی دارای دارد و وجود همچنین آماری بین ویژگی‌های مذکور و
پرآورد خصوصیات افق سطحی خاک با استفاده از مدل پستی و بلندی زمین ...

جدول 2. ضرایب همبستگی (r) بین خصوصیات خاک و ویژگی‌های توده‌گرایی در واحد سنجش‌ناصبه

<table>
<thead>
<tr>
<th>Elev</th>
<th>Plac</th>
<th>Proc</th>
<th>Asp</th>
<th>Slp</th>
<th>Wetn</th>
<th>Strm</th>
<th>Sedtind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay</td>
<td>0.37*</td>
<td>0.22*</td>
<td>0.21*</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>Sand</td>
<td>0.54*</td>
<td>0.25*</td>
<td>0.22*</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Gravel</td>
<td>0.45*</td>
<td>0.17*</td>
<td>0.17*</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>O.M</td>
<td>0.14*</td>
<td>0.17*</td>
<td>0.17*</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>F.C</td>
<td>0.27*</td>
<td>0.17*</td>
<td>0.17*</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Pb</td>
<td>0.45*</td>
<td>0.17*</td>
<td>0.17*</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
</tr>
</tbody>
</table>

جدول 3. ضرایب همبستگی (r) بین خصوصیات خاک و ویژگی‌های توده‌گرایی در واحد سنجش‌ناصبه

<table>
<thead>
<tr>
<th>Elev</th>
<th>Plac</th>
<th>Proc</th>
<th>Asp</th>
<th>Slp</th>
<th>Wetn</th>
<th>Strm</th>
<th>Sedtind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay</td>
<td>0.73*</td>
<td>0.17*</td>
<td>0.17*</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Sand</td>
<td>0.34*</td>
<td>0.17*</td>
<td>0.17*</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Gravel</td>
<td>0.45*</td>
<td>0.17*</td>
<td>0.17*</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>O.M</td>
<td>0.14*</td>
<td>0.17*</td>
<td>0.17*</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>F.C</td>
<td>0.27*</td>
<td>0.17*</td>
<td>0.17*</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Pb</td>
<td>0.45*</td>
<td>0.17*</td>
<td>0.17*</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
</tr>
</tbody>
</table>

جدول 4. ضرایب همبستگی (r) بین خصوصیات خاک و ویژگی‌های توده‌گرایی در واحد سنجش‌ناصبه

<table>
<thead>
<tr>
<th>Elev</th>
<th>Plac</th>
<th>Proc</th>
<th>Asp</th>
<th>Slp</th>
<th>Wetn</th>
<th>Strm</th>
<th>Sedtind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay</td>
<td>0.25*</td>
<td>0.17*</td>
<td>0.17*</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Sand</td>
<td>0.56*</td>
<td>0.17*</td>
<td>0.17*</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Gravel</td>
<td>0.74*</td>
<td>0.17*</td>
<td>0.17*</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>O.M</td>
<td>0.14*</td>
<td>0.17*</td>
<td>0.17*</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>F.C</td>
<td>0.27*</td>
<td>0.17*</td>
<td>0.17*</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Pb</td>
<td>0.45*</td>
<td>0.17*</td>
<td>0.17*</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
</tr>
</tbody>
</table>

از خصوصیات خاک ارائه می‌کند. به همین لحاظ در تمامی مدل‌ها، سطح احتمال 5 درصد تعداد بیشتری پاژمتر وارد مدل شده که با تعیین شاخص‌های اعتبار سنجی مشخص می‌گردد. حالت دوم به واسطه استفاده از پاژمترهای کمکی بیشتر، برای معتبرتری سطح احتمال 5 درصد تعداد بیشتری پاژمتر وارد مدل شده که به واسطه استفاده از پاژمترهای کمکی بیشتر، برای معتبرتری
جدول 5. مدل‌های رگرسیون چند متغیره خطی (معنی‌دار در سطح 5 درصد)، برای برآورد خصوصیات سطحی خاک بر اساس ویژگی‌های پستی و بلندی در یک سنجش‌سازی E2sc

<table>
<thead>
<tr>
<th>شاخص اعتبار سنجی (n=28)</th>
<th>ME</th>
<th>RMSE</th>
</tr>
</thead>
</table>

جدول 6. مدل‌های رگرسیون چند متغیره خطی (معنی‌دار در سطح 5 درصد)، برای برآورد خصوصیات سطحی خاک بر اساس ویژگی‌های Plc و بلندی در یک سنجش‌سازی

<table>
<thead>
<tr>
<th>شاخص اعتبار سنجی (n=28)</th>
<th>ME</th>
<th>RMSE</th>
</tr>
</thead>
</table>

جدول 7. مدل‌های رگرسیون چند متغیره خطی (معنی‌دار در سطح 5 درصد)، برای برآورد خصوصیات سطحی خاک بر اساس ویژگی‌های Ku و بلندی در یک سنجش‌سازی

<table>
<thead>
<tr>
<th>شاخص اعتبار سنجی (n=30)</th>
<th>ME</th>
<th>RMSE</th>
</tr>
</thead>
</table>
مدل‌ها نیز نشان‌دهنده دقت مناسب و قابل قبول بوده‌اند.

(1995) عنوان کرده‌اند، در استفاده از مدل‌ها وجود همبستگی بین خصوصیات خاک و پارامترهای انتخاب‌شده، اهمیت فراوان دارد (8). در این پژوهش نیز طبق دنباله‌نگاری همبستگی (جدول 2) خصوصیات پستی و بلندی معنی‌دار برای هر پارامتر خاک انتخاب و در مدل‌سازی از آنها استفاده شده است. بهترین ترتیب آماری و زیگوی از میان پارامترهای خصوصیات خاک در مدل‌سازی مختلف سنجش شانس در جداول 5 و 7 ارائه شده است.

نکته قابل توجه این که در پارامترهای مختلف بسته به درجه همبستگی پارامترها، تعداد منفی‌ها از پارامترهای برای بروز خصوصیات، وارد مدل شده‌اند. ضرایب تنش‌های نمایندگی که این مدل‌ها در واحد سنجش‌ها (E2) 69 درصد، 37-41 می‌باشد.

پیشنهادات برای ایجاد مدلی معنی‌دار منطقه‌ای در نظر گرفته شده است. با توجه به نیازمندی‌ها و مشکلات خاص نمایندگی، انتخاب منطقه‌ای و پیامدهای اجرایی و عملیانی که توانایی ایجاد مناطق مناسب و در مدل‌سازی خاک است، خاک‌شناسی‌ها، بهبود نمایندگی در این موضوع کمک می‌کنند. همچنین مدل‌هایی به دست آمده در تحقیقات توسط پژوهشگرها در شرایط مشابه حوزه‌ای زیر بخش‌گیاهی و مواد مادی برای پیش‌بینی خصوصیات خاک (بدون نمایندگی) برداری از خاک) با دقت مناسب می‌توان به کار گرفت. در استفاده از چنین مدل‌هایی در مناطق با نوع مواد مادی و پژوهشگرها در حال حاضر به آنها فراوانی و به طبقاتی اضافه‌ی و دقت‌های آن داده می‌شود. ممکن است تغییرات مدل‌هایی مزرعه با اطلاعات حاصل از تصورات ماهورهای و سایر لایه‌های اطلاعاتی به نتایج پژوهش‌های مجزع می‌گردد.

