برآورد خصوصیات افق سطحی خاک با استفاده از مدل رقیمی پستی و بلندی زمین

مطالعه موردی: یخبندی از جهت آبخیز مهر سیبزیار استان خراسان

شمس الله ابوی و محسن حسن علیزاده

چکیده

روش‌های مرسوم مطالعات خاک‌شناسی در جهت حوزه‌های آبخیز ایران نیازمند هزینه کارشناسی و زمان زیاد است. سابعه‌ی بودن برخی مناطق حوزه و مشکلات نمونه برداری نیز به مشکلات مذکور اضافه می‌شود. به‌وسیله محدودیت‌های مزبور در اغلب حوزه‌های آبخیز کشور، اطلاعات مکانی و پوپستی دقیقی از خصوصیات خاک به‌منظور برآورد فرسایش خاک توسط مدل‌های مختلف نظیر (PSiAC.Eurosem,Morgan Rusle) است که با حداقل نمونه برداری کم و به‌کم پارامترهای سطحی زمین (که محاسبه آنها به مراتب ارزان‌تر است) پتان خصوصیات خاک را به طور نسبتا دقیقی برآورد می‌کرد. این پژوهش در یخبندی از جهت آبخیز مهر سیبزیار مشتمل بر سه واحد شناسی غالب حوزه، شامل یک خاک سطحی، دو مدل E2e و Ku,PLc به مخازن اصلی مدل‌های رگرسیون خاک (چشم انداز، صورت و گرفته است. خصوصیات سطحی و مدل‌های خاک و مقدار وزن خصوصیات ظاهری بوده است. در واحدهای مختلف از جمله 316 نقطه مطالعاتی انتخاب شد و 316 نقطه مطالعاتی انتخاب شد. از نمونه‌برداری انتخاب شد. از نمونه‌برداری شده (76 نقطه از 316 نقطه)، در چند منطقه بین این ویژگی‌ها و خصوصیات خاک، برقرار و سپس به روش آزمایشات نمونه‌برداری شده (76 نقطه از 316 نقطه)، مدل‌هایی به دست آمده اعتبار سنجی شدن می‌که که خصوصیات خاک ارتقاء بیشتری داشته و در مدل رگرسیونی نیز وارد شده. به طور عمده، شامل شبیه و جهان آن، ارتفاع، شاخص پیش و شبکه یا، ارتفاع شاخص حمل رسوب و انحراف زمین‌پوسته است. این تایید دهید این مطلب است که خصوصیات خاک در منطقه تحت شاخص فردی‌های هیدروژنیک، مؤثر از نظر فنی‌های می‌باشد. تایید اعتبار سنجی مدل‌های نیز از نظر پیشین درجه روانی نسبت به زمان مدل‌های حاکمیت می‌کند. نتایج نشان می‌دهد که مدل‌هایی به دست آمده در مقایسه حوزه و فاصله 100 متری، قادیرند در واحدهای مختلف شناسی غلاف

ازدید 32 تا حداقل 22 درصد از کل نیروهای مختلف خصوصیات مختلف سطحی خاک را پیشینی کند.

واژه‌های کلیدی: خصوصیات پستی و بلندی، خصوصیات سطحی خاک مدل خاک - چشم انداز

1. استادیار خاک‌شناسی، دانشگاه علوم کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
2. دانشجو سایر کارشناسی ارشد مرغ و آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

85
شناخت خصوصیات سطحی خاک در حوزه ای های بزرگ با استفاده از فرضیات واکنش رژیمی و ابزارهای کمیک

برخورد باشد (1)، در دهه‌های اخیر در راستای بررسی گروه خصوصیات خاک توسط پژوهشگران مختلف از جمله ویستر (14) سنیتسکی و اورسولند (15 و 16) نتایج گردیده است که امکان‌پذیر است که این ابزارها با میزان درصد مختلف مدل‌های مختلف تجربی یا رایانه‌ای از اهمیت بالایی برخوردی این فرضیات اساسی در محاسبه ضریب فرسایش سطحی (K) و همچنین به پارامترهای حد ظرفیت مزرعه، وزن خصوصیات ظاهری و درصد سطح‌های اندامی که به عنوان پارامترهای ورودی برخی مدل‌های فرسایش و سوس، مانند مدل مورثکان و مورتان- فینی (EUROSE) و مدل (MMF) و با مدل در محاسبه میزان روانیب و برخورد مورثکان استفاده قرار می‌گیرد. هر چه صحت اطلاعات و داده‌های سیستم مبتنی بر امتیاز در نتایج این نتایج افزایش خاک صورت گرفته.

همین‌طور، سایر آماری از توجه به خصوصیات سطحی خاک در میزان بزرگ، درک ما به طور گسترده‌ای مورد استفاده قرار می‌گیرد. ولی اطمینان در عمل به منظور استفاده از این توجه‌ی‌ها در حوزه‌های ای‌چیز کشور مشکلاتی وجود دارد. برای شناسایی خاک، روش و فناوری، نیاز به استفاده از (11) مدل‌های آزمایشی گزارش کرده‌اند که از محیط‌های مختلف روش‌های تولید یا مدل‌های استفاده می‌کنند. با استفاده از انواع مختلف از ابزارهای ابزارهای کمیک (غلال) در مقایسه تحقیقات و تکنیک‌های تفصیلی و اجسامی) با نقش مشاهده‌ای که نسبت به دو در این نظر گرفته شده‌هایی به طور یکسان تغییر‌پذیری مکانیکی خاک در نظر گرفته شده‌اند.

(5) گاهی اوقات نقاط خاکی با یک‌بازاری اضافه از برخورد شانه یک واحد اراضی یا جزئی واحد اراضی، همان خصوصیات برخوردی شانه را به خود اختصاص می‌دهد. در تحقیق‌های مسولی، پردازش عاملی خاکی به صورت واحدی تحقیقاتی ماهیت داده می‌شود، با فرض این که خصوصیات داخلی این واحد از یک‌نواخته و همگونی
برآورد خصوصیات افق سطحی خاک با استفاده از مدل پستی و بلندی زمین

شکل 1. موقت جغرافیایی منطقه مورد مطالعه و پراکنش جغرافیایی واحدهای سنگ‌شناسی در منطقه انتخابی

همگون نیست و از مواد مادی مختلف تشكیل شده است که مهندان واحدهای سنگ‌شناسی آن، واحدهای "کنگلومرا" با "مارات" در نقشه پایه‌پلیسی (Ple)، سنگ آهنک کرنس (K1) و ترکیبی از مارون، ماسه سنگ و کنگلومراتیونسن (E2sc) می‌باشد (شکل 1).

از آنجا که برای فاکتورهای مؤثر در فرایند خاک‌سازی و خصوصیات خاک، مواد مادرا است، واحدهای مورد نظر به عنوان واحدهای کاری انتخاب و مدل رگرسیونی به‌طور جداگانه برای آنها برآورد شده است. با داشتن منظور در واحدهای میزبان به ترتیب 125، 136 و 28 نقطه برداشت در طرح استفاده از خصوصیات و پراکنش‌های سطح زمین به‌عنوان برخی خصوصیات فیزیکی و شیمیایی خاک را برآورد نمود.

مواد و روش‌ها

منطقه مورد مطالعه با مساحت 576 کیلومتر، بخشی از جنوب آخیر مهر سیزرو در 51 کیلومتری غرب شهرستان سیزرو در عرض جغرافیایی 31° 49' 57" تا 32° 13' 39" و طول جغرافیایی 48° 23' 32" تا 49° 18' 39" واقع شده است (شکل 1). دمای متوسط منطقه 22 درجه سانتی‌گراد و متوسط بارندگی سالانه 260 میلی‌متر است. منطقه مورد مطالعه از نظر زمین شناسی

17
شکل 2. پراکنش نقاط مطالعاتی در منطقه مورد مطالعه (نقاط اول: برای ایجاد مدل، نقاط داخلی: نمستد)

پیکسل هایی به ابعاد 1000 متر تهیه شد. ویژگی هایی اولیه و ثانویه نویک واریزی با استفاده از محاسبات روی مدل رقمی ارتقاء (DEM) به شرح ذیل تعبیه گردید. ویژگی های اولیه شامل درجه شیب، جهت شیب (زاویه نسبت به شمال و در جهت دقیقه شیب)، (Specific Catchment Area) ساعت سطح ویژه ای بخیر و انحنای افقی (Profile curvature) و انحنای قائم (Plan curvature) شاخص رطوبتی (Wetness index)، شاخص قدرت جریان و شاخص حمل رسوب (Stream power index) و شاخص حمل رسوب (Stream power index) می باشند. این ویژگی های ثانویه، شامل مقدار ماهی (به روش سواراندن تر (9)), وزن میزان تراکم یا مانند روش کلیه و یا نهایی، حد اثری خاک با استفاده از مختصات سطح (Field Capacity) (FC) و (Sediment transport index) درصد سطحی به وسیله حجم سنگی در هر نمونه محاسبه شد.

محاسبه شاخص های نویک واریزی

شاخص های اولیه (شیب، جهت شیب، ارتقاء و ..) به طور مستقیم از مدل رقمی ارتقاء محاسبه و ویژگی های مدل رقمی ارتقاء محاسبه (Interpolation) مختصات با مبدأ یکی خطوط میزان تراکم نویک واریزی رقیمی (DEM) مقدار ماهی (به روش سواراندن تر (9)), وزن میزان تراکم یا مانند روش کلیه و یا نهایی، حد اثری خاک با استفاده از مختصات سطح (Field Capacity) (FC) و (Sediment transport index) درصد سطحی به وسیله حجم سنگی در هر نمونه محاسبه شد.
برآورد خصوصیات اقل سطحی خاک با استفاده از مدل پستی و بلندی زمین....

بلی، قالب محاسبه است. (مقدار A_i در آن معادله سطح ویژه حوزه آبخیر (m2/m) و β درجه شبیه می‌باشد) (V).

$W=\ln(A_i/\tan \beta)$

شاخص قدرت چربانی (Ω) تابعی از قدرت فراپیونی (γ) محاسبه می‌گردد (V)

$\Omega=A_i\tan \beta$

شاخص حمل رسوب (G_i) تابعی از قدرت فراپیونی و رسوب بوده به طور عمده تاثیر شبیه بر فراپیونی را نشان می‌دهد. (طیق نظر مور و ویلسون (6) این شاخص با فاکتور شبیه-طلو شبیه یعنی فاکتور LS در مدل جهانی برآورد (Universal Soil Loss Equation) (USLE) خاک.

$\gamma=(A_i/22.13)\beta/0.0896)^m \leq 1.3$ و $m=0.6$ و β پارامترهای تابع (V)

ایجاد مدل آماری و اعتبار سنجی آن

بعد از محاسبه شاخص‌های اولیه و تانویه پستی و بلندی در نقاط مورد مطالعه، بین این پارامترها و خصوصیات خاک سطحی، ماتریس همبستگی بین المان در هر واحد سنج‌شانسی برقرار شده. سپس آنالیز رگرسیون چند متغیره خطی بین پارامترهای خاک و شاخص‌های پستی و بلندی برای هر واحد به روش رگرسیون کام به کام SPSS و جمع‌آوری و تجزیه و تحلیل انجام گرفت. آنالیزهای آماری مختلف توسط نرم‌افزار نوکو (Statistical Package for Social Science) انجام شد. از تعداد نمونه‌های کل هر واحد به صورت تصادفی انتخاب ضریب β میل به این کناره‌گیری "E2sc" به عنوان چندین بهترین شبیه تابعی به 10 نقطه در ۳۰ نقطه هدایت کرده شده است. برای این کناره‌گیری جهت اعتبار سنجی مدل‌ها در واحد Ku به 20 نقطه در ۳۰ نقطه و برای واحد 30 نقطه و برای واحد 28 نقطه به داشت کناره‌گیری مدل‌ها در واحد Ku به داشت کناره‌گیری مدل‌ها در واحد Ku. به عنوان مثال برای نقطه شماره ۵ در شکل ۳ مشتقات جزئی به شکل زیر محاسبه می‌شود (V):

$f_{x}=\frac{(Z-6)-Z3}{2} \quad f_{y}=\frac{(Z-Z3)}{2}$

$f_{x}=(Z+Z3)/2 \quad f_{y}=(Z+Z3)/2$\]

أنالیز بحران (β)، جهت شبیه (Φ) انحلای افقی (α)، انحلای قائم (ϕ) عبراتند از:

$\Phi=\frac{f_{xy}+2f_{x}f_{y}}{2f_{x}^{2}+2f_{y}^{2}+f_{x}^{2}+f_{y}^{2}}$ $\beta=\arctan (p/12)$

 nắngیلار و طولی را به طول چشمه انداد زمین که به وسیله معادله رطوبت خاک در طول چشم انداد زمین که به وسیله معادله

شاخص رطوبتی: عبارت است از شاخصی از توییز مکانی

شکل 3 ساختار شبکه DEM با یک آرایه ۳×۳ منطق.}

منظر رطوبت خاک در طول چشمه انداد زمین که به وسیله معادله

شکل 3 ساختار شبکه DEM با یک آرایه ۳×۳ منطق.}
شاید درجه ارتباط بین تخمین است.

RMSE (Root Mean Square Error)

\(\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}\)

انحراف از میانگین (Mean Error (ME))

\(\text{ME} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)\)

\(\text{(Mean Error (ME)) (Root Mean Square Error (RMSE))}\)

شدهاند (10).

\(\text{ME} = \frac{\sum (Z^*(t)-Z(t))}{n}\)

\(\text{RMSE} = \sqrt{\frac{1}{n} \sum (Z^*(t)-Z(t))^2}\)

شاخص ME نشانگر درجه ارتباط بین تخمین است که باید

حتی المقدار نزدیک صفر باشد و نماینده درجه قدرت

تخمین است که برای یک تخمین ناریاز یا اکثر اکثری

جدافل باشد. به منظور بررسی از توضیحات مکرر برای علامت

مخخف، این عللائم به شرح زیر عبارتند از:

- انحراف از میانگین مجمع: ME
- انحرافات: Plc انحرافات: Plc
- ارتفاع: Plc ارتفاع: Plc
- شیب: Slop شیب: Slop
- نسبت: MIN نسبت: MIN
- ضریب تغییرات: MEAK ضریب تغییرات: MEAK
- تعداد: KURT منوتهای است.

بحث و نتایج

اقیم، موان مدادر، توپوگرافی و موج‌ها چندین تحقیق در ارتباط با این

که خصوصیات اقلیمی در مقابل برگ تغییر می‌کند. به شکل موان مدادر و

اگر به شکل اوایل به یک اکبر این بازمتواند این تغییرات

که را پتگرد کرد (5). توضیح منطقی این ارتباط آن است که

یکشتهای متصل به یک اکبر این اکبر تغییرات

که را پتگرد کرد (5). توضیح منطقی این ارتباط آن است که

یکشتهای متصل به یک اکبر این اکبر تغییرات

که را پتگرد کرد (5). توضیح منطقی این ارتباط آن است که

یکشتهای متصل به یک اکبر این اکبر تغییرات

که را پتگرد کرد (5). توضیح منطقی این ارتباط آن است که
جدول 1. آمار توصیفی از خصوصیات مورد بررسی افق سطحی خاک در واحدهای مختلف سگشناسی منطقه مورد مطالعه

<table>
<thead>
<tr>
<th>No. Obs</th>
<th>kurt</th>
<th>skew</th>
<th>(μ/σ)</th>
<th>mean</th>
<th>max</th>
<th>min</th>
<th>واحد وحکمیت</th>
<th>واحد سگشناسی</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>0/13</td>
<td>0/2</td>
<td>1/36</td>
<td>11/39</td>
<td>31/50</td>
<td>20/12</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>78</td>
<td>0/2</td>
<td>0/09</td>
<td>4/47</td>
<td>9/40</td>
<td>10/78</td>
<td>8/50</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>78</td>
<td>0/19</td>
<td>0/29</td>
<td>0/83</td>
<td>28/84</td>
<td>42/28</td>
<td>17/28</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>78</td>
<td>2/40</td>
<td>0/1</td>
<td>0/59</td>
<td>59/12</td>
<td>0/15</td>
<td>0/20</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>78</td>
<td>2/0</td>
<td>0/20</td>
<td>9/55</td>
<td>18/35</td>
<td>22/32</td>
<td>16/50</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>78</td>
<td>0/20</td>
<td>0/23</td>
<td>1/41</td>
<td>1/52</td>
<td>1/30</td>
<td>gr/cm³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>0/20</td>
<td>0/37</td>
<td>13/4</td>
<td>24/10</td>
<td>19/30</td>
<td>%</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>0/14</td>
<td>0/27</td>
<td>9/10</td>
<td>11/51</td>
<td>7/23</td>
<td>%</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>0/33</td>
<td>0/77</td>
<td>6/10</td>
<td>4/64</td>
<td>4/87</td>
<td>6/24</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>125</td>
<td>0/44</td>
<td>0/6</td>
<td>4/60</td>
<td>0/11</td>
<td>0/29</td>
<td>%</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>0/93</td>
<td>0/24</td>
<td>17/30</td>
<td>18/35</td>
<td>23/22</td>
<td>11/43</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>125</td>
<td>0/15</td>
<td>0/64</td>
<td>9/50</td>
<td>1/56</td>
<td>1/30</td>
<td>gr/cm³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>0/10</td>
<td>0/28</td>
<td>12/30</td>
<td>18/27</td>
<td>20/28</td>
<td>19/59</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>113</td>
<td>0/45</td>
<td>0/25</td>
<td>18/25</td>
<td>14/14</td>
<td>17/50</td>
<td>11/25</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>113</td>
<td>0/51</td>
<td>0/41</td>
<td>20/40</td>
<td>4/93</td>
<td>4/79</td>
<td>3/26</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>113</td>
<td>0/29</td>
<td>0/23</td>
<td>0/24</td>
<td>0/78</td>
<td>0/20</td>
<td>%</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>0/8</td>
<td>0/28</td>
<td>11/00</td>
<td>24/27</td>
<td>31/28</td>
<td>19/59</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>113</td>
<td>0/76</td>
<td>0/57</td>
<td>8/50</td>
<td>1/45</td>
<td>1/50</td>
<td>gr/cm³</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

سطح ویژه جوهر و درجه شیب، شاخصی از موقعیت مکانی یک نقطه در طول یک کانتا (Catena) می‌باشد. مقادیر کم آن در مناطق بالایی شیب و مقادیر زیاد در نقاط پست و آبراهه‌ها دیده می‌شود. شکل 4-الب این مسئله را تأیید می‌کند. ضرایب می‌سکینی بین خصوصیات انتخاب شده خاک با خصوصیات پستی و بلندی اولیه و ثانویه برای واحدهای

عنوان توقف پاتامرهای شیب (بر حسب تانزانیت زاوه شیب) و شاخص رطوبتی برای کل منطقه مورد مطالعه در شکل 4 نمایش داده شده است. همان طور که از شکل بر می‌آید، توزیع شیب در منطقه در طیف وسیعی قرار دارد. و مقادیر شاخص رطوبتی در منطقه بین 10-12 متغیر است. به طوری که گسل و همکاران (2000) عنوان کردند، شاخص رطوبتی با ترکیب
مفهوم سنجش شناسی در جداول ۳ و ۴ ارائه شده است. از مجموعه خصوصیات آنتیز سطح زمین که با خصوصیات خاک ارتباط معنی داری نشان می‌دهند، می‌توان به ارتفاع، شبیه، شایش رطوبی، شایش قدرت جریان و در مواردی جهت شبیه و درجه انحلال قانون زمین اشاره کرد که در جداول ۵ و ۶ مورد مطالعه، در دسته‌بندی‌های مختلف خاصیت خاک، همبستگی معنی داری دارد.

وجود همبستگی آماری بین ویژگی‌های مذکور و

نوع و قانون کشاورزی و نمونه طبیبی / صالح دهم / شماره دوم / تابستان ۱۳۸۵
جدول 2. ضرایب همبستگی (r) بین خصوصیات خاک و ویژگی‌های تریپنیوتیگ در واحد سنجش‌سنجی E2S

<table>
<thead>
<tr>
<th>Elev</th>
<th>Plac</th>
<th>Proc</th>
<th>Asp</th>
<th>Slp</th>
<th>Wetn</th>
<th>Strm</th>
<th>Sedtind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay</td>
<td>-1.0</td>
<td>0.53</td>
<td>0.09</td>
<td>-0.05</td>
<td>0.15</td>
<td>0.05</td>
<td>0.33</td>
</tr>
<tr>
<td>Sand</td>
<td>0.54</td>
<td>-0.17</td>
<td>-0.04</td>
<td>0.08</td>
<td>0.15</td>
<td>-0.01</td>
<td>0.31</td>
</tr>
<tr>
<td>Gravel</td>
<td>0.40</td>
<td>0.60</td>
<td>-0.22</td>
<td>0.02</td>
<td>0.12</td>
<td>0.05</td>
<td>0.29</td>
</tr>
<tr>
<td>O.M</td>
<td>-0.19</td>
<td>0.04</td>
<td>0.04</td>
<td>0.17</td>
<td>0.20</td>
<td>0.03</td>
<td>0.31</td>
</tr>
<tr>
<td>P.C.</td>
<td>0.07</td>
<td>0.04</td>
<td>0.04</td>
<td>0.17</td>
<td>0.20</td>
<td>0.03</td>
<td>0.31</td>
</tr>
<tr>
<td>P.B</td>
<td>0.16</td>
<td>0.04</td>
<td>0.04</td>
<td>0.17</td>
<td>0.20</td>
<td>0.03</td>
<td>0.31</td>
</tr>
</tbody>
</table>

جدول 3. ضرایب همبستگی (r) بین خصوصیات خاک و ویژگی‌های تریپنیوتیگ در واحد سنجش‌سنجی Plc

<table>
<thead>
<tr>
<th>Elev</th>
<th>Plac</th>
<th>Proc</th>
<th>Asp</th>
<th>Slp</th>
<th>Wetn</th>
<th>Strm</th>
<th>Sedtind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay</td>
<td>-0.79</td>
<td>0.77</td>
<td>0.13</td>
<td>-0.21</td>
<td>0.27</td>
<td>-0.24</td>
<td>0.50</td>
</tr>
<tr>
<td>Sand</td>
<td>0.72</td>
<td>-0.19</td>
<td>-0.09</td>
<td>0.21</td>
<td>-0.29</td>
<td>0.24</td>
<td>0.50</td>
</tr>
<tr>
<td>Gravel</td>
<td>0.68</td>
<td>0.14</td>
<td>-0.09</td>
<td>0.21</td>
<td>-0.29</td>
<td>0.24</td>
<td>0.50</td>
</tr>
<tr>
<td>O.M</td>
<td>-0.31</td>
<td>0.02</td>
<td>0.02</td>
<td>0.17</td>
<td>0.20</td>
<td>0.03</td>
<td>0.31</td>
</tr>
<tr>
<td>F.C.</td>
<td>-0.30</td>
<td>0.02</td>
<td>0.02</td>
<td>0.17</td>
<td>0.20</td>
<td>0.03</td>
<td>0.31</td>
</tr>
<tr>
<td>P.B</td>
<td>0.74</td>
<td>0.13</td>
<td>-0.09</td>
<td>0.21</td>
<td>-0.29</td>
<td>0.24</td>
<td>0.50</td>
</tr>
</tbody>
</table>

جدول 4. ضرایب همبستگی (r) بین خصوصیات خاک و ویژگی‌های تریپنیوتیگ در واحد سنجش‌سنجی Ku

<table>
<thead>
<tr>
<th>Elev</th>
<th>Plac</th>
<th>Proc</th>
<th>Asp</th>
<th>Slp</th>
<th>Wetn</th>
<th>Strm</th>
<th>Sedtind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay</td>
<td>-0.76</td>
<td>0.79</td>
<td>0.09</td>
<td>-0.04</td>
<td>0.15</td>
<td>0.05</td>
<td>0.33</td>
</tr>
<tr>
<td>Sand</td>
<td>0.70</td>
<td>-0.17</td>
<td>-0.04</td>
<td>0.08</td>
<td>0.15</td>
<td>-0.01</td>
<td>0.31</td>
</tr>
<tr>
<td>Gravel</td>
<td>0.66</td>
<td>0.14</td>
<td>-0.04</td>
<td>0.08</td>
<td>0.15</td>
<td>-0.01</td>
<td>0.31</td>
</tr>
<tr>
<td>O.M</td>
<td>-0.31</td>
<td>0.04</td>
<td>0.04</td>
<td>0.17</td>
<td>0.20</td>
<td>0.03</td>
<td>0.31</td>
</tr>
<tr>
<td>F.C.</td>
<td>-0.30</td>
<td>0.04</td>
<td>0.04</td>
<td>0.17</td>
<td>0.20</td>
<td>0.03</td>
<td>0.31</td>
</tr>
<tr>
<td>P.B</td>
<td>0.74</td>
<td>0.13</td>
<td>-0.04</td>
<td>0.08</td>
<td>0.15</td>
<td>-0.01</td>
<td>0.31</td>
</tr>
</tbody>
</table>

نتیجه‌گیری

از خصوصیات خاک اثرات مثبت به دلیل لحاظ در تمامی سطوح احتمال 5 درصد، تعداد بیشتری پارامتر وارد مدل شده که با تعیین شاخص‌های اعتبار سنجی مشخص گردید. حالت دوم به واسطه استفاده از پارامترهای کمکی بیشتر، برای مشابه تریگر
جدول ۵ مدل‌های رگرسیون چند متغیره خطی (معنی‌دار در سطح ۵ درصد)، برای پر آوردن خصوصیات سطحی خاک بر اساس ویژگی‌های پیش و پنلی در واحد سنگ‌شناسی E2sc

<table>
<thead>
<tr>
<th>مدل رگرسیون خاک - پیش‌انداز</th>
<th>R²</th>
<th>شاخص اعتبار سنجی (n=۲۰)</th>
<th>ME</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay(%)=9.984 - 0.00874×Strm -0.025 Elev - 0.0021 ×Sedtind - 802.398×Proc</td>
<td>۰.۷۶</td>
<td>۰/۰۵</td>
<td>۰/۳۹</td>
<td></td>
</tr>
<tr>
<td>Sand(%)= 58.218+0.00622×Elev – 2.12 Asp</td>
<td>۰/۵۲</td>
<td>۰/۰۴۲</td>
<td>۰/۱۷</td>
<td></td>
</tr>
<tr>
<td>Gravel(%)= -99.018 - 0.0019 Strm + 0.0805 Elev + 390 ×Proc</td>
<td>۰/۵۵</td>
<td>۰/۰۵۰</td>
<td>۰/۲</td>
<td></td>
</tr>
<tr>
<td>O.M(%)= 50.98 -0.00188 ×Strm - 0.0039 ×Sedtind - 0.14×Slp – 0.021×Elev</td>
<td>۰/۳۵</td>
<td>۰/۰۲۰</td>
<td>۰/۰۹</td>
<td></td>
</tr>
<tr>
<td>FC (%)= 270.28 - 15.95×Sedtind - 0.02175 ×Elev - 0.0143 ×Proc</td>
<td>۰/۵۹</td>
<td>۰/۰۲۵</td>
<td>۰/۰۴</td>
<td></td>
</tr>
<tr>
<td>ρb= 1.343 +0.0163×Wetn +0.00156×Elev + 13.53×Proc</td>
<td>۰/۶۳</td>
<td>۰/۰۲۰</td>
<td>۰/۱۲</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۶ مدل‌های رگرسیون چند متغیره خطی (معنی‌دار در سطح ۵ درصد)، برای پر آوردن خصوصیات سطحی خاک بر اساس ویژگی‌های پیش و پنلی در واحد سنگ‌شناسی Plc

<table>
<thead>
<tr>
<th>مدل رگرسیون خاک - پیش‌انداز</th>
<th>R²</th>
<th>شاخص اعتبار سنجی (n=۲۸)</th>
<th>ME</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay(%)= -13.551- 0.0146 ×Elev + 0.269 ×Wetn - 0.04733 ×Sedtind +409.652 ×Plac + 0.00121 ×Strm</td>
<td>۰/۸۷</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
<td></td>
</tr>
<tr>
<td>Sand(%)= 43.172 + 0.002911 ×Elev</td>
<td>۰/۳۲</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td></td>
</tr>
<tr>
<td>Gravel(%)= -33.8 + 0.0343 ×Elev – 1.193 ×Wetn</td>
<td>۰/۳۴</td>
<td>۰/۲۴</td>
<td>۰/۲۱</td>
<td></td>
</tr>
<tr>
<td>O.M (%)= -0.966 – 0.000835 ×Elev + 0.697 ×Slp</td>
<td>۰/۲۹</td>
<td>۰/۱۱</td>
<td>۰/۰۱</td>
<td></td>
</tr>
<tr>
<td>F C (%)= 56.37 – 0.00278 ×Elev - 31.99 ×Slp – 0.187 ×Sedtind</td>
<td>۰/۳۱</td>
<td>۰/۱۲</td>
<td>۰/۰۹</td>
<td></td>
</tr>
<tr>
<td>ρb= 0.0023 + 0.0302 ×Elev + 0.01055 ×Wetn</td>
<td>۰/۴۲</td>
<td>۰/۰۹</td>
<td>۰/۱۵</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۷ مدل‌های رگرسیون چند متغیره خطی (معنی‌دار در سطح ۵ درصد)، برای پر آوردن خصوصیات سطحی خاک بر اساس ویژگی‌های پیش و پنلی در واحد سنگ‌شناسی Ku

<table>
<thead>
<tr>
<th>مدل رگرسیون خاک - پیش‌انداز</th>
<th>R²</th>
<th>شاخص اعتبار سنجی (n=۳۰)</th>
<th>ME</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay(%)= 215.597- 0.01044×Elev -0.0075×Strm -0.125 Asp</td>
<td>۰/۷۱</td>
<td>۰/۰۲</td>
<td>۰/۱۲</td>
<td></td>
</tr>
<tr>
<td>Sand(%)= 63.318 +0.0126×Elev -0.129×Wetn + 0.024 ×Strm- 25.64 ×Proc</td>
<td>۰/۵۹</td>
<td>۰/۰۱</td>
<td>۰/۰۵</td>
<td></td>
</tr>
<tr>
<td>Gravel(%)= -15.59+ 0.0286×Elev +120.2 Slp</td>
<td>۰/۵۲</td>
<td>۰/۰۳۸</td>
<td>۰/۱۵</td>
<td></td>
</tr>
<tr>
<td>O.M (%)= 1.495 -0.000462 Elev -11.58 ×Slp – 0.00156×Strm + 0.00735 ×Asp</td>
<td>۰/۲۸</td>
<td>۰/۰۲</td>
<td>۰/۰۷</td>
<td></td>
</tr>
<tr>
<td>F C (%)= 455.67 - 0.0554 ×Elev -0.015×Strm -12.14 ×Slp - 0.111 ×Asp</td>
<td>۰/۵۹</td>
<td>۰/۰۸</td>
<td>۰/۱۹</td>
<td></td>
</tr>
<tr>
<td>ρb= 7.465 + 0.00449 ×Elev + 0.021 Strm-0.01045×Wetn - 43.26 ×Proc</td>
<td>۰/۷۱</td>
<td>۰/۰۳</td>
<td>۰/۰۵</td>
<td></td>
</tr>
</tbody>
</table>
منابع مورد استفاده